This chapter discusses some of the basic concepts in inferential statistics.

Size: px
Start display at page:

Download "This chapter discusses some of the basic concepts in inferential statistics."

Transcription

1 Research Skills for Psychology Majors: Everything You Need to Know to Get Started Inferential Statistics: Basic Concepts This chapter discusses some of the basic concepts in inferential statistics. Details of particular inferential tests t-test, correlation, contingency table analysis, etc. are included in other chapters. This overview is not meant to replace the more-complete information available in a statistics text. The Goal of Inferential Statistics Quantitative research in psychology and social science aims to test theories about the nature of the world in general (or some part of it) based on samples of subjects taken from the world (or some part of it). When we perform research on the effect of TV violence on children s aggression, our intent is to create theories that apply to all children who watch TV, or perhaps to all children in cultures similar to our own who watch TV. We of course cannot study all children, but we can perform research on samples of children that, hopefully, will generalize back to the populations from which the samples were taken. Recall that external validity is the ability of a sample to generalize to the population (and to other operationalizations that are assumed to represent that same constructs). Inferential statistics is the mathematics and logic of how this generalization from sample to population can be made. The fundamental question is: can we infer the population s characteristics from the sample s characteristics? Descriptive statistics remains local to the sample, describing its central tendency and variability, while inferential statistics focuses on making statements about the population. Hypothesis Testing Inferential stats is closely tied to the logic of hypothesis testing, discussed in other chapters. In hypothesis testing, the goal is usually to reject the null hypothesis. The null hypothesis is the null condition: no difference between means or no relationship between variables. Data are collected that allow us to decide if we can reject the null hypothesis, and do so with some confidence that we re not making a mistake. In psychology, the standard level of confidence, alpha, is a probability of.05 that we are rejecting the null hypothesis when we shouldn t (Type I Error). The null hypothesis is a statement of the null condition in the population, not the sample. For example, H 0 : mean of males = mean of females 2003 W. K. Gabrenya Jr. Version: 1.0

2 Page 2 is formally expressed in terms of population, not sample, means: H 0 : µ M = µ F where µ (mu) signifies the population mean, that is, the mean of all the males or females in the entire population. However, we only have a sample to work with, so we obtain a sample mean, M (or X-bar). The null hypothesis we are so intent on rejecting concerns the population means. Our task is to determine if the sample means are sufficiently different to infer that the population means are different. Basic Principle of Inferential Statistics At a certain basic level, all inferential statistics procedures are the same: they seek to determine if the observed (sample) characteristics are sufficiently deviant from the null hypothesis to justify rejecting it. How deviant? Well, this is the whole point of a statistics course. The ingredients for making this calculation are the same for all statistical procedures: 1. the size of the observed difference(s) 2. the variability in the sample 3. the sample size. If instead we are looking for relationships (e.g., correlation analysis), the size of the relationship replaces the size of the difference. Therefore, researchers seeks to: 1. find large differences (or relationships) 2. hold down unwanted variability 3. obtain large samples. (Good research must also worry about internal and external validity, and the ultimate goal: building theories.) Error Variance Types of error were introduced in an earlier chapter. Research must deal with two kinds of error variance: systematic and unsystematic. Systematic error means that there is a bias in the data. For example, say your experiment on the personality trait extraversion-introversion was conducted in both morning and afternoon sessions. For some reason, you had all the introverts come to the morning sessions and all the extraverts come to the afternoon sessions. This mistake would produce a confounding of personality trait with time of day, which for this trait dimension is a problem. Unsystematic error is termed error variance or residual variance. Error may be a misnomer here in that it is not exactly as if the researcher made a mistake. Behavior is complex, multiply determined, and interacts with many unknown or unforeseen intrapersonal and situational influences, so as psychologists we would never expect everyone to act (or respond on questionnaires) in

3 Page 3 exactly the same way. Careful research tries to minimize as many of the influences on behavior, besides the independent variable, as possible. However, this is practically impossible so we always see differences in responding within any sample or condition of an experiments. For example, in an experiment on the effects of alcohol on driving performance, subjects will come to the experiment with different levels of driving skills and in varying moods and dispositions. Therefore, within any condition of such an experiment (no alcohol condition, 3-drinks condition, etc.) we should expect variability in performance. This within-group (within experimental condition) variability is error variance. It is, essentially, what we don t know or haven t tried to find out about the subjects. In the words of my first (rather frightening) statistics teacher, error is ignorance. Reducing Ignorance We can reduce ignorance in many ways, and doing so is one of the goals of researchers. For example, we could have selected only subjects with at least 5 years of driving experience for our alcohol study, assuming that after 5 years people have learned as much as there is to learn about driving, hence reducing differences among the participants within each of the alcohol conditions. Another way to reduce error variance is to use something we know about the subjects to change the experimental design in a way that accounts for or removes some error variance. The strategy is to divide up the participants into groups within which people will be more similar to each other. These groups will have lower within-group variability in their behavior. For example, if females are more careful drivers than males, as the probability data used by insurance companies to calculate premiums clearly indicate, then adding a variable gender to the design to separate the males and females into their own groups should reduce driving performance variability within the groups. By knowing something about gender, we have reduced our ignorance. All the Formulae are the Same In a statistics course, you would learn the several formulae used to calculate the numbers you need in order to determine if you may reject the null hypothesis. A few of these formulae are presented here to point out their similarities. Conceptual, not actual, formulae are used. Just what these formulae mean is explained in Name of Test Formula (conceptual) What it does t-test Mean Difference Difference between two means t = Error Variance Analysis of Variance F = Differences Among Means Error Variance Within Groups Differences among many means, with many IVs Chi-Square Test χ 2 = Extent to which frequencies are not consistent with the null hyp Size of sample Differences in frequencies; or relationship between nominal variables

4 Page 4 the data analysis chapters. Statistics The calculation involving the ratio of size of difference (numerator) to amount of error (denominator), illustrated in the table, produces a number termed a statistic. t, F, and χ 2 are statistics. This value becomes larger as the ratio of difference (or relationship) to error increases, as the formulae indicate. A larger statistic obviously is better. The statistic is compared to a table of statistics to determine if it is large enough to reject the null hypothesis. As the sample size increases, the statistic need not be as large to reject the null hypothesis. The reason for this is that larger samples give more confidence that the obtained sample is not unrepresentative of the population, that is, not a fluke. Small samples are notoriously unstable because every small sample that is drawn from a population will be distinctly different due to chance. Therefore, to be confident that the ratio is sufficiently large to reject the null hypothesis when the sample is small, the statistic must be larger. p-values The null hypothesis can only be rejected when the probability of a Type 1 Error (error of rejecting it when you shouldn t) is less than.05 (the alpha level). If this were, say, 1960, the only way that you could calculate a statistic would be by hand, and you would determine if the statistic was large enough to reject the null hypothesis, relative to the size of the sample, by looking up the required value in a table at the back of a statistics book. The table would have a column of values headed by.05 in addition to other columns with other alpha levels, such as.01. If your statistic was larger than the value in the.05 column for your sample size, you would reject the null hypothesis. Times have changed. Statistical analysis software calculates a p-value that indicates the probability of committing a Type I Error based on the statistic (which it also calculates for you) and the sample size. The p-value can be any number between 0 and 1. If the p-value is less than alpha (generally.05), you may reject the null hypothesis. The following portion of a t-test from SPSS illustrates a p-value, labeled Sig. (2- tailed). The p-value is.001, a probability much lower than.05, indicating that we should reject the null hypothesis. The column df is related to the sample size.

5 Page 5 Procedure for Performing an Inferential Test Here is a step-by-step procedure for performing inferential statistics. 1. Start with a theory (TV violence reduces children s ability to detect violent behavior because it blurs the distinction between real and fantasy violence) 2. Make a research hypothesis (Children who experience TV violence will fail to detect violent behavior in other children) 3. Operationalize the variables 4. Identify the population to which the study results should apply (Kids in developed nations) 5. Form a null hypothesis for this population (H 0 : u H = u L, where u H is mean accurate detection of violence by children with high prior exposure to TV violence; u L is low prior exposure) 6. Collect a sample of children from the population and run the study 7. Perform statistical tests to see if the obtained sample characteristics are sufficiently different from what would be expected under the null hypothesis to be able to reject the null hypothesis. 8. Publish the paper, get famous, find a job at Harvard Details on how to perform step (7) are included in other chapters focusing on the use of SPSS (Statistical Package for the Social Sciences) to analyze data.

Independent t- Test (Comparing Two Means)

Independent t- Test (Comparing Two Means) The objectives of this lesson are to learn: the definition/purpose of independent t-test when to use the independent t-test the use of SPSS to complete an independent

The Chi-Square Test. STAT E-50 Introduction to Statistics

STAT -50 Introduction to Statistics The Chi-Square Test The Chi-square test is a nonparametric test that is used to compare experimental results with theoretical models. That is, we will be comparing observed

Study Guide for the Final Exam

Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make

Having a coin come up heads or tails is a variable on a nominal scale. Heads is a different category from tails.

Chi-square Goodness of Fit Test The chi-square test is designed to test differences whether one frequency is different from another frequency. The chi-square test is designed for use with data on a nominal

Research Methods & Experimental Design

Research Methods & Experimental Design 16.422 Human Supervisory Control April 2004 Research Methods Qualitative vs. quantitative Understanding the relationship between objectives (research question) and

Odds ratio, Odds ratio test for independence, chi-squared statistic.

Odds ratio, Odds ratio test for independence, chi-squared statistic. Announcements: Assignment 5 is live on webpage. Due Wed Aug 1 at 4:30pm. (9 days, 1 hour, 58.5 minutes ) Final exam is Aug 9. Review

Class 19: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.1)

Spring 204 Class 9: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.) Big Picture: More than Two Samples In Chapter 7: We looked at quantitative variables and compared the

Lecture Notes Module 1

Lecture Notes Module 1 Study Populations A study population is a clearly defined collection of people, animals, plants, or objects. In psychological research, a study population usually consists of a specific

Introduction to. Hypothesis Testing CHAPTER LEARNING OBJECTIVES. 1 Identify the four steps of hypothesis testing.

Introduction to Hypothesis Testing CHAPTER 8 LEARNING OBJECTIVES After reading this chapter, you should be able to: 1 Identify the four steps of hypothesis testing. 2 Define null hypothesis, alternative

SCHOOL OF HEALTH AND HUMAN SCIENCES DON T FORGET TO RECODE YOUR MISSING VALUES

SCHOOL OF HEALTH AND HUMAN SCIENCES Using SPSS Topics addressed today: 1. Differences between groups 2. Graphing Use the s4data.sav file for the first part of this session. DON T FORGET TO RECODE YOUR

Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means

Lesson : Comparison of Population Means Part c: Comparison of Two- Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis

Bivariate Statistics Session 2: Measuring Associations Chi-Square Test

Bivariate Statistics Session 2: Measuring Associations Chi-Square Test Features Of The Chi-Square Statistic The chi-square test is non-parametric. That is, it makes no assumptions about the distribution

UNDERSTANDING THE INDEPENDENT-SAMPLES t TEST

UNDERSTANDING The independent-samples t test evaluates the difference between the means of two independent or unrelated groups. That is, we evaluate whether the means for two independent groups are significantly

Crosstabulation & Chi Square

Crosstabulation & Chi Square Robert S Michael Chi-square as an Index of Association After examining the distribution of each of the variables, the researcher s next task is to look for relationships among

3.4 Statistical inference for 2 populations based on two samples

3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted

II. DISTRIBUTIONS distribution normal distribution. standard scores

Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,

Introduction to Analysis of Variance (ANOVA) Limitations of the t-test

Introduction to Analysis of Variance (ANOVA) The Structural Model, The Summary Table, and the One- Way ANOVA Limitations of the t-test Although the t-test is commonly used, it has limitations Can only

Two Related Samples t Test

Two Related Samples t Test In this example 1 students saw five pictures of attractive people and five pictures of unattractive people. For each picture, the students rated the friendliness of the person

Association Between Variables

Contents 11 Association Between Variables 767 11.1 Introduction............................ 767 11.1.1 Measure of Association................. 768 11.1.2 Chapter Summary.................... 769 11.2 Chi

Statistics 2014 Scoring Guidelines

AP Statistics 2014 Scoring Guidelines College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board. AP Central is the official online home

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.

Projects Involving Statistics (& SPSS)

Projects Involving Statistics (& SPSS) Academic Skills Advice Starting a project which involves using statistics can feel confusing as there seems to be many different things you can do (charts, graphs,

Chapter 7. One-way ANOVA

Chapter 7 One-way ANOVA One-way ANOVA examines equality of population means for a quantitative outcome and a single categorical explanatory variable with any number of levels. The t-test of Chapter 6 looks

Descriptive Statistics

Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize

Simple Linear Regression Inference

Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation

Basic Concepts in Research and Data Analysis

Basic Concepts in Research and Data Analysis Introduction: A Common Language for Researchers...2 Steps to Follow When Conducting Research...3 The Research Question... 3 The Hypothesis... 4 Defining the

Chapter 9. Two-Sample Tests. Effect Sizes and Power Paired t Test Calculation

Chapter 9 Two-Sample Tests Paired t Test (Correlated Groups t Test) Effect Sizes and Power Paired t Test Calculation Summary Independent t Test Chapter 9 Homework Power and Two-Sample Tests: Paired Versus

Is it statistically significant? The chi-square test

UAS Conference Series 2013/14 Is it statistically significant? The chi-square test Dr Gosia Turner Student Data Management and Analysis 14 September 2010 Page 1 Why chi-square? Tests whether two categorical

1.5 Oneway Analysis of Variance

Statistics: Rosie Cornish. 200. 1.5 Oneway Analysis of Variance 1 Introduction Oneway analysis of variance (ANOVA) is used to compare several means. This method is often used in scientific or medical experiments

UNDERSTANDING THE DEPENDENT-SAMPLES t TEST

UNDERSTANDING THE DEPENDENT-SAMPLES t TEST A dependent-samples t test (a.k.a. matched or paired-samples, matched-pairs, samples, or subjects, simple repeated-measures or within-groups, or correlated groups)

UNDERSTANDING THE TWO-WAY ANOVA

UNDERSTANDING THE e have seen how the one-way ANOVA can be used to compare two or more sample means in studies involving a single independent variable. This can be extended to two independent variables

The Dummy s Guide to Data Analysis Using SPSS

The Dummy s Guide to Data Analysis Using SPSS Mathematics 57 Scripps College Amy Gamble April, 2001 Amy Gamble 4/30/01 All Rights Rerserved TABLE OF CONTENTS PAGE Helpful Hints for All Tests...1 Tests

CHAPTER 14 NONPARAMETRIC TESTS

CHAPTER 14 NONPARAMETRIC TESTS Everything that we have done up until now in statistics has relied heavily on one major fact: that our data is normally distributed. We have been able to make inferences

Chapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing

Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing 8-3 Testing a Claim About a Proportion 8-5 Testing a Claim About a Mean: s Not Known 8-6 Testing

About Chi Squares TABLE OF CONTENTS About Chi Squares... 1 What is a CHI SQUARE?... 1 Chi Squares... 1 Goodness of fit test (One-way χ 2 )... 1 Test of Independence (Two-way χ 2 )... 2 Hypothesis Testing

Statistiek II. John Nerbonne. October 1, 2010. Dept of Information Science j.nerbonne@rug.nl

Dept of Information Science j.nerbonne@rug.nl October 1, 2010 Course outline 1 One-way ANOVA. 2 Factorial ANOVA. 3 Repeated measures ANOVA. 4 Correlation and regression. 5 Multiple regression. 6 Logistic

research/scientific includes the following: statistical hypotheses: you have a null and alternative you accept one and reject the other

1 Hypothesis Testing Richard S. Balkin, Ph.D., LPC-S, NCC 2 Overview When we have questions about the effect of a treatment or intervention or wish to compare groups, we use hypothesis testing Parametric

Introduction. Hypothesis Testing. Hypothesis Testing. Significance Testing

Introduction Hypothesis Testing Mark Lunt Arthritis Research UK Centre for Ecellence in Epidemiology University of Manchester 13/10/2015 We saw last week that we can never know the population parameters

RECRUITERS PRIORITIES IN PLACING MBA FRESHER: AN EMPIRICAL ANALYSIS

RECRUITERS PRIORITIES IN PLACING MBA FRESHER: AN EMPIRICAL ANALYSIS Miss Sangeeta Mohanty Assistant Professor, Academy of Business Administration, Angaragadia, Balasore, Orissa, India ABSTRACT Recruitment

Recommend Continued CPS Monitoring. 63 (a) 17 (b) 10 (c) 90. 35 (d) 20 (e) 25 (f) 80. Totals/Marginal 98 37 35 170

Work Sheet 2: Calculating a Chi Square Table 1: Substance Abuse Level by ation Total/Marginal 63 (a) 17 (b) 10 (c) 90 35 (d) 20 (e) 25 (f) 80 Totals/Marginal 98 37 35 170 Step 1: Label Your Table. Label

Chapter 7 Notes - Inference for Single Samples. You know already for a large sample, you can invoke the CLT so:

Chapter 7 Notes - Inference for Single Samples You know already for a large sample, you can invoke the CLT so: X N(µ, ). Also for a large sample, you can replace an unknown σ by s. You know how to do a

There are three kinds of people in the world those who are good at math and those who are not. PSY 511: Advanced Statistics for Psychological and Behavioral Research 1 Positive Views The record of a month

HYPOTHESIS TESTING: POWER OF THE TEST

HYPOTHESIS TESTING: POWER OF THE TEST The first 6 steps of the 9-step test of hypothesis are called "the test". These steps are not dependent on the observed data values. When planning a research project,

Lesson 9 Hypothesis Testing

Lesson 9 Hypothesis Testing Outline Logic for Hypothesis Testing Critical Value Alpha (α) -level.05 -level.01 One-Tail versus Two-Tail Tests -critical values for both alpha levels Logic for Hypothesis

This chapter reviews the general issues involving data analysis and introduces

Research Skills for Psychology Majors: Everything You Need to Know to Get Started Data Preparation With SPSS This chapter reviews the general issues involving data analysis and introduces SPSS, the Statistical

CONTINGENCY TABLES ARE NOT ALL THE SAME David C. Howell University of Vermont

CONTINGENCY TABLES ARE NOT ALL THE SAME David C. Howell University of Vermont To most people studying statistics a contingency table is a contingency table. We tend to forget, if we ever knew, that contingency

Chapter 23 Inferences About Means Chapter 23 - Inferences About Means 391 Chapter 23 Solutions to Class Examples 1. See Class Example 1. 2. We want to know if the mean battery lifespan exceeds the 300-minute

Chapter Seven. Multiple regression An introduction to multiple regression Performing a multiple regression on SPSS

Chapter Seven Multiple regression An introduction to multiple regression Performing a multiple regression on SPSS Section : An introduction to multiple regression WHAT IS MULTIPLE REGRESSION? Multiple

STA-201-TE. 5. Measures of relationship: correlation (5%) Correlation coefficient; Pearson r; correlation and causation; proportion of common variance

Principles of Statistics STA-201-TE This TECEP is an introduction to descriptive and inferential statistics. Topics include: measures of central tendency, variability, correlation, regression, hypothesis

Chi-square test Fisher s Exact test

Lesson 1 Chi-square test Fisher s Exact test McNemar s Test Lesson 1 Overview Lesson 11 covered two inference methods for categorical data from groups Confidence Intervals for the difference of two proportions

Calculating P-Values. Parkland College. Isela Guerra Parkland College. Recommended Citation

Parkland College A with Honors Projects Honors Program 2014 Calculating P-Values Isela Guerra Parkland College Recommended Citation Guerra, Isela, "Calculating P-Values" (2014). A with Honors Projects.

Stat 411/511 THE RANDOMIZATION TEST. Charlotte Wickham. stat511.cwick.co.nz. Oct 16 2015

Stat 411/511 THE RANDOMIZATION TEST Oct 16 2015 Charlotte Wickham stat511.cwick.co.nz Today Review randomization model Conduct randomization test What about CIs? Using a t-distribution as an approximation

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men

Examining Differences (Comparing Groups) using SPSS Inferential statistics (Part I) Dwayne Devonish

Examining Differences (Comparing Groups) using SPSS Inferential statistics (Part I) Dwayne Devonish Statistics Statistics are quantitative methods of describing, analysing, and drawing inferences (conclusions)

Mind on Statistics. Chapter 13

Mind on Statistics Chapter 13 Sections 13.1-13.2 1. Which statement is not true about hypothesis tests? A. Hypothesis tests are only valid when the sample is representative of the population for the question

Comparison of frequentist and Bayesian inference. Class 20, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Comparison of frequentist and Bayesian inference. Class 20, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Be able to explain the difference between the p-value and a posterior

HOW TO WRITE A LABORATORY REPORT

HOW TO WRITE A LABORATORY REPORT Pete Bibby Dept of Psychology 1 About Laboratory Reports The writing of laboratory reports is an essential part of the practical course One function of this course is to

Fairfield Public Schools

Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity

C. The null hypothesis is not rejected when the alternative hypothesis is true. A. population parameters.

Sample Multiple Choice Questions for the material since Midterm 2. Sample questions from Midterms and 2 are also representative of questions that may appear on the final exam.. A randomly selected sample

Using Excel for inferential statistics

FACT SHEET Using Excel for inferential statistics Introduction When you collect data, you expect a certain amount of variation, just caused by chance. A wide variety of statistical tests can be applied

CHAPTER 15 NOMINAL MEASURES OF CORRELATION: PHI, THE CONTINGENCY COEFFICIENT, AND CRAMER'S V

CHAPTER 15 NOMINAL MEASURES OF CORRELATION: PHI, THE CONTINGENCY COEFFICIENT, AND CRAMER'S V Chapters 13 and 14 introduced and explained the use of a set of statistical tools that researchers use to measure

DDBA 8438: The t Test for Independent Samples Video Podcast Transcript

DDBA 8438: The t Test for Independent Samples Video Podcast Transcript JENNIFER ANN MORROW: Welcome to The t Test for Independent Samples. My name is Dr. Jennifer Ann Morrow. In today's demonstration,

CHAPTER 11 CHI-SQUARE AND F DISTRIBUTIONS

CHAPTER 11 CHI-SQUARE AND F DISTRIBUTIONS CHI-SQUARE TESTS OF INDEPENDENCE (SECTION 11.1 OF UNDERSTANDABLE STATISTICS) In chi-square tests of independence we use the hypotheses. H0: The variables are independent

COMPARISONS OF CUSTOMER LOYALTY: PUBLIC & PRIVATE INSURANCE COMPANIES.

277 CHAPTER VI COMPARISONS OF CUSTOMER LOYALTY: PUBLIC & PRIVATE INSURANCE COMPANIES. This chapter contains a full discussion of customer loyalty comparisons between private and public insurance companies

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a

INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA)

INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the one-way ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of

Introduction to Statistics and Quantitative Research Methods

Introduction to Statistics and Quantitative Research Methods Purpose of Presentation To aid in the understanding of basic statistics, including terminology, common terms, and common statistical methods.

How To Test For Significance On A Data Set

Non-Parametric Univariate Tests: 1 Sample Sign Test 1 1 SAMPLE SIGN TEST A non-parametric equivalent of the 1 SAMPLE T-TEST. ASSUMPTIONS: Data is non-normally distributed, even after log transforming.

Statistics I for QBIC. Contents and Objectives. Chapters 1 7. Revised: August 2013

Statistics I for QBIC Text Book: Biostatistics, 10 th edition, by Daniel & Cross Contents and Objectives Chapters 1 7 Revised: August 2013 Chapter 1: Nature of Statistics (sections 1.1-1.6) Objectives

DATA COLLECTION AND ANALYSIS

DATA COLLECTION AND ANALYSIS Quality Education for Minorities (QEM) Network HBCU-UP Fundamentals of Education Research Workshop Gerunda B. Hughes, Ph.D. August 23, 2013 Objectives of the Discussion 2 Discuss

One-Way Analysis of Variance

One-Way Analysis of Variance Note: Much of the math here is tedious but straightforward. We ll skim over it in class but you should be sure to ask questions if you don t understand it. I. Overview A. We

Statistical tests for SPSS

Statistical tests for SPSS Paolo Coletti A.Y. 2010/11 Free University of Bolzano Bozen Premise This book is a very quick, rough and fast description of statistical tests and their usage. It is explicitly

Recall this chart that showed how most of our course would be organized:

Chapter 4 One-Way ANOVA Recall this chart that showed how most of our course would be organized: Explanatory Variable(s) Response Variable Methods Categorical Categorical Contingency Tables Categorical

HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION

HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION HOD 2990 10 November 2010 Lecture Background This is a lightning speed summary of introductory statistical methods for senior undergraduate

Working with SPSS. A Step-by-Step Guide For Prof PJ s ComS 171 students

Working with SPSS A Step-by-Step Guide For Prof PJ s ComS 171 students Contents Prep the Excel file for SPSS... 2 Prep the Excel file for the online survey:... 2 Make a master file... 2 Clean the data

Independent samples t-test. Dr. Tom Pierce Radford University

Independent samples t-test Dr. Tom Pierce Radford University The logic behind drawing causal conclusions from experiments The sampling distribution of the difference between means The standard error of

Nonparametric Tests. Chi-Square Test for Independence

DDBA 8438: Nonparametric Statistics: The Chi-Square Test Video Podcast Transcript JENNIFER ANN MORROW: Welcome to "Nonparametric Statistics: The Chi-Square Test." My name is Dr. Jennifer Ann Morrow. In

Whitney Colbert Research Methods for the Social Sciences Trinity College Spring 2012

ALCOHOL IN COLLEGE ATHLETICS: THE FIGHT TO RAISE AWARENESS OF BINGE DRINKING ON COLLEGE ATHLETIC TEAMS Whitney Colbert Research Methods for the Social Sciences Trinity College Spring 2012 While there is

Opgaven Onderzoeksmethoden, Onderdeel Statistiek

Opgaven Onderzoeksmethoden, Onderdeel Statistiek 1. What is the measurement scale of the following variables? a Shoe size b Religion c Car brand d Score in a tennis game e Number of work hours per week

Analyzing and interpreting data Evaluation resources from Wilder Research

Wilder Research Analyzing and interpreting data Evaluation resources from Wilder Research Once data are collected, the next step is to analyze the data. A plan for analyzing your data should be developed

ISyE 2028 Basic Statistical Methods - Fall 2015 Bonus Project: Big Data Analytics Final Report: Time spent on social media

ISyE 2028 Basic Statistical Methods - Fall 2015 Bonus Project: Big Data Analytics Final Report: Time spent on social media Abstract: The growth of social media is astounding and part of that success was

Biostatistics: Types of Data Analysis

Biostatistics: Types of Data Analysis Theresa A Scott, MS Vanderbilt University Department of Biostatistics theresa.scott@vanderbilt.edu http://biostat.mc.vanderbilt.edu/theresascott Theresa A Scott, MS

Experimental Designs (revisited)

Introduction to ANOVA Copyright 2000, 2011, J. Toby Mordkoff Probably, the best way to start thinking about ANOVA is in terms of factors with levels. (I say this because this is how they are described

AP: LAB 8: THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics

Ms. Foglia Date AP: LAB 8: THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,

Analysing Questionnaires using Minitab (for SPSS queries contact -) Graham.Currell@uwe.ac.uk

Analysing Questionnaires using Minitab (for SPSS queries contact -) Graham.Currell@uwe.ac.uk Structure As a starting point it is useful to consider a basic questionnaire as containing three main sections:

Regression step-by-step using Microsoft Excel

Step 1: Regression step-by-step using Microsoft Excel Notes prepared by Pamela Peterson Drake, James Madison University Type the data into the spreadsheet The example used throughout this How to is a regression

DATA ANALYSIS. QEM Network HBCU-UP Fundamentals of Education Research Workshop Gerunda B. Hughes, Ph.D. Howard University

DATA ANALYSIS QEM Network HBCU-UP Fundamentals of Education Research Workshop Gerunda B. Hughes, Ph.D. Howard University Quantitative Research What is Statistics? Statistics (as a subject) is the science

MULTIPLE REGRESSION WITH CATEGORICAL DATA

DEPARTMENT OF POLITICAL SCIENCE AND INTERNATIONAL RELATIONS Posc/Uapp 86 MULTIPLE REGRESSION WITH CATEGORICAL DATA I. AGENDA: A. Multiple regression with categorical variables. Coding schemes. Interpreting

Principles of Hypothesis Testing for Public Health

Principles of Hypothesis Testing for Public Health Laura Lee Johnson, Ph.D. Statistician National Center for Complementary and Alternative Medicine johnslau@mail.nih.gov Fall 2011 Answers to Questions

Mind on Statistics. Chapter 15

Mind on Statistics Chapter 15 Section 15.1 1. A student survey was done to study the relationship between class standing (freshman, sophomore, junior, or senior) and major subject (English, Biology, French,

Hypothesis testing - Steps

Hypothesis testing - Steps Steps to do a two-tailed test of the hypothesis that β 1 0: 1. Set up the hypotheses: H 0 : β 1 = 0 H a : β 1 0. 2. Compute the test statistic: t = b 1 0 Std. error of b 1 =

Testing Research and Statistical Hypotheses

Testing Research and Statistical Hypotheses Introduction In the last lab we analyzed metric artifact attributes such as thickness or width/thickness ratio. Those were continuous variables, which as you

1 Nonparametric Statistics

1 Nonparametric Statistics When finding confidence intervals or conducting tests so far, we always described the population with a model, which includes a set of parameters. Then we could make decisions

Chapter VIII Customers Perception Regarding Health Insurance

Chapter VIII Customers Perception Regarding Health Insurance This chapter deals with the analysis of customers perception regarding health insurance and involves its examination at series of stages i.e.

Hypothesis Testing: Two Means, Paired Data, Two Proportions

Chapter 10 Hypothesis Testing: Two Means, Paired Data, Two Proportions 10.1 Hypothesis Testing: Two Population Means and Two Population Proportions 1 10.1.1 Student Learning Objectives By the end of this

Nonparametric Statistics

Nonparametric Statistics J. Lozano University of Goettingen Department of Genetic Epidemiology Interdisciplinary PhD Program in Applied Statistics & Empirical Methods Graduate Seminar in Applied Statistics

Chapter 23. Two Categorical Variables: The Chi-Square Test

Chapter 23. Two Categorical Variables: The Chi-Square Test 1 Chapter 23. Two Categorical Variables: The Chi-Square Test Two-Way Tables Note. We quickly review two-way tables with an example. Example. Exercise

Chapter 7. Comparing Means in SPSS (t-tests) Compare Means analyses. Specifically, we demonstrate procedures for running Dependent-Sample (or

1 Chapter 7 Comparing Means in SPSS (t-tests) This section covers procedures for testing the differences between two means using the SPSS Compare Means analyses. Specifically, we demonstrate procedures

Chapter 7 Section 7.1: Inference for the Mean of a Population

Chapter 7 Section 7.1: Inference for the Mean of a Population Now let s look at a similar situation Take an SRS of size n Normal Population : N(, ). Both and are unknown parameters. Unlike what we used