Hydro power plants. Inlet gate Surge shaft. Air inlet. Penstock. Tunnel Sand trap Trash rack Self closing valve. Tail water. Main valve Turbine

Size: px
Start display at page:

Download "Hydro power plants. Inlet gate Surge shaft. Air inlet. Penstock. Tunnel Sand trap Trash rack Self closing valve. Tail water. Main valve Turbine"

Transcription

1 Hydro power plants

2 Hydro power plants Air inlet Inlet gate Surge shaft Penstock Tail water Tunnel Sand trap Trash rack Self closing valve Draft tube Draft tube gate Main valve Turbine

3 The principle the water conduits of a traditional high head power plant

4 Ulla- Førre Original figur ved Statkraft Vestlandsverkene

5 Intake gate gate hoist Intake trashrack Tunnel Inlet Tunnel Inlet trashrack Surge tank Penstock inlet Valve Desilting basin Anchor block Headrace tunnel Anchor block Shaddle Exp. joint Power house IV G SC DT end gate Tailrace IV -inlet valve R -turbine runner SC -spiral case G -generator R DT Typical Power House with Francis Turbine

6 Arrangement of a small hydropower plant

7 Ligga Power Plant, Norrbotten, Sweden H = 39 m Q = 513 m 3 /s P = 182 MW D runner =7,5 m

8 H = 87,5 m P = 150 MW D runner =5,5 m Borcha Power Plant, Turkey

9 Water intake Dam Coarse trash rack Intake gate Sediment settling basement

10 Dams Rockfill dams Pilar og platedammer Hvelvdammer

11 Rock-fill dams 1. Core Moraine, crushed soft rock, concrete, asphalt 2. Filter zone Sandy gravel 3. Transition zone Fine blasted rock 4. Supporting shell Blasted rock

12 Slab concrete dam

13 Arc dam

14 Gates in Hydro Power Plants

15 Types of Gates Radial Gates Wheel Gates Slide Gates Flap Gates Rubber Gates

16 Radial Gates at Älvkarleby, Sweden

17 Radial Gate The forces acting on the arc will be transferred to the bearing

18 Jhimruk Power Plant, Nepal Slide Gate

19 Flap Gate

20 Rubber gate Reinforced rubber Open position Flow disturbance Bracket Reinforced rubber Closed position Air inlet

21 Circular gate End cover Ribs Pipe Hinge Manhole Bolt Ladder Fastening element Seal Frame

22 Jhimruk Power Plant, Nepal Circular gate

23 Trash Racks Panauti Power Plant, Nepal

24 Theun Hinboun Power Plant Laos

25 Gravfoss Power Plant Norway Trash Rack size: Width: 12 meter Height: 13 meter Stainless Steel

26 CompRack Trash Rack delivered by VA-Tech

27 Cleaning the trash rack

28 Pipes Materials Calculation of the change of length due to the change of the temperature Calculation of the head loss Calculation of maximum pressure Static pressure Water hammer Calculation of the pipe thickness Calculation of the economical correct diameter Calculation of the forces acting on the anchors

29 Materials Steel Polyethylene, PE Glass-fibre reinforced Unsaturated Polyesterplastic, GUP Wood Concrete

30 Materials Material Max. Diameter Max. Pressure Max. Stresses [m] [m] [MPa] Steel, St Steel, St Steel, St PE ~ 1, GUP 2,4 320 Max. p = 160 m. Max. D: 1,4 m. Wood ~5 80 Concrete ~5 ~ 400

31 Steel pipes in penstock Nore Power Plant, Norway

32 GUP-Pipe Raubergfossen Power Plant, Norway

33 Wood Pipes Breivikbotn Power Plant, Norway Øvre Porsa Power Plant, Norway

34 Calculation of the change of length due to the change of the temperature ΔL = α ΔT L Where: ΔL = Change of length [m] L = Length [m] α = Coefficient of thermal expansion [m/ o Cm] ΔT = Change of temperature [ o C]

35 Calculation of the head loss L c 2 h f = f D 2 g Where: h f = Head loss [m] f = Friction factor [ - ] L = Length of pipe [m] D = Diameter of the pipe [m] c = Water velocity [m/s] g = Gravity [m/s 2 ]

36

37 Example Calculation of the head loss Power Plant data: H = 100 m Head Q = 10 m 3 /s Flow Rate L = 1000 m Length of pipe D = 2,0 m Diameter of the pipe The pipe material is steel h f = f L D c 2 2 g Re = c D υ Where: c = 3,2 m/s Water velocity ν = 1, m 2 /s Kinetic viscosity Re = 4, Reynolds number

38 0,013 Where: Re = 4, Reynolds number ε = 0,045 mm Roughness D = 2,0 m Diameter of the pipe ε/d = 2, Relative roughness f = 0,013 Friction factor The pipe material is steel

39 Example Calculation of the head loss Power Plant data: H = 100 m Head Q = 10 m 3 /s Flow Rate L = 1000 m Length of pipe D = 2,0 m Diameter of the pipe The pipe material is steel 2 2 L c ,2 h f = f = 0,013 = D 2 g 2 2 9,82 3,4 m Where: f = 0,013 Friction factor c = 3,2 m/s Water velocity g = 9,82 m/s 2 Gravity

40 Calculation of maximum pressure Static head, H gr (Gross Head) Water hammer, Δh wh Deflection between pipe supports Friction in the axial direction H gr

41 Maximum pressure rise due to the Water Hammer Δh wh = a c g max IF T C << 2 L a Jowkowsky Δh wh = Pressure rise due to water hammer [mwc] a = Speed of sound in the penstock [m/s] c max = maximum velocity [m/s] g = gravity [m/s 2 ] c

42 a = 1000 [m/s] c max = 10 [m/s] g = 9,81 [m/s 2 ] T C 2 L << a Example Jowkowsky Δh a c max wh = = g 1020 m c=10 m/s

43 Maximum pressure rise due to the Water Hammer Δh wh = a c g max 2 L a T C = c 2 L g T max Where: Δh wh = Pressure rise due to water hammer [mwc] a = Speed of sound in the penstock [m/s] c max = maximum velocity [m/s] g = gravity [m/s 2 ] L = Length [m] T C = Time to close the main valve or guide vanes [s] C IF T C 2 L a C L

44 L = 300 [m] T C = 10 [s] c max = 10 [m/s] g = 9,81 [m/s 2 ] Example Δh c 2 L g T max wh = = C 61 m C=10 m/s L

45 Calculation of the pipe thickness L D σ t = i p C s p ri C t = 2 σ s t L t ( ) p = ρ g H gr + h wh Based on: Material properties Pressure from: Water hammer Static head Where: L = Length of the pipe [m] D i = Inner diameter of the pipe [m] p = Pressure inside the pipe [Pa] σ t = Stresses in the pipe material [Pa] t = Thickness of the pipe [m] C s = Coefficient of safety [ - ] ρ = Density of the water [kg/m 3 ] H gr = Gross Head [m] Δh wh = Pressure rise due to water hammer [m] t σ t p ri σ t

46 Example Calculation of the pipe thickness L D t = i p C p ri C σ p = ρ g t s s = 2 σ L t = 0,009 m t ( H + h ) 1,57 MPa gr wh = Based on: Material properties Pressure from: Water hammer Static head σ t Where: L = 0,001 m Length of the pipe D i = 2,0 m Inner diameter of the pipe σ t = 206 MPa Stresses in the pipe material ρ = 1000 kg/m 3 Density of the water C s = 1,2 Coefficient of safety H gr = 100 m Gross Head Δh wh = 61 m Pressure rise due to water hammer t p ri σ t

47 Calculation of the economical correct diameter of the pipe ( K + K ) dk d f t = dd dd tot = 0 Total costs, Ktot Installation costs, K t Costs for hydraulic losses, K f Diameter [m] Cost [$]

48 Example Calculation of the economical correct diameter of the pipe Hydraulic Losses Power Plant data: H = 100 m Head Q = 10 m 3 /s Flow Rate η plant = 85 % Plant efficiency L = 1000 m Length of pipe 2 L Q P Loss = ρ g Q h f = ρ g Q f = r 2 g π r Where: P Loss = Loss of power due to the head loss [W] ρ = Density of the water [kg/m 3 ] g = gravity [m/s 2 ] Q = Flow rate [m 3 /s] h f = Head loss [m] f = Friction factor [ - ] L = Length of pipe [m] r = Radius of the pipe [m] C 2 = Calculation coefficient C r 2 5

49 Example Calculation of the economical correct diameter of the pipe Cost of the Hydraulic Losses per year K f = P Loss T kwh price = C r 2 5 T kwh price Where: K f = Cost for the hydraulic losses [ ] P Loss = Loss of power due to the head loss [W] T = Energy production time [h/year] kwh price = Energy price [ /kwh] r = Radius of the pipe [m] C 2 = Calculation coefficient

50 Example Calculation of the economical correct diameter of the pipe Present value of the Hydraulic Losses per year K = C T kwh 2 f 5 price Where: r K f = Cost for the hydraulic losses [ ] T = Energy production time [h/year] kwh price = Energy price [ /kwh] r = Radius of the pipe [m] C 2 = Calculation coefficient Present value for 20 year of operation: K f pv = n f i= 1 + K ( 1 I) Where: K fpv = Present value of the hydraulic losses [ ] n = Lifetime, (Number of year ) [-] I = Interest rate [-] i

51 Example Calculation of the economical correct diameter of the pipe Cost for the Pipe Material m K = ρ t m V = ρ m = M m = 2 π r t L = ρ M C 1 r 2 m 2 π r p r L = σ C 1 r 2 Where: m = Mass of the pipe [kg] ρ m = Density of the material [kg/m 3 ] V = Volume of material [m 3 ] r = Radius of pipe [m] L = Length of pipe [m] p = Pressure in the pipe [MPa] σ = Maximum stress [MPa] C 1 = Calculation coefficient K t = Installation costs [ ] M = Cost for the material [ /kg] NB: This is a simplification because no other component then the pipe is calculated

52 Example Calculation of the economical correct diameter of the pipe Installation Costs: Pipes Maintenance Interests Etc.

53 Example Calculation of the economical correct diameter of the pipe K d f K t = M C Where: K f = Cost for the hydraulic losses [ ] K t = Installation costs [ ] T = Energy production time [h/year] kwh price = Energy price [ /kwh] r = Radius of the pipe [m] = Calculation coefficient C 1 C 2 pv = n C r ( K + K ) 2 5 T kwh ( 1 I) i= 1 + i price T kwh ( 1+ I) = Calculation coefficient M = Cost for the material [ /kg] n = Lifetime, (Number of year ) [-] I = Interest rate [-] 5 6 r n t f 2 price = 2 M C r = i dr i= 1 C 1 r 0 2

54 Example Calculation of the economical correct diameter of the pipe ( ) ( ) ( ) 7 n 1 i i price 2 n 1 i i price 2 6 f t I 1 C M kwh T C 2 5 r 0 I 1 kwh T C r 5 r C M 2 dr K K d = = + = = + = +

55 Calculation of the forces acting on the anchors

56 Calculation of the forces acting on the anchors F 5 F F 1 F 2 F 3 F 4 F 1 = Force due to the water pressure [N] F 2 = Force due to the water pressure [N] F 3 = Friction force due to the pillars upstream the anchor F 4 = Friction force due to the expansion joint upstream the anchor F 5 = Friction force due to the expansion joint downstream the anchor [N] [N] [N]

57 Calculation of the forces acting on the anchors F G R

58 Valves

59 Principle drawings of valves Open position Closed position Spherical valve Gate valve Hollow-jet valve Butterfly valve

60 Spherical valve

61 Bypass system

62 Butterfly valve

63 Butterfly valve

64 Butterfly valve disk types

65 Hollow-jet Valve

66 Pelton turbines Large heads (from 100 meter to 1800 meter) Relatively small flow rate Maximum of 6 nozzles Good efficiency over a vide range

67 Jostedal, Norway Kværner *Q = 28,5 m 3 /s *H = 1130 m *P = 288 MW

68 Francis turbines Heads between 15 and 700 meter Medium Flow Rates Good efficiency η=0.96 for modern machines

69 P = 350 MW H = 543 m Q* = 71,5 m 3 /S D0 = 4,86 m D1 = 4,31m D2 = 2,35 m B0 = 0,28 m n = 333 rpm SVARTISEN

70

71

72 Kaplan turbines Low head (from 70 meter and down to 5 meter) Large flow rates The runner vanes can be governed Good efficiency over a vide range

73

Mini & Micro Hydro Power Generation. EBARA Hatakeyama Memorial Fund Tokyo, Japan

Mini & Micro Hydro Power Generation. EBARA Hatakeyama Memorial Fund Tokyo, Japan Mini & Micro Hydro Power Generation EBARA Hatakeyama Memorial Fund Tokyo, Japan Definitions Large Scale hydro power generation : Capacity 100(MW) Most of them involve major construction of dams. Small

More information

HYDROPOWER IN NORWAY. Mechanical Equipment

HYDROPOWER IN NORWAY. Mechanical Equipment HYDROPOWER IN NORWAY Mechanical Equipment A survey prepared by Arne Kjølle Professor Emeritus Norwegian University of Science and Technology Trondheim, December 2001 VIII Preface This book was originally

More information

FLUID FLOW Introduction General Description

FLUID FLOW Introduction General Description FLUID FLOW Introduction Fluid flow is an important part of many processes, including transporting materials from one point to another, mixing of materials, and chemical reactions. In this experiment, you

More information

KEYWORDS Micro hydro turbine, Turbine testing, Cross flow turbine

KEYWORDS Micro hydro turbine, Turbine testing, Cross flow turbine DEVELOPMENT OF COST EFFECTIVE TURBINE FOR HILLY AREAS [Blank line 11 pt] A. Tamil Chandran, Senior Research Engineer Fluid Control Research Institute, Kanjikode west, Plalakkad, Kerala, India tamilchandran@fcriindia.com

More information

Micro-Hydro. Module 4.1. 4.1.1 Introduction. Tokyo Electric Power Co. (TEPCO)

Micro-Hydro. Module 4.1. 4.1.1 Introduction. Tokyo Electric Power Co. (TEPCO) Module 4.1 Micro-Hydro 4.1.1 Introduction Tokyo Electric Power Co. (TEPCO) Workshop on Renewable Energies November 14-25, 2005 Nadi, Republic of the Fiji Islands Subjects to be Covered in Workshop Potential

More information

APPENDIX F. Baker County. Mason Dam Hydroelectric Project FERC No. P-12686. Turbidity Monitoring Plan

APPENDIX F. Baker County. Mason Dam Hydroelectric Project FERC No. P-12686. Turbidity Monitoring Plan APPENDIX F Baker County Mason Dam Hydroelectric Project FERC No. P-12686 Turbidity Monitoring Plan April 2011 857 Table of Contents 1.0 Introduction 1 2.0 Purpose and Scope 2 3.0 Turbidity Monitoring and

More information

Design and manufacturing of Crossflow, Pelton, Kaplan and Francis turbines

Design and manufacturing of Crossflow, Pelton, Kaplan and Francis turbines Design and manufacturing of Crossflow, Pelton, Kaplan and Francis turbines Founded in 1990 as a manufacturer of hydro power plant equipment In 2005, the company underwent complete modernization and extended

More information

MICRO-HYDROPOWER NEED FOR ENERGY FOR RURAL DEVELOPMENT. By: Payman Hassan Rashed

MICRO-HYDROPOWER NEED FOR ENERGY FOR RURAL DEVELOPMENT. By: Payman Hassan Rashed MICRO-HYDROPOWER NEED FOR ENERGY FOR RURAL DEVELOPMENT Significant water resources are found in many developing countries. In areas where adequate water resources are present, harnessing the power of falling

More information

Machine Design II Prof. K.Gopinath & Prof. M.M.Mayuram. Module 2 - GEARS. Lecture 17 DESIGN OF GEARBOX

Machine Design II Prof. K.Gopinath & Prof. M.M.Mayuram. Module 2 - GEARS. Lecture 17 DESIGN OF GEARBOX Module 2 - GEARS Lecture 17 DESIGN OF GEARBOX Contents 17.1 Commercial gearboxes 17.2 Gearbox design. 17.1 COMMERCIAL GEARBOXES Various commercial gearbox designs are depicted in Fig. 17.1 to 17.10. These

More information

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART - A

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART - A CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART - A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density

More information

Design of Micro-Hydro-Electric Power Station

Design of Micro-Hydro-Electric Power Station International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 8958, Volume-3, Issue-3, February 214 Design of Micro-Hydro-Electric Power Station Bilal Abdullah Nasir Abstract: Micro-hydro-electric

More information

HYDRO POWER GENERATION

HYDRO POWER GENERATION Course on IntegratingRenewableEnergySourcesintoEmerging ElectricPowerSystems (16-20 May, 2011) IIT Mandi SMALL HYDRO POWER GENERATION By : Dr. R.P. Saini Associate Professor AlternateHydroEnergyCentre,

More information

Practice Problems on Pumps. Answer(s): Q 2 = 1850 gpm H 2 = 41.7 ft W = 24.1 hp. C. Wassgren, Purdue University Page 1 of 16 Last Updated: 2010 Oct 29

Practice Problems on Pumps. Answer(s): Q 2 = 1850 gpm H 2 = 41.7 ft W = 24.1 hp. C. Wassgren, Purdue University Page 1 of 16 Last Updated: 2010 Oct 29 _02 A centrifugal with a 12 in. diameter impeller requires a power input of 60 hp when the flowrate is 3200 gpm against a 60 ft head. The impeller is changed to one with a 10 in. diameter. Determine the

More information

What are the Benefits?

What are the Benefits? Micro hydro power system introduction Not everyone is lucky enough to have a source of running water near their homes. But for those with river-side homes or live-on boats, small water generators (micro-hydro

More information

Solution for Homework #1

Solution for Homework #1 Solution for Homework #1 Chapter 2: Multiple Choice Questions (2.5, 2.6, 2.8, 2.11) 2.5 Which of the following bond types are classified as primary bonds (more than one)? (a) covalent bonding, (b) hydrogen

More information

Pressure drop in pipes...

Pressure drop in pipes... Pressure drop in pipes... PRESSURE DROP CALCULATIONS Pressure drop or head loss, occurs in all piping systems because of elevation changes, turbulence caused by abrupt changes in direction, and friction

More information

Emergency Spillways (Sediment basins)

Emergency Spillways (Sediment basins) Emergency Spillways (Sediment basins) DRAINAGE CONTROL TECHNIQUE Low Gradient Velocity Control Short-Term Steep Gradient Channel Lining Medium-Long Term Outlet Control Soil Treatment Permanent [1] [1]

More information

Welcome to Grindex Pump handbook! With this handbook we want to share some of our wide experience in pumping with submersible pumps.

Welcome to Grindex Pump handbook! With this handbook we want to share some of our wide experience in pumping with submersible pumps. 5 Hz PUMP HANDBOOK Welcome to Grindex Pump handbook! With this handbook we want to share some of our wide experience in pumping with submersible pumps. You will find an overview of all Grindex pumps with

More information

DESIGN OF SMALL HYDRO ELECTRIC PROJECT USING TAILRACE EXTENSION SCHEME

DESIGN OF SMALL HYDRO ELECTRIC PROJECT USING TAILRACE EXTENSION SCHEME DESIGN OF SMALL HYDRO ELECTRIC PROJECT USING TAILRACE EXTENSION SCHEME Delson Jose 1, Lini Varghese 2, Renjini G. 3 1,2B.Tech Scholars Engineering College, Cheruthuruthy, Thrissur, 3Assistant Professor,

More information

Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids

Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction Last lab you investigated flow loss in a pipe due to the roughness

More information

RECYCLED MICRO HYDROPOWER GENERATION USING HYDRAULIC RAM PUMP (HYDRAM)

RECYCLED MICRO HYDROPOWER GENERATION USING HYDRAULIC RAM PUMP (HYDRAM) IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET) Vol., Issue 3, Aug 23, - Impact Journals RECYCLED MICRO HYDROPOWER GENERATION USING HYDRAULIC RAM PUMP (HYDRAM) C.

More information

Experiment (13): Flow channel

Experiment (13): Flow channel Introduction: An open channel is a duct in which the liquid flows with a free surface exposed to atmospheric pressure. Along the length of the duct, the pressure at the surface is therefore constant and

More information

CHAPTER 6: ELECTROMECHANICAL EQUIPMENT CONTENTS LIST OF FIGURES. Guide on How to Develop a Small Hydropower Plant ESHA 2004

CHAPTER 6: ELECTROMECHANICAL EQUIPMENT CONTENTS LIST OF FIGURES. Guide on How to Develop a Small Hydropower Plant ESHA 2004 CHAPTER 6: ELECTROMECHANICAL EQUIPMENT CONTENTS 6 Electromechanical equipment... 154 6.1 Powerhouse...154 6.2 Hydraulic turbines...156 6.2.1 Types and configuration...156 6.2.2 Specific speed and similitude...168

More information

1. A belt pulley is 3 ft. in diameter and rotates at 250 rpm. The belt which is 5 ins. wide makes an angle of contact of 190 over the pulley.

1. A belt pulley is 3 ft. in diameter and rotates at 250 rpm. The belt which is 5 ins. wide makes an angle of contact of 190 over the pulley. Sample Questions REVISED FIRST CLASS PARTS A1, A2, AND A3 (NOTE: these questions are intended as representations of the style of questions that may appear on examinations. They are not intended as study

More information

Project Layout & Design Features of the Project

Project Layout & Design Features of the Project Project Layout & Design Features of the Project 1 PROJECT LAYOUT DRI DAM DRI DAM TOE P/H U/G POWER HOUSE COMPLEX DRI DAM TOE POWER HOUSE TANGON DAM TOE POWER HOUSE TOTAL 3070 MW 19.60 MW 7.40 MW 3097 MW

More information

EXPERIMENT 10 CONSTANT HEAD METHOD

EXPERIMENT 10 CONSTANT HEAD METHOD EXPERIMENT 10 PERMEABILITY (HYDRAULIC CONDUCTIVITY) TEST CONSTANT HEAD METHOD 106 Purpose: The purpose of this test is to determine the permeability (hydraulic conductivity) of a sandy soil by the constant

More information

Fluid Mechanics: Static s Kinematics Dynamics Fluid

Fluid Mechanics: Static s Kinematics Dynamics Fluid Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three

More information

Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical

Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical European Water 36: 7-35, 11. 11 E.W. Publications Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical Flow Conditions C.R. Suribabu *, R.M. Sabarish, R. Narasimhan and A.R. Chandhru

More information

HYDROPOWER SYSTEMS BY APPOINTMENT TO H.M. THE QUEEN WATER TURBINE ENGINEERS, GILBERT GILKES & GORDON LTD, KENDAL

HYDROPOWER SYSTEMS BY APPOINTMENT TO H.M. THE QUEEN WATER TURBINE ENGINEERS, GILBERT GILKES & GORDON LTD, KENDAL HYDROPOWER SYSTEMS BY APPOINTMENT TO H.M. THE QUEEN WATER TURBINE ENGINEERS, GILBERT GILKES & GORDON LTD, KENDAL 1 WWW.GILKES.COM CONTENTS THE COMPANY 3 GILKES HYDROPOWER 5 GILKES PACKAGE 7 TURBINE SELECTION

More information

FLUID MECHANICS. TUTORIAL No.8A WATER TURBINES. When you have completed this tutorial you should be able to

FLUID MECHANICS. TUTORIAL No.8A WATER TURBINES. When you have completed this tutorial you should be able to FLUID MECHAICS TUTORIAL o.8a WATER TURBIES When you have completed this tutorial you should be able to Explain the significance of specific speed to turbine selection. Explain the general principles of

More information

Tunnelling and underground works in PPC hydro projects: Contracting practices & construction management Ioannis Thanopoulos Dr.

Tunnelling and underground works in PPC hydro projects: Contracting practices & construction management Ioannis Thanopoulos Dr. Tunnelling and underground works in PPC hydro projects: Contracting practices & construction management Ioannis Thanopoulos Dr. Civil Engineer Public Power Corporation, Greece Public Power Corporation

More information

HYDROMATRIX Jebel Aulia - Sudan

HYDROMATRIX Jebel Aulia - Sudan HYDROMATRIX Jebel Aulia - Sudan www.andritz.com HYDROMATRIX - Concept Jebel Aulia - Sudan HYDROMATRIX is a new concept of hydraulic energy generation, which has been developed by an American engineer in

More information

For Water to Move a driving force is needed

For Water to Move a driving force is needed RECALL FIRST CLASS: Q K Head Difference Area Distance between Heads Q 0.01 cm 0.19 m 6cm 0.75cm 1 liter 86400sec 1.17 liter ~ 1 liter sec 0.63 m 1000cm 3 day day day constant head 0.4 m 0.1 m FINE SAND

More information

MATLAB AS A PROTOTYPING TOOL FOR HYDRONIC NETWORKS BALANCING

MATLAB AS A PROTOTYPING TOOL FOR HYDRONIC NETWORKS BALANCING MATLAB AS A PROTOTYPING TOOL FOR HYDRONIC NETWORKS BALANCING J. Pekař, P. Trnka, V. Havlena* Abstract The objective of this note is to describe the prototyping stage of development of a system that is

More information

A10VSO Nominal size 18 see RD 92712 A10VSO Nominal size 28...140 see RD 92711

A10VSO Nominal size 18 see RD 92712 A10VSO Nominal size 28...140 see RD 92711 A10VO Nominal size 18 see RD 92712 A10VO Nominal size 28...140 see RD 92711 The variable displacement axial piston pump A10VO in swashplate design was designed for hydrostatic drives in open circuits.

More information

FLSmidth ball mill for cement grinding

FLSmidth ball mill for cement grinding FLSmidth ball mill for cement grinding 2 Versatile system based on standard modules Main features - Shell supported ball mill of well-proven design - Side or central drive - Grinds all types of cement

More information

D 4.4 Report on the feasibility analysis for most technically acceptable locations

D 4.4 Report on the feasibility analysis for most technically acceptable locations SMART Strategies to Promote Small Scale Hydro Electricity Production in Europe D 4.4 Report on the feasibility analysis for most technically acceptable locations 1 technically acceptable locations Page

More information

Technical Specifications of Micro Hydropower System Design and its Implementation

Technical Specifications of Micro Hydropower System Design and its Implementation Technical Specifications of Micro Hydropower System Design and its Implementation Feasibility Analysis and Design of Lamaya Khola Micro Hydro Power Plant Anil Kunwor Bachelor s Degree Thesis Förnamn Efternamn

More information

XI / PHYSICS FLUIDS IN MOTION 11/PA

XI / PHYSICS FLUIDS IN MOTION 11/PA Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A

More information

Nordex SE. Capital Markets Day Products & Sales - Lars Bondo Krogsgaard

Nordex SE. Capital Markets Day Products & Sales - Lars Bondo Krogsgaard Nordex SE Capital Markets Day Products & Sales - Lars Bondo Krogsgaard Rostock, 13 October 2011 SUMMARY The situation in the wind industry has changed: Attractive medium-term growth prospects Overcapacity

More information

ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts

ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts ME 305 Fluid Mechanics I Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared by Dr. Cüneyt Sert Mechanical Engineering Department Middle East Technical University Ankara, Turkey csert@metu.edu.tr

More information

Analytical Approach for Cost Estimation of Low Head Small Hydro Power Schemes

Analytical Approach for Cost Estimation of Low Head Small Hydro Power Schemes Analytical Approach for Cost Estimation of Low Head Small Hydro Power Schemes S.K. Singal and R.P. Saini Alternate Hydro Energy Centre, Indian Institute of Technology, Roorkee, India Email : sunilfah@iitr.ernet.in

More information

TECHNICAL SPECIFICATION

TECHNICAL SPECIFICATION THOMAS - G-FLEX GFLEX TECH SPEC CONNECTING INNOVATION JOHANNESBURG TEL: +27 11 794 7594 CAPE TOWN TEL: +27 21 556 5258 POLOKWANE TEL: 015 298 9142 DESIGNER, MANUFACTURER AND DISTRIBUTOR OF PIPE CONNECTION,

More information

Experiment 3 Pipe Friction

Experiment 3 Pipe Friction EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A cross-sectional

More information

CENTRIFUGAL PUMP SELECTION, SIZING, AND INTERPRETATION OF PERFORMANCE CURVES

CENTRIFUGAL PUMP SELECTION, SIZING, AND INTERPRETATION OF PERFORMANCE CURVES CENTRIFUGAL PUMP SELECTION, SIZING, AND INTERPRETATION OF PERFORMANCE CURVES 4.0 PUMP CLASSES Pumps may be classified in two general types, dynamic and positive displacement. Positive displacement pumps

More information

Water hammering in fire fighting installation

Water hammering in fire fighting installation Water hammering in fire fighting installation Forward One of major problems raised in the fire fighting network installed at Pioneer company for pharmaceutical industry /Sulaymania was the high water hammering

More information

Guide on how to refurbish low head small hydro sites

Guide on how to refurbish low head small hydro sites Guide on how to refurbish low head small hydro sites Contents 1 About SHAPES PROJECT 3 2 Foreword 3 3 What s peculiar? Definitions 3 4 When to refurbish 4 5 Basic technical-economic presuppositions 4 6

More information

CONSTANT HEAD AND FALLING HEAD PERMEABILITY TEST

CONSTANT HEAD AND FALLING HEAD PERMEABILITY TEST CONSTANT HEAD AND FALLING HEAD PERMEABILITY TEST 1 Permeability is a measure of the ease in which water can flow through a soil volume. It is one of the most important geotechnical parameters. However,

More information

A MTR FUEL ELEMENT FLOW DISTRIBUTION MEASUREMENT PRELIMINARY RESULTS

A MTR FUEL ELEMENT FLOW DISTRIBUTION MEASUREMENT PRELIMINARY RESULTS A MTR FUEL ELEMENT FLOW DISTRIBUTION MEASUREMENT PRELIMINARY RESULTS W. M. Torres, P. E. Umbehaun, D. A. Andrade and J. A. B. Souza Centro de Engenharia Nuclear Instituto de Pesquisas Energéticas e Nucleares

More information

HYDROELECTRICITY and DAMS

HYDROELECTRICITY and DAMS Definition Girotte lake, France Hydroelectricity or hydroelectric energy uses the potential energy of water flows (rivers, waterfalls, ocean currents, etc.). The kinetic energy of the water stream is converted

More information

PHYSICS 111 HOMEWORK SOLUTION #9. April 5, 2013

PHYSICS 111 HOMEWORK SOLUTION #9. April 5, 2013 PHYSICS 111 HOMEWORK SOLUTION #9 April 5, 2013 0.1 A potter s wheel moves uniformly from rest to an angular speed of 0.16 rev/s in 33 s. Find its angular acceleration in radians per second per second.

More information

08003-1 WATER SERVICE 2

08003-1 WATER SERVICE 2 08003_Mar08_2011.pdf Page 1 of 7 INDEX Page 08003-1 WATER SERVICE 2 1.1 Pipe 2 1.1.1 Copper 2 1.1.2 Polyethylene 2 1.2 Valves and Fittings 2 1.2.1 Main Stops 3 1.2.2 Curb Stops 3 1.2.3 Curb Box 3 1.2.4

More information

Understanding Plastics Engineering Calculations

Understanding Plastics Engineering Calculations Natti S. Rao Nick R. Schott Understanding Plastics Engineering Calculations Hands-on Examples and Case Studies Sample Pages from Chapters 4 and 6 ISBNs 978--56990-509-8-56990-509-6 HANSER Hanser Publishers,

More information

Battery Thermal Management System Design Modeling

Battery Thermal Management System Design Modeling Battery Thermal Management System Design Modeling Gi-Heon Kim, Ph.D Ahmad Pesaran, Ph.D (ahmad_pesaran@nrel.gov) National Renewable Energy Laboratory, Golden, Colorado, U.S.A. EVS October -8, 8, 006 Yokohama,

More information

STEAM TURBINE 1 CONTENT. Chapter Description Page. V. Steam Process in Steam Turbine 6. VI. Exhaust Steam Conditions, Extraction and Admission 7

STEAM TURBINE 1 CONTENT. Chapter Description Page. V. Steam Process in Steam Turbine 6. VI. Exhaust Steam Conditions, Extraction and Admission 7 STEAM TURBINE 1 CONTENT Chapter Description Page I Purpose 2 II Steam Turbine Types 2 2.1. Impulse Turbine 2 2.2. Reaction Turbine 2 III Steam Turbine Operating Range 2 3.1. Curtis 2 3.2. Rateau 2 3.3.

More information

Section 2100-Trenching and Tunneling

Section 2100-Trenching and Tunneling SECTION 5200 - STORM SEWER PART 1 - GENERAL 1.01 SCOPE: This Section covers installation of storm sewer mains and culverts. Topics include permits and fees, trench widths, pipe laying, bedding, initial

More information

Pumps: Convert mechanical energy (often developed from electrical source) into hydraulic energy (position, pressure and kinetic energy).

Pumps: Convert mechanical energy (often developed from electrical source) into hydraulic energy (position, pressure and kinetic energy). HYDRAULIC MACHINES Used to convert between hydraulic and mechanical energies. Pumps: Convert mechanical energy (often developed from electrical source) into hydraulic energy (position, pressure and kinetic

More information

FLUID MECHANICS. TUTORIAL No.7 FLUID FORCES. When you have completed this tutorial you should be able to. Solve forces due to pressure difference.

FLUID MECHANICS. TUTORIAL No.7 FLUID FORCES. When you have completed this tutorial you should be able to. Solve forces due to pressure difference. FLUID MECHANICS TUTORIAL No.7 FLUID FORCES When you have completed this tutorial you should be able to Solve forces due to pressure difference. Solve problems due to momentum changes. Solve problems involving

More information

RENEWABLE ENERGY TECHNOLOGY: MICRO HYDRO POWER GENERATION FOR ELECTRIFICATION

RENEWABLE ENERGY TECHNOLOGY: MICRO HYDRO POWER GENERATION FOR ELECTRIFICATION RENEWABLE ENERGY TECHNOLOGY: MICRO HYDRO POWER GENERATION FOR ELECTRIFICATION Dr. S. K. Dave 1, Ashokkumar A. Parmar 2, Nikhil M. Vyas 3, P. S.Chadhari 4 Lecturer & I/C Head Civil Eng, Applied Mechanics.,

More information

SJT / SJM / SJP Large Vertical Pumps

SJT / SJM / SJP Large Vertical Pumps SJT / SJM / SJP Large Vertical Pumps The Heart of Your Process SJT, SJM, SJP Large Vertical Pumps Product Overview SJT Turbine Ns 1800 < 5000 nq 35 < 110 SJM Mixed Flow Ns 5800 < 8300 nq 113 < 161 SJP

More information

Product Catalogue HW-B150H

Product Catalogue HW-B150H Product Catalogue Content 1 Coverage and Terminology... 4 1.1 Design Standards... 4 1.2 Load Criteria... 5 1.3 Definition of Terms... 6 1.3.1 Flood Barrier... 6 1.3.2 Flood Height, effective Flood Height,

More information

Index. protection. excavated drop inlet protection (Temporary) 6.50.1 6.51.1. Block and gravel inlet Protection (Temporary) 6.52.1

Index. protection. excavated drop inlet protection (Temporary) 6.50.1 6.51.1. Block and gravel inlet Protection (Temporary) 6.52.1 6 Index inlet protection excavated drop inlet protection (Temporary) 6.50.1 HARDWARE CLOTH AND GRAVEL INLET PROTECTION Block and gravel inlet Protection (Temporary) sod drop inlet protection ROCK DOUGHNUT

More information

A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW. 1998 ASME Fluids Engineering Division Summer Meeting

A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW. 1998 ASME Fluids Engineering Division Summer Meeting TELEDYNE HASTINGS TECHNICAL PAPERS INSTRUMENTS A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW Proceedings of FEDSM 98: June -5, 998, Washington, DC FEDSM98 49 ABSTRACT The pressure

More information

The original OSSBERGER Crossflow Turbine

The original OSSBERGER Crossflow Turbine The original OSSBERGER Crossflow Turbine History The history of the original OSSBERGER Crossflow Turbine started with an intellectual exchange between two highly innovative geniuses: the Australian inventor

More information

QUALITY CONTROL AND QUALITY ASSURANCE MANAGEMENT IN UPPER-KOTMALE HYDROPOWER PROJECT

QUALITY CONTROL AND QUALITY ASSURANCE MANAGEMENT IN UPPER-KOTMALE HYDROPOWER PROJECT QUALITY CONTROL AND QUALITY ASSURANCE MANAGEMENT IN UPPER-KOTMALE HYDROPOWER PROJECT Yoshimitsu NAKAJIMA MAEDA Corporation, Technical Research Institute ABSTRACT: Upper-Kotmale Hydropower Project has been

More information

Problem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s

Problem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s Problem Set 1 1.1 A bicyclist starts from rest and after traveling along a straight path a distance of 20 m reaches a speed of 30 km/h. Determine her constant acceleration. How long does it take her to

More information

Hydro Power. Chapter 4. Mohammed Taih Gatte and Rasim Azeez Kadhim. 1. Introduction

Hydro Power. Chapter 4. Mohammed Taih Gatte and Rasim Azeez Kadhim. 1. Introduction Chapter 4 Hydro Power Mohammed Taih Gatte and Rasim Azeez Kadhim Additional information is available at the end of the chapter http://dx.doi.org/10.5772/52269 1. Introduction Humans have used the power

More information

L r = L m /L p. L r = L p /L m

L r = L m /L p. L r = L p /L m NOTE: In the set of lectures 19/20 I defined the length ratio as L r = L m /L p The textbook by Finnermore & Franzini defines it as L r = L p /L m To avoid confusion let's keep the textbook definition,

More information

PERMEABILITY TEST. To determine the coefficient of permeability of a soil using constant head method.

PERMEABILITY TEST. To determine the coefficient of permeability of a soil using constant head method. PERMEABILITY TEST A. CONSTANT HEAD OBJECTIVE To determine the coefficient of permeability of a soil using constant head method. need and Scope The knowledge of this property is much useful in solving problems

More information

UCCS ENSC/PES 2500: Renewable Energy Spring 2011 Test 3 name:

UCCS ENSC/PES 2500: Renewable Energy Spring 2011 Test 3 name: UCCS ENSC/PES 2500: Renewable Energy Spring 2011 Test 3 name: 1. These waves travel through the body of the Earth and are called S waves. a. Transverse b. Longitudinal c. Amplitude d. Trough 2. These waves

More information

Pump Selection and Sizing (ENGINEERING DESIGN GUIDELINE)

Pump Selection and Sizing (ENGINEERING DESIGN GUIDELINE) Guidelines for Processing Plant Page : 1 of 51 Rev 01 Feb 2007 Rev 02 Feb 2009 Rev 03 KLM Technology #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor Bahru. (ENGINEERING DESIGN GUIDELINE)

More information

The ratio of inertial to viscous forces is commonly used to scale fluid flow, and is called the Reynolds number, given as:

The ratio of inertial to viscous forces is commonly used to scale fluid flow, and is called the Reynolds number, given as: 12.001 LAB 3C: STOKES FLOW DUE: WEDNESDAY, MARCH 9 Lab Overview and Background The viscosity of a fluid describes its resistance to deformation. Water has a very low viscosity; the force of gravity causes

More information

CO 2 41.2 MPa (abs) 20 C

CO 2 41.2 MPa (abs) 20 C comp_02 A CO 2 cartridge is used to propel a small rocket cart. Compressed CO 2, stored at a pressure of 41.2 MPa (abs) and a temperature of 20 C, is expanded through a smoothly contoured converging nozzle

More information

Chapter 8: Flow in Pipes

Chapter 8: Flow in Pipes Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks

More information

T U R B I N E G A S M E T E R

T U R B I N E G A S M E T E R TURBINE GAS METER TURBINE GAS METER CGT 1 2 3 4 5 6 7 Design and function page 2 General technical data page 3 Measurement outputs page 4 Dimensions and weights page 5 Performance page 7 Pressure loss

More information

FLOW MEASUREMENT 2001 INTERNATIONAL CONFERENCE DERIVATION OF AN EXPANSIBILITY FACTOR FOR THE V-CONE METER

FLOW MEASUREMENT 2001 INTERNATIONAL CONFERENCE DERIVATION OF AN EXPANSIBILITY FACTOR FOR THE V-CONE METER FLOW MEASUREMENT 200 INTERNATIONAL CONFERENCE DERIVATION OF AN EXPANSIBILITY FACTOR FOR THE V-CONE METER Dr D G Stewart, NEL Dr M Reader-Harris, NEL Dr R J W Peters, McCrometer Inc INTRODUCTION The V-Cone

More information

Modular Access Floor for Data Center. From Rack to Row to Room to Building

Modular Access Floor for Data Center. From Rack to Row to Room to Building Modular Access Floor for Data Center From Rack to Row to Room to Building Why using Scneider Electric modular access floor in Data Centers The evolution of modern Data Centers emphasizes specific exigencies

More information

THE USE OF AIR ATOMIZING NOZZLES TO PRODUCE SPRAYS WITH FINE DROPLETS

THE USE OF AIR ATOMIZING NOZZLES TO PRODUCE SPRAYS WITH FINE DROPLETS 14th International Water Mist Conference THE USE OF AIR ATOMIZING NOZZLES TO PRODUCE SPRAYS WITH FINE DROPLETS Dr.Gökhan BALIK Etik Muhendislik Danismanlik Tasarim ve Egitim Hizmetleri Ltd.Şti. Istanbul

More information

Hydraulic losses in pipes

Hydraulic losses in pipes Hydraulic losses in pipes Henryk Kudela Contents 1 Viscous flows in pipes 1 1.1 Moody Chart.................................... 2 1.2 Types of Fluid Flow Problems........................... 5 1.3 Minor

More information

BLASTING SYSTEMS. Turbine blasting systems. Air blasting systems. Automatic Painting plants

BLASTING SYSTEMS. Turbine blasting systems. Air blasting systems. Automatic Painting plants BLASTING SYSTEMS Turbine blasting systems Air blasting systems Automatic Painting plants 1, Dust Collector 2, Cyclone Separator 3, Sand (shot) Storage Hopper 4, Bucket elevator 5, Primary separator 6,

More information

Air Flow Measurements

Air Flow Measurements ME-EM 30 ENERGY LABORATORY Air Flow Measurements Pitot Static Tube A slender tube aligned with the flow can measure local velocity by means of pressure differences. It has sidewall holes to measure the

More information

B.TECH. (AEROSPACE ENGINEERING) PROGRAMME (BTAE) Term-End Examination December, 2011 BAS-010 : MACHINE DESIGN

B.TECH. (AEROSPACE ENGINEERING) PROGRAMME (BTAE) Term-End Examination December, 2011 BAS-010 : MACHINE DESIGN No. of Printed Pages : 7 BAS-01.0 B.TECH. (AEROSPACE ENGINEERING) PROGRAMME (BTAE) CV CA CV C:) O Term-End Examination December, 2011 BAS-010 : MACHINE DESIGN Time : 3 hours Maximum Marks : 70 Note : (1)

More information

SMALL HYDRO PROJECT ANALYSIS

SMALL HYDRO PROJECT ANALYSIS Training Module SPEAKER S NOTES SMALL HYDRO PROJECT ANALYSIS CLEAN ENERGY PROJECT ANALYSIS COURSE This document provides a transcription of the oral presentation (Voice & Slides) for this training module

More information

Mustang Series PRESSURE REDUCING CONTROL VALVE WITH PRESSURE SUSTAINING FEATURE. M115-2 (Globe) M1115-2 (Angle) Schematic. Standard Components

Mustang Series PRESSURE REDUCING CONTROL VALVE WITH PRESSURE SUSTAINING FEATURE. M115-2 (Globe) M1115-2 (Angle) Schematic. Standard Components Schematic Throttles to reduce high upstream pressure to constant lower downstream pressure Throttles to maintain minimum upstream pressure PRESSURE REDUCING CONTROL VALVE WITH PRESSURE SUSTAINING FEATURE

More information

PRESSURE REDUCING CONTROL VALVE

PRESSURE REDUCING CONTROL VALVE Schematics Throttles to reduce high upstream pressure to constant lower downstream pressure Low Flow By-Pass controls at low flows 4 PRESSURE REDUCING CONTROL VALVE with LOW FLOW BY-PASS FEATURE Main Line

More information

Cost base for small-scale hydropower plants (< 10 000 kw)

Cost base for small-scale hydropower plants (< 10 000 kw) Cost base for small-scale hydropower plants (< 10 000 kw) 2 2012 V E I L E D E R COST BASE FOR SMALL-SCALE HYDROPOWER PLANTS (With a generating capacity of up to 10 000 kw) Price level 1 January 2010 Norwegian

More information

HydroHelp 1 AN EXCEL PROGRAM DEVELOPED FOR TURBINE-GENERATOR SELECTION FOR HYDROELECTRIC SITES

HydroHelp 1 AN EXCEL PROGRAM DEVELOPED FOR TURBINE-GENERATOR SELECTION FOR HYDROELECTRIC SITES HydroHelp 1 AN EXCEL PROGRAM DEVELOPED FOR TURBINE-GENERATOR SELECTION FOR HYDROELECTRIC SITES Selecting the correct turbine for a hydro site is difficult, particularly for small low-head sites. Manufacturers

More information

Pipe Flow-Friction Factor Calculations with Excel

Pipe Flow-Friction Factor Calculations with Excel Pipe Flow-Friction Factor Calculations with Excel Course No: C03-022 Credit: 3 PDH Harlan H. Bengtson, PhD, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980

More information

Lecture 12. Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12. ECE 6450 - Dr. Alan Doolittle

Lecture 12. Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12. ECE 6450 - Dr. Alan Doolittle Lecture 12 Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12 Evaporation and Sputtering (Metalization) Evaporation For all devices, there is a need to go from semiconductor to metal.

More information

FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES

FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES BQ FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES Versatility, power, compactness and low running costs are the main characteristics of B&C vane pumps. All the components subject to wear are contained

More information

FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES

FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES BQ FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES Versatility, power, compactness and low running costs are the main characteristics of B&C vane pumps. All the components subject to wear are contained

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME 2 ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME 2 ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS ENGINEERING COMPONENTS EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS Structural members: struts and ties; direct stress and strain,

More information

SERIES ASM NEOPRENE/EPMD FLANGED SINGLE SPHERE CONNECTOR CONNECTORS. Pressures to 225 PSIG (15.51 barg) Temperatures to 230ºF (110ºC)

SERIES ASM NEOPRENE/EPMD FLANGED SINGLE SPHERE CONNECTOR CONNECTORS. Pressures to 225 PSIG (15.51 barg) Temperatures to 230ºF (110ºC) APPLICATIONS Process Industry Weak Acids Alkalies Compressed Air Pulp & Paper MODELS ASM - Flanged Connection OPTIONS Control Rods Oil & Gas Water & Waste Pump suction & discharge Sea water Chemical lines

More information

CENTRIFUGAL PUMP OVERVIEW Presented by Matt Prosoli Of Pumps Plus Inc.

CENTRIFUGAL PUMP OVERVIEW Presented by Matt Prosoli Of Pumps Plus Inc. CENTRIFUGAL PUMP OVERVIEW Presented by Matt Prosoli Of Pumps Plus Inc. 1 Centrifugal Pump- Definition Centrifugal Pump can be defined as a mechanical device used to transfer liquid of various types. As

More information

CEE 370 Fall 2015. Laboratory #3 Open Channel Flow

CEE 370 Fall 2015. Laboratory #3 Open Channel Flow CEE 70 Fall 015 Laboratory # Open Channel Flow Objective: The objective of this experiment is to measure the flow of fluid through open channels using a V-notch weir and a hydraulic jump. Introduction:

More information

Performance of Gangrel Hydroelectric Power Plant A Case Study

Performance of Gangrel Hydroelectric Power Plant A Case Study Performance of Gangrel Hydroelectric Power Plant A Case Study Bhoumika Sahu 1, Sanjiv Kumar 2, Dhananjay Kumar Sahu 3,Brijesh patel 4,Kalpit P. Kaurase 5 1 M.Tech scholar (TurboMachinary) & Mats University,

More information

MEASUREMENT OF VISCOSITY OF LIQUIDS BY THE STOKE S METHOD

MEASUREMENT OF VISCOSITY OF LIQUIDS BY THE STOKE S METHOD 130 Experiment-366 F MEASUREMENT OF VISCOSITY OF LIQUIDS BY THE STOKE S METHOD Jeethendra Kumar P K, Ajeya PadmaJeeth and Santhosh K KamalJeeth Instrumentation & Service Unit, No-610, Tata Nagar, Bengaluru-560092.

More information

MICRO HYDRO POWER GENERATING EQUIPMENT

MICRO HYDRO POWER GENERATING EQUIPMENT MICRO HYDRO POWER GENERATING EQUIPMENT TOSHIBA TOSHIBA ENGINEERING In general, specifications of hydroelectric power system vary depending upon the installation location. The hydro turbine and generator

More information

An Introduction to. Micro- Hydropower. Systems. Natural Resources Canada. Ressources naturelles Canada

An Introduction to. Micro- Hydropower. Systems. Natural Resources Canada. Ressources naturelles Canada An Introduction to Micro- Hydropower Systems Natural Resources Canada Ressources naturelles Canada Introduction Hydropower technology has been around for more than a century. Hydropower comes from converting

More information