Introduction. Hypothesis Testing. Hypothesis Testing. Significance Testing
|
|
|
- Brendan Franklin
- 9 years ago
- Views:
Transcription
1 Introduction Hypothesis Testing Mark Lunt Arthritis Research UK Centre for Ecellence in Epidemiology University of Manchester 13/10/2015 We saw last week that we can never know the population parameters without measuring the entire population. We can, however, make inferences about the population parameters from random samples. Last week, we saw how we can create a confidence interval, within which we are reasonably certain the population parameter lies. This week, we will see a different type of inference: can we be certain that the parameter does not take a particular value? Hypothesis Testing Significance Testing Form the Null Hypothesis Calculate probability of observing data if null hypothesis is true (p-value) Low p-value taken as evidence that null hypothesis is unlikely Originally, only intended as informal guide to strength of evidence against null hypothesis Fisher s p-value was very informal way to assess evidence against null hypothesis Neyman and Pearson developed more formal approach: significance testing Based on decision making: rule for deciding whether or not to reject the null hypothesis Clinically, need to make decisions. Scientifically, may be more appropriate to retain uncertainty. Introduces concepts of power, significance
2 The Null Hypothesis The Alternative Hypothesis Simplest acceptable model. If the null hypothesis is true, the world is uninteresting. Must be possible to epress numerically ( test statistic ). Sampling distribution of test statistic must be known. Null Hypothesis is untrue Covers any other possibility. May be one-sided, if effect in opposite direction is as uninteresting as the null hypothesis One and Two-sided tests Test Statistic Good eample: χ 2 test. χ 2 test measures difference between epected and observed frequencies Only unusually large differences are evidence against null hypothesis. Bad eample: clinical trial A drug company may only be interested in how much better its drug is than the competition. Easier to get a significant difference with a one-sided test. The rest of the world is interested in differences in either direction, want to see a two-sided test. One-sided tests are rarely justified Null hypothesis distribution must be known. Epected value if null hypothesis is true. Variation due to sampling error (standard error) if null hypothesis is true. From this distribution, probability of any given value can be calculated. Can be a mean, proportion, correlation coefficient, regression coefficient etc.
3 Normally Distributed Statistics Test statistic: Normal distribution Many test statistics can be considered normally distributed, if sample is large enough. If the test statistic T has mean µ and standard error σ, then T µ σ has a normal distribution with mean 0 and standard error 1. We do not know σ, we only have estimate s. If our sample is of size n, T µ has a t-distribution with s n 1 d.f. Hence the term t-test. If n 100, a normal distribution is indistinguishable from the t-distribution. Etreme values less unlikely with a t-distribution than a normal distribution. y T-distribution and Normal Distribution Non-Normally Distributed Statistics y Statistics may follow a distribution other than the normal distribution. χ 2 Mann-Whitney U Many will be normally distributed in large enough samples Tables can be used for small samples. Can be compared to quantiles of their own distribution Normal t distribution (10 d.f.)
4 Test Statistic: χ 2 4 Eample 1: Height and Gender y Null hypothesis On average, men and women are the same height Alternative Hypothesis One gender tends to be taller than the other. Test Statistic Difference in mean height between men and women. One-Sided Hypotheses Men are taller than women Women are taller than men Eample 2: Drinks preferences The p-value Null hypothesis Equal numbers of people prefer Coke and Pepsi Alternative Hypothesis Most people prefer one drink to the other Test Statistic Several possibilities: Difference in proportions preferring each drink Ratio of proportions preferring each drink One-Sided Hypotheses More people prefer Coke More people prefer Pepsi Probability of obtaining a value of the test statistic at least as etreme as that observed, if the null hypothesis is true. Small value data obtained was unlikely to have occurred under null hypothesis Therefore, null hypothesis is probably not true. Originally intended as informal way to measure strength of evidence against null hypothesis It it not the probability that the null hypothesis is true.
5 Interpreting the p-value Factors Influencing p-value 0 p 1 Large p ( 0.2, say) no evidence against null hypothesis p 0.05 there is some evidence against null hypothesis Effect is statistically significant at the 5% level 0.05 is an arbitrary value: is very little different from Smaller p stronger evidence Effect Size: a big difference is easier to find than a small difference. Sample Size: The more subjects, the easier to find a difference Always report actual, not p < 0.05 or p > 0.05 NS is unforgivable No significant difference can mean no difference in population or Sample size was too small to be certain Statistically significant difference may not be clinically significant. Interpreting a significance test Meta-Analysis Eample Significance test asks Is the null hypothesis true Answers either Probably not or No comment Answers are interpreted as No or Yes Misinterpretation leads to incorrect conclusions Ten studies 50 uneposed and 50 eposed in each Prevalence 10% in uneposed, 15% in eposed True RR = 1.5
6 Meta-Analysis Results Getting it Wrong Study RR p-value Pooled Data There are two ways to get it wrong: The null hypothesis is true, we conclude that it isn t (Type I error). The null hypothesis is not true, we conclude that it is (Type II error). Type I Error (α) Type II Error (β) Null hypothesis is true, but there is evidence against it. 1 time in 20 that the null hypothesis is true, a statistically significant result at the 5% level will be obtained. The smaller the p-value, the less likely we are making a type I error. Testing several hypotheses at once increases the probability that at least one of them will be incorrectly found to be statistically significant. Several corrections are available for Multiple Testing, Bonferroni s is the most commonly used, easiest and least accurate. Null hypothesis is not true, but no evidence against it in our sample. Depends on study size: small studies less likely to detect an effect than large ones Depends on effect size: large effects are easier to detect than small ones Power of a study = 1 - β = Probability of detecting a given effect, if it eists. Some debate about whether correction for multiple testing
7 Testing Testing : Eample Can compare to a hypothetical value (e.g. 0). Sometimes called. Test statistic T = µ S.E.(). Compare T to a t-distribution on n 1 d.f. The following data are uterine weights (in mg) for a sample of 20 rats. Previous work suggests that the mean uterine weight for the stock from which the sample was drawn was 24mg. Does this sample confirm that suggestion? 9, 14, 15, 15, 16, 18, 18, 19, 19, 20, 21, 22, 22, 24, 24, 26, 27, 29, 30, 32 = 21.0 S.D.() = Testing : Solution One-Sample t-test in Stata S.E.() = = T = 24.0 S.E.() = = 2.27 Comparing to a t-distribution on 19 degrees of freedom gives a p-value of I.e if the stock had a mean uterine weight of 24mg, and we took repeated random samples, less than 4 times in 100 would a sample have such a low mean weight.. ttest = 24 One-sample t test Variable Obs Mean Std. Err. Std. Dev. [95% Conf. Interval] Degrees of freedom: 19 Ho: mean() = 24 Ha: mean < 24 Ha: mean!= 24 Ha: mean > 24 t = t = t = P < t = P > t = P > t =
8 The Unpaired (two-sample) T-Test Two-Sample t-test in Stata For comparing two means If we are comparing in a group of size n and y in a group of size n y, Null hypothesis is = ȳ Alternative hypothesis is ȳ Test statistic ȳ T = S.E. of (ȳ ) T is compared to a t distribution on n + n y 2 degrees of freedom You may need to test (sdtest) whether the standard deviation is the same in the two groups.. ttest nurseht, by(se) Two-sample t test with equal variances Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval] female male combined diff Degrees of freedom: 400 Ho: mean(female) - mean(male) = diff = 0 Ha: diff < 0 Ha: diff!= 0 Ha: diff > 0 t = t = t = P < t = P > t = P > t = If not, use the option unequal. Comparing Proportions Comparing Proportions in Stata. cs back_p se We wish to compare p 1 = a n 1, p 2 = b n 2 Null hypothesis: π 1 = π 2 = π Standard error of p 1 p 2 = π(1 π)( 1 n n 2 ) Estimate π by p = a+b n 1 +n 2 p 1 p 2 can be compared to a standard normal p(1 p)( ) n 1 n 2 distribution se Eposed Uneposed Total Cases Noncases Total Risk Point estimate [95% Conf. Interval] Risk difference Risk ratio Attr. frac. e Attr. frac. pop chi2(1) = Pr>chi2 =
9 y Sample Size in stata Power Calculations Illustrated: 1 in stata Given: Null hypothesis value Alternative hypothesis value Standard error Significance level (generally 5%) Calculate: Power to reject null hypothesis for given sample size Sample size to give chosen power to reject null hypothesis H0 Shaded area = Sample value significantly different from H 0 = probability of type I error (If H 0 is true) Power Calculations Illustrated: 2 in stata y Power Calculations Illustrated: 3 in stata y H0 Ha H0 Ha H 0 : = 0, S.E.() = 1 H A : = 3, S.E.() = 1 Power = 85% H 0 : = 0, S.E.() = 1 H A : = 4, S.E.() = 1 Power = 98%
10 y Power Calculations Illustrated: 4 in stata Power Calculations in Stata in stata H0 Ha sampsi Only for differences between two groups Difference in proportion or mean of normally distributed variable Can calculate sample size for given power, or power for given sample size Does not account for matching H 0 : = 0, S.E.() = 0.77 Need hypothesised proportion or mean & SD in each group H A : = 3, S.E.() = 0.77 Power = 97% in stata Parameters in Sample Size Calculation sampsi synta for sample size in stata Power Significance level Mean (proportion) in each group SD in each group Missing SD proportion sampsi #1 #2, [ratio() sd1() sd2() power()] where ratio Ratio of the size of group 2 to size of group 1 (defaults to 1). sd1 Standard deviation in group 1 (not given for proportions). sd2 Standard deviation in group 2 (not given for proportions). Assumed equal to sd1 if not given). power Desired power as a probability (i.e. 80% power = 0.8). Default is 90%.
11 in stata in stata sampsi for power sampsi eamples sampsi #1 #2, [ratio() sd1() sd2() n1() n2()] where ratio Ratio of the size of group 2 to size of group 1 (defaults to 1). sd1 Standard deviation in group 1 (not given for proportions). sd2 Standard deviation in group 2 (not given for proportions). Assumed equal to sd1 if not given). n1 Size of group 1 n2 Size of group 2 Sample size needed to detect a difference between 25% prevalence in uneposed and 50% prevalence in eposed: sampsi Sample size needed to detect a difference in mean of 100 in group one and 120 in group 2 if the standard deviation is 20 and group 2 is twice as big as group 1 sampsi , sd1(20) ratio(2) in stata Criticism of hypothesis and significance testing Hypothesis and significance testing are complicated, convoluted and poorly understood Tell us a fact that is unlikely to be true about our population p-value depends on both effect size and study size: contains no eplicit information about either Intended as automated decision-making process: cannot include other information to inform decision Would prefer to know things that are true about the population More useful to have a range within which you believe a population parameter lies. Hypothesis Tests and Confidence Intervals Hypothesis tests about means and proportions are closely related to the corresponding confidence intervals for the mean and proportion. Null value outside 95% confidence interval null hypothesis rejected at 5% significance level. Confidence intervals convey more information and are to be preferred. Dichotomising at p = 0.05 ignores lots of information. p-value mies together information about sample size and effect size There is a movement to remove archaic hypothesis tests from epidemiology literature, to be replaced by confidence intervals. If there are several groups being compared, a single hypothesis test is possible, several confidence intervals
12 Hypothesis Tests vs. Confidence Intervals Outcome Eposed No Yes No 6 6 Yes 2 5 p = 0.37 OR = 2.5, 95% CI = (0.3, 18.3) Outcome Eposed No Yes No Yes p = 0.36 OR = 1.1, 95% CI = (0.9, 1.4)
THE FIRST SET OF EXAMPLES USE SUMMARY DATA... EXAMPLE 7.2, PAGE 227 DESCRIBES A PROBLEM AND A HYPOTHESIS TEST IS PERFORMED IN EXAMPLE 7.
THERE ARE TWO WAYS TO DO HYPOTHESIS TESTING WITH STATCRUNCH: WITH SUMMARY DATA (AS IN EXAMPLE 7.17, PAGE 236, IN ROSNER); WITH THE ORIGINAL DATA (AS IN EXAMPLE 8.5, PAGE 301 IN ROSNER THAT USES DATA FROM
3.4 Statistical inference for 2 populations based on two samples
3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted
Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means
Lesson : Comparison of Population Means Part c: Comparison of Two- Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis
An Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 10- TWO-SAMPLE TESTS
The Islamic University of Gaza Faculty of Commerce Department of Economics and Political Sciences An Introduction to Statistics Course (ECOE 130) Spring Semester 011 Chapter 10- TWO-SAMPLE TESTS Practice
Erik Parner 14 September 2016. Basic Biostatistics - Day 2-21 September, 2016 1
PhD course in Basic Biostatistics Day Erik Parner, Department of Biostatistics, Aarhus University Log-transformation of continuous data Exercise.+.4+Standard- (Triglyceride) Logarithms and exponentials
Class 19: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.1)
Spring 204 Class 9: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.) Big Picture: More than Two Samples In Chapter 7: We looked at quantitative variables and compared the
1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96
1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years
HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...
HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men
HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...
HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men
Principles of Hypothesis Testing for Public Health
Principles of Hypothesis Testing for Public Health Laura Lee Johnson, Ph.D. Statistician National Center for Complementary and Alternative Medicine [email protected] Fall 2011 Answers to Questions
C. The null hypothesis is not rejected when the alternative hypothesis is true. A. population parameters.
Sample Multiple Choice Questions for the material since Midterm 2. Sample questions from Midterms and 2 are also representative of questions that may appear on the final exam.. A randomly selected sample
Independent t- Test (Comparing Two Means)
Independent t- Test (Comparing Two Means) The objectives of this lesson are to learn: the definition/purpose of independent t-test when to use the independent t-test the use of SPSS to complete an independent
Two-sample hypothesis testing, II 9.07 3/16/2004
Two-sample hypothesis testing, II 9.07 3/16/004 Small sample tests for the difference between two independent means For two-sample tests of the difference in mean, things get a little confusing, here,
Comparing Two Groups. Standard Error of ȳ 1 ȳ 2. Setting. Two Independent Samples
Comparing Two Groups Chapter 7 describes two ways to compare two populations on the basis of independent samples: a confidence interval for the difference in population means and a hypothesis test. The
Syntax Menu Description Options Remarks and examples Stored results Methods and formulas References Also see. level(#) , options2
Title stata.com ttest t tests (mean-comparison tests) Syntax Syntax Menu Description Options Remarks and examples Stored results Methods and formulas References Also see One-sample t test ttest varname
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a
Using Stata for One Sample Tests
Using Stata for One Sample Tests All of the one sample problems we have discussed so far can be solved in Stata via either (a) statistical calculator functions, where you provide Stata with the necessary
Two-sample inference: Continuous data
Two-sample inference: Continuous data Patrick Breheny April 5 Patrick Breheny STA 580: Biostatistics I 1/32 Introduction Our next two lectures will deal with two-sample inference for continuous data As
Using Stata for Categorical Data Analysis
Using Stata for Categorical Data Analysis NOTE: These problems make extensive use of Nick Cox s tab_chi, which is actually a collection of routines, and Adrian Mander s ipf command. From within Stata,
Confidence Intervals for the Difference Between Two Means
Chapter 47 Confidence Intervals for the Difference Between Two Means Introduction This procedure calculates the sample size necessary to achieve a specified distance from the difference in sample means
Chapter 7 Notes - Inference for Single Samples. You know already for a large sample, you can invoke the CLT so:
Chapter 7 Notes - Inference for Single Samples You know already for a large sample, you can invoke the CLT so: X N(µ, ). Also for a large sample, you can replace an unknown σ by s. You know how to do a
Comparing Means in Two Populations
Comparing Means in Two Populations Overview The previous section discussed hypothesis testing when sampling from a single population (either a single mean or two means from the same population). Now we
Two-Sample T-Tests Assuming Equal Variance (Enter Means)
Chapter 4 Two-Sample T-Tests Assuming Equal Variance (Enter Means) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when the variances of
Simple Linear Regression Inference
Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation
Section 13, Part 1 ANOVA. Analysis Of Variance
Section 13, Part 1 ANOVA Analysis Of Variance Course Overview So far in this course we ve covered: Descriptive statistics Summary statistics Tables and Graphs Probability Probability Rules Probability
Section 7.1. Introduction to Hypothesis Testing. Schrodinger s cat quantum mechanics thought experiment (1935)
Section 7.1 Introduction to Hypothesis Testing Schrodinger s cat quantum mechanics thought experiment (1935) Statistical Hypotheses A statistical hypothesis is a claim about a population. Null hypothesis
MULTIPLE REGRESSION EXAMPLE
MULTIPLE REGRESSION EXAMPLE For a sample of n = 166 college students, the following variables were measured: Y = height X 1 = mother s height ( momheight ) X 2 = father s height ( dadheight ) X 3 = 1 if
Chapter 2. Hypothesis testing in one population
Chapter 2. Hypothesis testing in one population Contents Introduction, the null and alternative hypotheses Hypothesis testing process Type I and Type II errors, power Test statistic, level of significance
Two-Sample T-Tests Allowing Unequal Variance (Enter Difference)
Chapter 45 Two-Sample T-Tests Allowing Unequal Variance (Enter Difference) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when no assumption
II. DISTRIBUTIONS distribution normal distribution. standard scores
Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,
Statistiek II. John Nerbonne. October 1, 2010. Dept of Information Science [email protected]
Dept of Information Science [email protected] October 1, 2010 Course outline 1 One-way ANOVA. 2 Factorial ANOVA. 3 Repeated measures ANOVA. 4 Correlation and regression. 5 Multiple regression. 6 Logistic
Statistics 2014 Scoring Guidelines
AP Statistics 2014 Scoring Guidelines College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board. AP Central is the official online home
NCSS Statistical Software
Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, two-sample t-tests, the z-test, the
Hypothesis testing - Steps
Hypothesis testing - Steps Steps to do a two-tailed test of the hypothesis that β 1 0: 1. Set up the hypotheses: H 0 : β 1 = 0 H a : β 1 0. 2. Compute the test statistic: t = b 1 0 Std. error of b 1 =
Multinomial and Ordinal Logistic Regression
Multinomial and Ordinal Logistic Regression ME104: Linear Regression Analysis Kenneth Benoit August 22, 2012 Regression with categorical dependent variables When the dependent variable is categorical,
Unit 26 Estimation with Confidence Intervals
Unit 26 Estimation with Confidence Intervals Objectives: To see how confidence intervals are used to estimate a population proportion, a population mean, a difference in population proportions, or a difference
General Method: Difference of Means. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n 1, n 2 ) 1.
General Method: Difference of Means 1. Calculate x 1, x 2, SE 1, SE 2. 2. Combined SE = SE1 2 + SE2 2. ASSUMES INDEPENDENT SAMPLES. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n
Non-Inferiority Tests for Two Means using Differences
Chapter 450 on-inferiority Tests for Two Means using Differences Introduction This procedure computes power and sample size for non-inferiority tests in two-sample designs in which the outcome is a continuous
Mind on Statistics. Chapter 13
Mind on Statistics Chapter 13 Sections 13.1-13.2 1. Which statement is not true about hypothesis tests? A. Hypothesis tests are only valid when the sample is representative of the population for the question
Chapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing
Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing 8-3 Testing a Claim About a Proportion 8-5 Testing a Claim About a Mean: s Not Known 8-6 Testing
Statistics Review PSY379
Statistics Review PSY379 Basic concepts Measurement scales Populations vs. samples Continuous vs. discrete variable Independent vs. dependent variable Descriptive vs. inferential stats Common analyses
Outline. Topic 4 - Analysis of Variance Approach to Regression. Partitioning Sums of Squares. Total Sum of Squares. Partitioning sums of squares
Topic 4 - Analysis of Variance Approach to Regression Outline Partitioning sums of squares Degrees of freedom Expected mean squares General linear test - Fall 2013 R 2 and the coefficient of correlation
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.
Data Analysis Tools. Tools for Summarizing Data
Data Analysis Tools This section of the notes is meant to introduce you to many of the tools that are provided by Excel under the Tools/Data Analysis menu item. If your computer does not have that tool
HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION
HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION HOD 2990 10 November 2010 Lecture Background This is a lightning speed summary of introductory statistical methods for senior undergraduate
Part 2: Analysis of Relationship Between Two Variables
Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable
Unit 27: Comparing Two Means
Unit 27: Comparing Two Means Prerequisites Students should have experience with one-sample t-procedures before they begin this unit. That material is covered in Unit 26, Small Sample Inference for One
Introduction to Quantitative Methods
Introduction to Quantitative Methods October 15, 2009 Contents 1 Definition of Key Terms 2 2 Descriptive Statistics 3 2.1 Frequency Tables......................... 4 2.2 Measures of Central Tendencies.................
CONTENTS OF DAY 2. II. Why Random Sampling is Important 9 A myth, an urban legend, and the real reason NOTES FOR SUMMER STATISTICS INSTITUTE COURSE
1 2 CONTENTS OF DAY 2 I. More Precise Definition of Simple Random Sample 3 Connection with independent random variables 3 Problems with small populations 8 II. Why Random Sampling is Important 9 A myth,
Correlational Research
Correlational Research Chapter Fifteen Correlational Research Chapter Fifteen Bring folder of readings The Nature of Correlational Research Correlational Research is also known as Associational Research.
Odds ratio, Odds ratio test for independence, chi-squared statistic.
Odds ratio, Odds ratio test for independence, chi-squared statistic. Announcements: Assignment 5 is live on webpage. Due Wed Aug 1 at 4:30pm. (9 days, 1 hour, 58.5 minutes ) Final exam is Aug 9. Review
Sample Size and Power in Clinical Trials
Sample Size and Power in Clinical Trials Version 1.0 May 011 1. Power of a Test. Factors affecting Power 3. Required Sample Size RELATED ISSUES 1. Effect Size. Test Statistics 3. Variation 4. Significance
Recall this chart that showed how most of our course would be organized:
Chapter 4 One-Way ANOVA Recall this chart that showed how most of our course would be organized: Explanatory Variable(s) Response Variable Methods Categorical Categorical Contingency Tables Categorical
Good luck! BUSINESS STATISTICS FINAL EXAM INSTRUCTIONS. Name:
Glo bal Leadership M BA BUSINESS STATISTICS FINAL EXAM Name: INSTRUCTIONS 1. Do not open this exam until instructed to do so. 2. Be sure to fill in your name before starting the exam. 3. You have two hours
Linear Models in STATA and ANOVA
Session 4 Linear Models in STATA and ANOVA Page Strengths of Linear Relationships 4-2 A Note on Non-Linear Relationships 4-4 Multiple Linear Regression 4-5 Removal of Variables 4-8 Independent Samples
BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420
BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420 1. Which of the following will increase the value of the power in a statistical test
Lecture Notes Module 1
Lecture Notes Module 1 Study Populations A study population is a clearly defined collection of people, animals, plants, or objects. In psychological research, a study population usually consists of a specific
The Dummy s Guide to Data Analysis Using SPSS
The Dummy s Guide to Data Analysis Using SPSS Mathematics 57 Scripps College Amy Gamble April, 2001 Amy Gamble 4/30/01 All Rights Rerserved TABLE OF CONTENTS PAGE Helpful Hints for All Tests...1 Tests
Name: Date: Use the following to answer questions 3-4:
Name: Date: 1. Determine whether each of the following statements is true or false. A) The margin of error for a 95% confidence interval for the mean increases as the sample size increases. B) The margin
Two-sample t-tests. - Independent samples - Pooled standard devation - The equal variance assumption
Two-sample t-tests. - Independent samples - Pooled standard devation - The equal variance assumption Last time, we used the mean of one sample to test against the hypothesis that the true mean was a particular
Introduction to Analysis of Variance (ANOVA) Limitations of the t-test
Introduction to Analysis of Variance (ANOVA) The Structural Model, The Summary Table, and the One- Way ANOVA Limitations of the t-test Although the t-test is commonly used, it has limitations Can only
BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394
BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394 1. Does vigorous exercise affect concentration? In general, the time needed for people to complete
Bivariate Statistics Session 2: Measuring Associations Chi-Square Test
Bivariate Statistics Session 2: Measuring Associations Chi-Square Test Features Of The Chi-Square Statistic The chi-square test is non-parametric. That is, it makes no assumptions about the distribution
Once saved, if the file was zipped you will need to unzip it. For the files that I will be posting you need to change the preferences.
1 Commands in JMP and Statcrunch Below are a set of commands in JMP and Statcrunch which facilitate a basic statistical analysis. The first part concerns commands in JMP, the second part is for analysis
1-3 id id no. of respondents 101-300 4 respon 1 responsible for maintenance? 1 = no, 2 = yes, 9 = blank
Basic Data Analysis Graziadio School of Business and Management Data Preparation & Entry Editing: Inspection & Correction Field Edit: Immediate follow-up (complete? legible? comprehensible? consistent?
Psychology 60 Fall 2013 Practice Exam Actual Exam: Next Monday. Good luck!
Psychology 60 Fall 2013 Practice Exam Actual Exam: Next Monday. Good luck! Name: 1. The basic idea behind hypothesis testing: A. is important only if you want to compare two populations. B. depends on
Regression Analysis: A Complete Example
Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty
Chapter 7 Section 7.1: Inference for the Mean of a Population
Chapter 7 Section 7.1: Inference for the Mean of a Population Now let s look at a similar situation Take an SRS of size n Normal Population : N(, ). Both and are unknown parameters. Unlike what we used
Guide to Microsoft Excel for calculations, statistics, and plotting data
Page 1/47 Guide to Microsoft Excel for calculations, statistics, and plotting data Topic Page A. Writing equations and text 2 1. Writing equations with mathematical operations 2 2. Writing equations with
Chapter 13 Introduction to Linear Regression and Correlation Analysis
Chapter 3 Student Lecture Notes 3- Chapter 3 Introduction to Linear Regression and Correlation Analsis Fall 2006 Fundamentals of Business Statistics Chapter Goals To understand the methods for displaing
Stat 411/511 THE RANDOMIZATION TEST. Charlotte Wickham. stat511.cwick.co.nz. Oct 16 2015
Stat 411/511 THE RANDOMIZATION TEST Oct 16 2015 Charlotte Wickham stat511.cwick.co.nz Today Review randomization model Conduct randomization test What about CIs? Using a t-distribution as an approximation
Experimental Design. Power and Sample Size Determination. Proportions. Proportions. Confidence Interval for p. The Binomial Test
Experimental Design Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 To this point in the semester, we have largely
Inference for two Population Means
Inference for two Population Means Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison October 27 November 1, 2011 Two Population Means 1 / 65 Case Study Case Study Example
1.5 Oneway Analysis of Variance
Statistics: Rosie Cornish. 200. 1.5 Oneway Analysis of Variance 1 Introduction Oneway analysis of variance (ANOVA) is used to compare several means. This method is often used in scientific or medical experiments
UNDERSTANDING THE INDEPENDENT-SAMPLES t TEST
UNDERSTANDING The independent-samples t test evaluates the difference between the means of two independent or unrelated groups. That is, we evaluate whether the means for two independent groups are significantly
Study Guide for the Final Exam
Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make
CHI-SQUARE: TESTING FOR GOODNESS OF FIT
CHI-SQUARE: TESTING FOR GOODNESS OF FIT In the previous chapter we discussed procedures for fitting a hypothesized function to a set of experimental data points. Such procedures involve minimizing a quantity
t Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon
t-tests in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. [email protected] www.excelmasterseries.com
Basic Statistical and Modeling Procedures Using SAS
Basic Statistical and Modeling Procedures Using SAS One-Sample Tests The statistical procedures illustrated in this handout use two datasets. The first, Pulse, has information collected in a classroom
Chapter 5 Analysis of variance SPSS Analysis of variance
Chapter 5 Analysis of variance SPSS Analysis of variance Data file used: gss.sav How to get there: Analyze Compare Means One-way ANOVA To test the null hypothesis that several population means are equal,
THE KRUSKAL WALLLIS TEST
THE KRUSKAL WALLLIS TEST TEODORA H. MEHOTCHEVA Wednesday, 23 rd April 08 THE KRUSKAL-WALLIS TEST: The non-parametric alternative to ANOVA: testing for difference between several independent groups 2 NON
UNDERSTANDING THE TWO-WAY ANOVA
UNDERSTANDING THE e have seen how the one-way ANOVA can be used to compare two or more sample means in studies involving a single independent variable. This can be extended to two independent variables
Outline. Definitions Descriptive vs. Inferential Statistics The t-test - One-sample t-test
The t-test Outline Definitions Descriptive vs. Inferential Statistics The t-test - One-sample t-test - Dependent (related) groups t-test - Independent (unrelated) groups t-test Comparing means Correlation
Unit 26: Small Sample Inference for One Mean
Unit 26: Small Sample Inference for One Mean Prerequisites Students need the background on confidence intervals and significance tests covered in Units 24 and 25. Additional Topic Coverage Additional coverage
SCHOOL OF HEALTH AND HUMAN SCIENCES DON T FORGET TO RECODE YOUR MISSING VALUES
SCHOOL OF HEALTH AND HUMAN SCIENCES Using SPSS Topics addressed today: 1. Differences between groups 2. Graphing Use the s4data.sav file for the first part of this session. DON T FORGET TO RECODE YOUR
Chapter 23 Inferences About Means
Chapter 23 Inferences About Means Chapter 23 - Inferences About Means 391 Chapter 23 Solutions to Class Examples 1. See Class Example 1. 2. We want to know if the mean battery lifespan exceeds the 300-minute
"Statistical methods are objective methods by which group trends are abstracted from observations on many separate individuals." 1
BASIC STATISTICAL THEORY / 3 CHAPTER ONE BASIC STATISTICAL THEORY "Statistical methods are objective methods by which group trends are abstracted from observations on many separate individuals." 1 Medicine
HYPOTHESIS TESTING: POWER OF THE TEST
HYPOTHESIS TESTING: POWER OF THE TEST The first 6 steps of the 9-step test of hypothesis are called "the test". These steps are not dependent on the observed data values. When planning a research project,
Statistiek I. Proportions aka Sign Tests. John Nerbonne. CLCG, Rijksuniversiteit Groningen. http://www.let.rug.nl/nerbonne/teach/statistiek-i/
Statistiek I Proportions aka Sign Tests John Nerbonne CLCG, Rijksuniversiteit Groningen http://www.let.rug.nl/nerbonne/teach/statistiek-i/ John Nerbonne 1/34 Proportions aka Sign Test The relative frequency
Opgaven Onderzoeksmethoden, Onderdeel Statistiek
Opgaven Onderzoeksmethoden, Onderdeel Statistiek 1. What is the measurement scale of the following variables? a Shoe size b Religion c Car brand d Score in a tennis game e Number of work hours per week
How To Test For Significance On A Data Set
Non-Parametric Univariate Tests: 1 Sample Sign Test 1 1 SAMPLE SIGN TEST A non-parametric equivalent of the 1 SAMPLE T-TEST. ASSUMPTIONS: Data is non-normally distributed, even after log transforming.
In the general population of 0 to 4-year-olds, the annual incidence of asthma is 1.4%
Hypothesis Testing for a Proportion Example: We are interested in the probability of developing asthma over a given one-year period for children 0 to 4 years of age whose mothers smoke in the home In the
statistics Chi-square tests and nonparametric Summary sheet from last time: Hypothesis testing Summary sheet from last time: Confidence intervals
Summary sheet from last time: Confidence intervals Confidence intervals take on the usual form: parameter = statistic ± t crit SE(statistic) parameter SE a s e sqrt(1/n + m x 2 /ss xx ) b s e /sqrt(ss
Hypothesis Testing. Reminder of Inferential Statistics. Hypothesis Testing: Introduction
Hypothesis Testing PSY 360 Introduction to Statistics for the Behavioral Sciences Reminder of Inferential Statistics All inferential statistics have the following in common: Use of some descriptive statistic
Difference of Means and ANOVA Problems
Difference of Means and Problems Dr. Tom Ilvento FREC 408 Accounting Firm Study An accounting firm specializes in auditing the financial records of large firm It is interested in evaluating its fee structure,particularly
Part 3. Comparing Groups. Chapter 7 Comparing Paired Groups 189. Chapter 8 Comparing Two Independent Groups 217
Part 3 Comparing Groups Chapter 7 Comparing Paired Groups 189 Chapter 8 Comparing Two Independent Groups 217 Chapter 9 Comparing More Than Two Groups 257 188 Elementary Statistics Using SAS Chapter 7 Comparing
Nonparametric Statistics
Nonparametric Statistics J. Lozano University of Goettingen Department of Genetic Epidemiology Interdisciplinary PhD Program in Applied Statistics & Empirical Methods Graduate Seminar in Applied Statistics
