How To Know The
|
|
|
- Hugo Merritt
- 5 years ago
- Views:
Transcription
1 4. Thermodynamics of Polymer Blends Polymeric materials find growing applications in various fields of everyday life because they offer a wide range of application relevant properties. Blending of polymers is a technological way for providing materials with full set of desired specific properties at the lowest price, e.g. a combination of strength and toughness, strength and solvent resistance, etc. Blending also benefits the manufacturer by offering improved processability, product uniformity, quick formulation changes, plant flexibility and high productivity. [56] If two polymers are mixed, the most frequent result is a system that exhibits a complete phase separation due to the repulsive interaction between the components (i.e. the chemical [57, 58] incompatibility between the polymers). Complete polymers requires that the following condition is fulfilled: miscibility in a mixture of two G m = H m T S m < 0 (4.1) where G m, H m, and S m are the Gibb s free energy, the enthalpy and entropy of mixing at temperature T, respectively. For a stable one-phase system, criteria for phase stability of binary mixtures of composition φ at fixed temperature T and pressure p are: G G 0, m m < > 0 (4.) φ Miscible polymer blend is a polymer blend which is homogeneous down to the molecular level and associated with the negative value of the free energy of mixing and the domain size is comparable to the dimensions of the macromolecular statistical segment. The value of T S m is always positive since there is an increase in the entropy on mixing. Therefore, the sign of G m always depends on the value of the enthalpy of mixing H m. The polymer pairs mix to form a single phase only if the entropic contribution to free energy exceeds the enthalpic contribution, i.e., H m < T S m (4.3) 5
2 For most polymer blends the miscibility increases with increasing the pressure. The effect depends on the magnitude of the heat of mixing H m. For H m < 0 the miscibility is enhanced by compression, whereas for those with H m > 0 it is reduced. A schematic phase diagram is shown in Figure 4.1. There are three regions of different degree of miscibility: 1. The single-phase miscible region between the two binodals,. The four fragmented metastable regions between binodals and spinodals, and 3. The two-phase separated regions of immiscibility, bordered by the spinodals. The diagram also shows two critical solution temperatures, the lower, LCST (at higher temperature), and the upper, UCST (at lower temperature). The phase diagram with two critical points is a rule for mixtures of low molar mass components, whereas the polymer blends usually show either LCST (most) or UCST. Figure 4.1 Phase diagram for liquid mixtures with the upper and the lower critical solution temperature, UCST and LCST, respectively. [59] The binodals (Figure 4.1) separate miscible (one-phase) and metastable region, the spinodals separate metastable and two-phase region. The thermodynamic conditions for phase separations are given by [59] : G spinodal: m = 0 φ (4.4) 6
3 G G critical point: m = m = 0 3 φ φ 3 (4.5) The phase separation takes place when a single-phase system suffers a change of either composition, temperature or pressure that forces it to enter either the metastable or the spinodal region. When the system enters from single-phase region into the metastable region, the phase separation occurs by the mechanism resembling crystallization slow nucleation followed by growth of the phase separated domains. [59] By contrast, when the system is forced to jump from a single-phase into the spinodal region of immiscibility the phases separate spontaneously by a mechanism called spinodal decomposition. Starting point for most of the theoretical interpretations of polymer solutions and blends is the Flory-Huggins lattice theory. It is basically an extension of the concept of regular solutions on polymer solutions. Thus the model restrictions are no change of volume during mixing (incompressible model), the entropy of mixing is entirely given by the number of rearrangements during mixing (combinatorial entropy) and the enthalpy of mixing is caused by interactions of different segments after the dissolution of interactions of the same type of segments. It is a mean-field model, i.e. only average interactions are taken into consideration. The main problem was to find an expression for the entropy of mixing because it was found experimentally that polymer solutions show significant deviations from values expected for ideal solutions. Assuming a rigid cubic lattice model, this problem was independently solved for polymer solutions by Huggins and Flory. The lattice theory for the enthalpy of mixing in polymer solutions, developed by Flory and Huggins, can be formally applied to polymer mixtures, which provides a rough estimation of the miscibility of the polymers. [60, 61] Assuming random mixing of two polymers and V m = 0 yields the well-known expression for the combinatorial entropy of mixing S m of the Flory- Huggins theory: φ φ S = 1 φ + m R ln 1 lnφ (4.6) r1 r where φ i is the volume fraction of the component i and r i is the number of polymer segments, R is the gas constant. It can be seen that the entropy of mixing decreases with increasing molar mass (r i is proportional to the degree of polymerization) and vanishes for infinite molar 7
4 masses. Applying the concept of regular solutions and assuming all pair interactions in the framework of a mean-field theory yields for the enthalpy of mixing H m : H = RTχφ φ (4.7) m 1 For binary systems the Flory-Huggins equation can be expressed in the following form [6, 63] : φ φ G = 1 φ + m RT ln 1 lnφ + χφ1φ (4.8) r1 r where χ is the so called Flory-Huggins binary interaction parameter. R is the universal gas constant, and T is the absolute temperature. The first two terms of the right hand side in Equation 4.8 are related to the entropy of mixing and the third term is originally assigned to the enthalpy of mixing. For polymers having infinite molar mass (i.e. r i is infinite) the entropic contribution is very small and the miscibility or immiscibility of the system mainly depends on the value of the enthalpy of mixing (Equation 4.7). Miscibility can only be achieved when χ is negative. The term parameter is widely used to describe χ but it is definitively better characterized by the term function, because χ depends on such quantities as temperature, concentration, pressure, molar mass, molar mass distribution and even on model parameters as the coordination number of the lattice and segment length. [56] For polymers, the miscibility can only be achieved when χ < χ cr. The χ parameter at the critical point χ cr can be obtained from the definition of the critical point (Figure 4.1) and Equation 4.8 as follows: χ cr = + (4.9) r1 r where r i is the number of polymer segments (which is proportional to the degree of polymerization). 8
5 It should be mentioned that the Equations 4.8 and 4.9 are based on the assumption that χ is not a function of composition, χ cr is only a function of the molar masses. PE/EVA blends under investigations in this work are blends of a homopolymer and a copolymer (PE/E x VA 1-x ). The effective interaction parameter χ between the homopolymer and the copolymer is given by: χ = xχ EE + (1-x) χ EV x(1-x) χ EV (4.10) where χ ij are the segmental interaction parameters and x is the copolymer composition in mol.-%. χ EE = 0 in the case of PE/EVA blends and therefore the effective interaction parameter χ is equal to: χ = (1-x) χ EV x(1-x) χ EV (4.11) And as already mentioned, the polymers are miscible when χ < χ cr. 9
Mean Field Flory Huggins Lattice Theory
Mean Field Flory Huggins Lattice Theory Mean field: the interactions between molecules are assumed to be due to the interaction of a given molecule and an average field due to all the other molecules in
Lecture 3: Models of Solutions
Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP4, Thermodynamics and Phase Diagrams, H. K. D. H. Bhadeshia Lecture 3: Models of Solutions List of Symbols Symbol G M
Thermodynamics of Mixing
Thermodynamics of Mixing Dependence of Gibbs energy on mixture composition is G = n A µ A + n B µ B and at constant T and p, systems tend towards a lower Gibbs energy The simplest example of mixing: What
The first law: transformation of energy into heat and work. Chemical reactions can be used to provide heat and for doing work.
The first law: transformation of energy into heat and work Chemical reactions can be used to provide heat and for doing work. Compare fuel value of different compounds. What drives these reactions to proceed
PHASE TRANSITIONS IN POLYMERIC AND MICELLAR SYSTEMS
PHASE TRANSITIONS IN POLYMERIC AND MICELLAR SYSTEMS Summer School on Neutron Scattering and Reflectometry NG3 SANS Team NIST Center for Neutron Research June 3-7, 008 ABSTRACT Small-Angle Neutron Scattering
Lecture 22: Spinodal Decomposition: Part 1: general description and
Lecture 22: Spinodal Decomposition: Part 1: general description and practical implications Today s topics basics and unique features of spinodal decomposition and its practical implications. The relationship
Lecture 4: Thermodynamics of Diffusion: Spinodals
Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP6, Kinetics and Microstructure Modelling, H. K. D. H. Bhadeshia Lecture 4: Thermodynamics of Diffusion: Spinodals Fick
Thermodynamics. Chapter 13 Phase Diagrams. NC State University
Thermodynamics Chapter 13 Phase Diagrams NC State University Pressure (atm) Definition of a phase diagram A phase diagram is a representation of the states of matter, solid, liquid, or gas as a function
Chapter 10 Phase equilibrium
Chapter 10 Phase equilibrium It is a familiar fact that pure substances tend to exist in one of three distinct states: solid, liquid, and gas. Take water, for example. As ice is heated at atmospheric pressure,
Lecture 19: Eutectoid Transformation in Steels: a typical case of Cellular
Lecture 19: Eutectoid Transformation in Steels: a typical case of Cellular Precipitation Today s topics Understanding of Cellular transformation (or precipitation): when applied to phase transformation
Thermodynamics of Polymer Solutions
Thermodynamics of Polymer Solutions All participants are requested to register the day before the hand-on training starts in the laboratory 0 3 building K to prepare the solutions (time required: approx.
Gibbs Free Energy and Chemical Potential. NC State University
Chemistry 433 Lecture 14 Gibbs Free Energy and Chemical Potential NC State University The internal energy expressed in terms of its natural variables We can use the combination of the first and second
vap H = RT 1T 2 = 30.850 kj mol 1 100 kpa = 341 K
Thermodynamics: Examples for chapter 6. 1. The boiling point of hexane at 1 atm is 68.7 C. What is the boiling point at 1 bar? The vapor pressure of hexane at 49.6 C is 53.32 kpa. Assume that the vapor
Chapter 7 : Simple Mixtures
Chapter 7 : Simple Mixtures Using the concept of chemical potential to describe the physical properties of a mixture. Outline 1)Partial Molar Quantities 2)Thermodynamics of Mixing 3)Chemical Potentials
a) Use the following equation from the lecture notes: = ( 8.314 J K 1 mol 1) ( ) 10 L
hermodynamics: Examples for chapter 4. 1. One mole of nitrogen gas is allowed to expand from 0.5 to 10 L reversible and isothermal process at 300 K. Calculate the change in molar entropy using a the ideal
Exergy: the quality of energy N. Woudstra
Exergy: the quality of energy N. Woudstra Introduction Characteristic for our society is a massive consumption of goods and energy. Continuation of this way of life in the long term is only possible if
Thermodynamic database of the phase diagrams in copper base alloy systems
Journal of Physics and Chemistry of Solids 66 (2005) 256 260 www.elsevier.com/locate/jpcs Thermodynamic database of the phase diagrams in copper base alloy systems C.P. Wang a, X.J. Liu b, M. Jiang b,
FUNDAMENTALS OF ENGINEERING THERMODYNAMICS
FUNDAMENTALS OF ENGINEERING THERMODYNAMICS System: Quantity of matter (constant mass) or region in space (constant volume) chosen for study. Closed system: Can exchange energy but not mass; mass is constant
Chapter 8 Maxwell relations and measurable properties
Chapter 8 Maxwell relations and measurable properties 8.1 Maxwell relations Other thermodynamic potentials emerging from Legendre transforms allow us to switch independent variables and give rise to alternate
Chapter 37 - SANS FROM POLYMER SOLUTIONS
Chapter 37 - SANS FROM OLYMER SOLUTIONS Soluility is a determining factor in the synthesis, mixing aility and end-use of polymers. A general model for descriing soluility (Flory, 1953) is discussed here
Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.
Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular
CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING
CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING Essential Standard: STUDENTS WILL UNDERSTAND THAT THE PROPERTIES OF MATTER AND THEIR INTERACTIONS ARE A CONSEQUENCE OF THE STRUCTURE OF MATTER,
Exp 13 Volumetric Analysis: Acid-Base titration
Exp 13 Volumetric Analysis: Acid-Base titration Exp. 13 video (time: 47:17 minutes) Titration - is the measurement of the volume of a standard solution required to completely react with a measured volume
Thermodynamics. Thermodynamics 1
Thermodynamics 1 Thermodynamics Some Important Topics First Law of Thermodynamics Internal Energy U ( or E) Enthalpy H Second Law of Thermodynamics Entropy S Third law of Thermodynamics Absolute Entropy
Dissertation. zur Erlangung des akademischen Grades. Doktor-Ingenieurin (Dr.-Ing.) vorgelegt der. (Ingenieurwissenschaftlicher Bereich)
Investigations on Environmental Stress Cracking Resistance of LDPE/EVA Blends Dissertation zur Erlangung des akademischen Grades Doktor-Ingenieurin (Dr.-Ing.) vorgelegt der Mathematisch-Naturwissenschaftlich-Technischen
Standard Free Energies of Formation at 298 K. Average Bond Dissociation Energies at 298 K
1 Thermodynamics There always seems to be at least one free response question that involves thermodynamics. These types of question also show up in the multiple choice questions. G, S, and H. Know what
μ α =μ β = μ γ = =μ ω μ α =μ β =μ γ = =μ ω Thus for c components, the number of additional constraints is c(p 1) ( ) ( )
Phase Diagrams 1 Gibbs Phase Rule The Gibbs phase rule describes the degrees of freedom available to describe a particular system with various phases and substances. To derive the phase rule, let us begin
Sample Exercise 8.1 Magnitudes of Lattice Energies
Sample Exercise 8.1 Magnitudes of Lattice Energies Without consulting Table 8.2, arrange the following ionic compounds in order of increasing lattice energy: NaF, CsI, and CaO. Analyze: From the formulas
The Second Law of Thermodynamics
The Second aw of Thermodynamics The second law of thermodynamics asserts that processes occur in a certain direction and that the energy has quality as well as quantity. The first law places no restriction
Chapter 5: Diffusion. 5.1 Steady-State Diffusion
: Diffusion Diffusion: the movement of particles in a solid from an area of high concentration to an area of low concentration, resulting in the uniform distribution of the substance Diffusion is process
Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1
Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1 FV 6/26/13 MATERIALS: PURPOSE: 1000 ml tall-form beaker, 10 ml graduated cylinder, -10 to 110 o C thermometer, thermometer clamp, plastic pipet, long
CHAPTER 14 THE CLAUSIUS-CLAPEYRON EQUATION
CHAPTER 4 THE CAUIU-CAPEYRON EQUATION Before starting this chapter, it would probably be a good idea to re-read ections 9. and 9.3 of Chapter 9. The Clausius-Clapeyron equation relates the latent heat
Chapter 6 An Overview of Organic Reactions
John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 6 An Overview of Organic Reactions Why this chapter? To understand organic and/or biochemistry, it is necessary to know: -What occurs -Why and
Insight Into Chain Dimensions in PEO/Water Solutions
Insight Into Chain Dimensions in PEO/Water Solutions BOUALEM HAMMOUDA, DEREK L. HO Center for Neutron Research and Polymers Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg,
Problem Set 4 Solutions
Chemistry 360 Dr Jean M Standard Problem Set 4 Solutions 1 Two moles of an ideal gas are compressed isothermally and reversibly at 98 K from 1 atm to 00 atm Calculate q, w, ΔU, and ΔH For an isothermal
Problem Set 3 Solutions
Chemistry 360 Dr Jean M Standard Problem Set 3 Solutions 1 (a) One mole of an ideal gas at 98 K is expanded reversibly and isothermally from 10 L to 10 L Determine the amount of work in Joules We start
Experiment 5: Phase diagram for a three-component system (Dated: April 12, 2010)
Experiment 5: Phase diagram for a three-component system (Dated: April 12, 2010) I. INTRODUCTION It is sometimes necessary to know the mutual solubilities of liquids in a two-phase system. For example,
EXERCISES. 16. What is the ionic strength in a solution containing NaCl in c=0.14 mol/dm 3 concentration and Na 3 PO 4 in 0.21 mol/dm 3 concentration?
EXERISES 1. The standard enthalpy of reaction is 512 kj/mol and the standard entropy of reaction is 1.60 kj/(k mol) for the denaturalization of a certain protein. Determine the temperature range where
Thermochemistry. r2 d:\files\courses\1110-20\99heat&thermorans.doc. Ron Robertson
Thermochemistry r2 d:\files\courses\1110-20\99heat&thermorans.doc Ron Robertson I. What is Energy? A. Energy is a property of matter that allows work to be done B. Potential and Kinetic Potential energy
Thermodynamics and Equilibrium
Chapter 19 Thermodynamics and Equilibrium Concept Check 19.1 You have a sample of 1.0 mg of solid iodine at room temperature. Later, you notice that the iodine has sublimed (passed into the vapor state).
Chemistry 13: States of Matter
Chemistry 13: States of Matter Name: Period: Date: Chemistry Content Standard: Gases and Their Properties The kinetic molecular theory describes the motion of atoms and molecules and explains the properties
QUESTIONS THERMODYNAMICS PRACTICE PROBLEMS FOR NON-TECHNICAL MAJORS. Thermodynamic Properties
QUESTIONS THERMODYNAMICS PRACTICE PROBLEMS FOR NON-TECHNICAL MAJORS Thermodynamic Properties 1. If an object has a weight of 10 lbf on the moon, what would the same object weigh on Jupiter? ft ft -ft g
SUPPLEMENTARY TOPIC 3 ENERGY AND CHEMICAL REACTIONS
SUPPLEMENTARY TOPIC 3 ENERGY AND CHEMICAL REACTIONS Rearranging atoms. In a chemical reaction, bonds between atoms in one or more molecules (reactants) break and new bonds are formed with other atoms to
Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows
Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows 3.- 1 Basics: equations of continuum mechanics - balance equations for mass and momentum - balance equations for the energy and the chemical
Final Exam CHM 3410, Dr. Mebel, Fall 2005
Final Exam CHM 3410, Dr. Mebel, Fall 2005 1. At -31.2 C, pure propane and n-butane have vapor pressures of 1200 and 200 Torr, respectively. (a) Calculate the mole fraction of propane in the liquid mixture
APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES
APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES INTRODUCTION This tutorial is designed for students wishing to extend their knowledge of thermodynamics to a more
Interfacial Stress, Interfacial Energy, and Phase Equilibria in Binary Alloys
Journal of Statistical Physics, Vol. 95, Nos. 56, 1999 Interfacial Stress, Interfacial Energy, and Phase Equilibria in Binary Alloys William C. Johnson 1 and P. W. Voorhees 2 Received August 20, 1998 A
Phase Diagrams & Thermodynamics
Phase Diagrams & Thermodynamics A phase diagram is a graphical representation of the equilibrium state of a system using the intensive variables T and i while p is kept constant. The equilibrium may be
Everest. Leaders in Vacuum Booster Technology
This article has been compiled to understand the process of Solvent Recovery process generally carried out at low temperatures and vacuum. In many chemical processes solute is to be concentrated to high
Chapter 6 The first law and reversibility
Chapter 6 The first law and reversibility 6.1 The first law for processes in closed systems We have discussed the properties of equilibrium states and the relationship between the thermodynamic parameters
k 2f, k 2r C 2 H 5 + H C 2 H 6
hemical Engineering HE 33 F pplied Reaction Kinetics Fall 04 Problem Set 4 Solution Problem. The following elementary steps are proposed for a gas phase reaction: Elementary Steps Rate constants H H f,
Boyle s law - For calculating changes in pressure or volume: P 1 V 1 = P 2 V 2. Charles law - For calculating temperature or volume changes: V 1 T 1
Common Equations Used in Chemistry Equation for density: d= m v Converting F to C: C = ( F - 32) x 5 9 Converting C to F: F = C x 9 5 + 32 Converting C to K: K = ( C + 273.15) n x molar mass of element
Molar Mass of Polyvinyl Alcohol by Viscosity
Molar Mass of Polyvinyl Alcohol by Viscosity Introduction Polyvinyl Alcohol (PVOH) is a linear polymer (i. e., it has little branching) of Ethanol monomer units: -CH 2 -CHOH- Unlike most high molar mass
Problem Set 1 3.20 MIT Professor Gerbrand Ceder Fall 2003
LEVEL 1 PROBLEMS Problem Set 1 3.0 MIT Professor Gerbrand Ceder Fall 003 Problem 1.1 The internal energy per kg for a certain gas is given by U = 0. 17 T + C where U is in kj/kg, T is in Kelvin, and C
7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790.
CHATER 3. The atmosphere is a homogeneous mixture (a solution) of gases.. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. have volumes that depend on their conditions,
6. 2. Unit 6: Physical chemistry of spectroscopy, surfaces and chemical and phase equilibria
6. 2 Phase equilibria Many industrial processes involve several phases in equilibrium gases, liquids, solids and even different crystalline forms of the solid state. Predicting the number of phases present
48 Practice Problems for Ch. 17 - Chem 1C - Joseph
48 Practice Problems for Ch. 17 - Chem 1C - Joseph 1. Which of the following concentration measures will change in value as the temperature of a solution changes? A) mass percent B) mole fraction C) molality
When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.
Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs
= 800 kg/m 3 (note that old units cancel out) 4.184 J 1000 g = 4184 J/kg o C
Units and Dimensions Basic properties such as length, mass, time and temperature that can be measured are called dimensions. Any quantity that can be measured has a value and a unit associated with it.
momentum change per impact The average rate of change of momentum = Time interval between successive impacts 2m x 2l / x m x m x 2 / l P = l 2 P = l 3
Kinetic Molecular Theory This explains the Ideal Gas Pressure olume and Temperature behavior It s based on following ideas:. Any ordinary sized or macroscopic sample of gas contains large number of molecules.
Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.
.1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations
Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004
Statistical Mechanics, Kinetic Theory Ideal Gas 8.01t Nov 22, 2004 Statistical Mechanics and Thermodynamics Thermodynamics Old & Fundamental Understanding of Heat (I.e. Steam) Engines Part of Physics Einstein
Topic 2: Energy in Biological Systems
Topic 2: Energy in Biological Systems Outline: Types of energy inside cells Heat & Free Energy Energy and Equilibrium An Introduction to Entropy Types of energy in cells and the cost to build the parts
Gases. States of Matter. Molecular Arrangement Solid Small Small Ordered Liquid Unity Unity Local Order Gas High Large Chaotic (random)
Gases States of Matter States of Matter Kinetic E (motion) Potential E(interaction) Distance Between (size) Molecular Arrangement Solid Small Small Ordered Liquid Unity Unity Local Order Gas High Large
Chapter 18 Homework Answers
Chapter 18 Homework Answers 18.22. 18.24. 18.26. a. Since G RT lnk, as long as the temperature remains constant, the value of G also remains constant. b. In this case, G G + RT lnq. Since the reaction
Chemistry B11 Chapter 4 Chemical reactions
Chemistry B11 Chapter 4 Chemical reactions Chemical reactions are classified into five groups: A + B AB Synthesis reactions (Combination) H + O H O AB A + B Decomposition reactions (Analysis) NaCl Na +Cl
Chapter Three: STOICHIOMETRY
p70 Chapter Three: STOICHIOMETRY Contents p76 Stoichiometry - The study of quantities of materials consumed and produced in chemical reactions. p70 3-1 Counting by Weighing 3-2 Atomic Masses p78 Mass Mass
CHEMISTRY. Matter and Change. Section 13.1 Section 13.2 Section 13.3. The Gas Laws The Ideal Gas Law Gas Stoichiometry
CHEMISTRY Matter and Change 13 Table Of Contents Chapter 13: Gases Section 13.1 Section 13.2 Section 13.3 The Gas Laws The Ideal Gas Law Gas Stoichiometry State the relationships among pressure, temperature,
BINARY SYSTEMS. Definition of Composition: Atomic (molar) fraction. Atomic percent. Mass fraction. Mass percent (weight percent)
BINARY SYSTEMS Definition of Composition: Atomic (molar) fraction Atomic percent Mass fraction Mass percent (weight percent) na =, x i n = A i i i Weight percent mainly in industry! x at % A = x 100 A
Chapter 6 Thermodynamics: The First Law
Key Concepts 6.1 Systems Chapter 6 Thermodynamics: The First Law Systems, States, and Energy (Sections 6.1 6.8) thermodynamics, statistical thermodynamics, system, surroundings, open system, closed system,
Distillation vaporization sublimation. vapor pressure normal boiling point.
Distillation Distillation is an important commercial process that is used in the purification of a large variety of materials. However, before we begin a discussion of distillation, it would probably be
Chemistry. The student will be able to identify and apply basic safety procedures and identify basic equipment.
Chemistry UNIT I: Introduction to Chemistry The student will be able to describe what chemistry is and its scope. a. Define chemistry. b. Explain that chemistry overlaps many other areas of science. The
STOICHIOMETRY OF COMBUSTION
STOICHIOMETRY OF COMBUSTION FUNDAMENTALS: moles and kilomoles Atomic unit mass: 1/12 126 C ~ 1.66 10-27 kg Atoms and molecules mass is defined in atomic unit mass: which is defined in relation to the 1/12
Lecture 1: Physical Equilibria The Temperature Dependence of Vapor Pressure
Lecture 1: Physical Equilibria The Temperature Dependence of Vapor Pressure Our first foray into equilibria is to examine phenomena associated with two phases of matter achieving equilibrium in which the
Mr. Bracken. Multiple Choice Review: Thermochemistry
Mr. Bracken AP Chemistry Name Period Multiple Choice Review: Thermochemistry 1. If this has a negative value for a process, then the process occurs spontaneously. 2. This is a measure of how the disorder
LN 10. 3.091 Introduction to Solid State Chemistry. Lecture Notes No. 10 PHASE EQUILIBRIA AND PHASE DIAGRAMS
3.091 Introduction to Solid State Chemistry Lecture Notes No. 10 PHASE EQUILIBRIA AND PHASE DIAGRAMS * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Sources
Review of Chemical Equilibrium Introduction
Review of Chemical Equilibrium Introduction Copyright c 2016 by Nob Hill Publishing, LLC This chapter is a review of the equilibrium state of a system that can undergo chemical reaction Operating reactors
Introduction to Materials Science, Chapter 9, Phase Diagrams. Phase Diagrams. University of Tennessee, Dept. of Materials Science and Engineering 1
Phase Diagrams University of Tennessee, Dept. of Materials Science and Engineering 1 Chapter Outline: Phase Diagrams Microstructure and Phase Transformations in Multicomponent Systems Definitions and basic
Introduction to Chemistry. Course Description
CHM 1025 & CHM 1025L Introduction to Chemistry Course Description CHM 1025 Introduction to Chemistry (3) P CHM 1025L Introduction to Chemistry Laboratory (1) P This introductory course is intended to introduce
Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation
Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of
Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008
Name: Review - After School Matter Tuesday, April 29, 2008 1. Figure 1 The graph represents the relationship between temperature and time as heat was added uniformly to a substance starting at a solid
Protein Melting Curves
Protein Melting Curves In previous classes we talked a lot about what aspects of a protein structure stabilize a protein and what aspects destabilize it. But how would one actually test such predictions?
= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm
Chapter 13 Gases 1. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. Gases have volumes that depend on their conditions, and can be compressed or expanded by
Scalars, Vectors and Tensors
Scalars, Vectors and Tensors A scalar is a physical quantity that it represented by a dimensional number at a particular point in space and time. Examples are hydrostatic pressure and temperature. A vector
Phase Transformations in Metals and Alloys
Phase Transformations in Metals and Alloys THIRD EDITION DAVID A. PORTER, KENNETH E. EASTERLING, and MOHAMED Y. SHERIF ( г йс) CRC Press ^ ^ ) Taylor & Francis Group Boca Raton London New York CRC Press
Equilibria Involving Acids & Bases
Week 9 Equilibria Involving Acids & Bases Acidic and basic solutions Self-ionisation of water Through reaction with itself: The concentration of water in aqueous solutions is virtually constant at about
Boyles Law. At constant temperature the volume occupied by a fixed amount of gas is inversely proportional to the pressure on the gas 1 P = P
Boyles Law At constant temperature the volume occupied by a fixed amount of gas is inversely proportional to the pressure on the gas 1 or k 1 Boyles Law Example ressure olume Initial 2.00 atm 100 cm 3
Reading: Moore chapter 18, sections 18.6-18.11 Questions for Review and Thought: 62, 69, 71, 73, 78, 83, 99, 102.
Thermodynamics 2: Gibbs Free Energy and Equilibrium Reading: Moore chapter 18, sections 18.6-18.11 Questions for Review and Thought: 62, 69, 71, 73, 78, 83, 99, 102. Key Concepts and skills: definitions
( ln T T m. ( T tr. ( T m. Predictive UNIQUAC: A New Model for the Description of Multiphase Solid-Liquid Equilibria in Complex Hydrocarbon Mixtures
4870 Ind. Eng. Chem. Res. 1998, 37, 4870-4875 Predictive UNIQUAC: A New Model for the Description of Multiphase Solid-Liquid Equilibria in Complex Hydrocarbon Mixtures João A. P. Coutinho Centro de Investigagão
Martensite in Steels
Materials Science & Metallurgy http://www.msm.cam.ac.uk/phase-trans/2002/martensite.html H. K. D. H. Bhadeshia Martensite in Steels The name martensite is after the German scientist Martens. It was used
Bonding & Molecular Shape Ron Robertson
Bonding & Molecular Shape Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\00bondingtrans.doc The Nature of Bonding Types 1. Ionic 2. Covalent 3. Metallic 4. Coordinate covalent Driving
11 Thermodynamics and Thermochemistry
Copyright ç 1996 Richard Hochstim. All rights reserved. Terms of use.» 37 11 Thermodynamics and Thermochemistry Thermodynamics is the study of heat, and how heat can be interconverted into other energy
CLASSICAL CONCEPT REVIEW 8
CLASSICAL CONCEPT REVIEW 8 Kinetic Theory Information concerning the initial motions of each of the atoms of macroscopic systems is not accessible, nor do we have the computational capability even with
The final numerical answer given is correct but the math shown does not give that answer.
Note added to Homework set 7: The solution to Problem 16 has an error in it. The specific heat of water is listed as c 1 J/g K but should be c 4.186 J/g K The final numerical answer given is correct but
Phase Equilibria & Phase Diagrams
Phase Equilibria & Phase Diagrams Week7 Material Sciences and Engineering MatE271 1 Motivation Phase diagram (Ch 9) Temperature Time Kinematics (Ch 10) New structure, concentration (mixing level) (at what
Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states.
Describe the strength of attractive forces between particles. Describe the amount of space between particles. Can the particles in this state be compressed? Do the particles in this state have a definite
States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.
CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. ideal gas
