Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091)

Size: px
Start display at page:

Download "Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091)"

Transcription

1 Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 5 Sequential Monte Carlo methods I February 3, 2015 M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L5 (1)

2 Plan of today's lecture Variance reduction reconsidered 1 Variance reduction reconsidered 2 3 M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L5 (2)

3 We are here Variance reduction reconsidered 1 Variance reduction reconsidered 2 3 M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L5 (3)

4 Last time: Variance reduction Last time we discussed how to reduce the variance of the standard MC sampler by introducing correlation between the variables of the sample. More specically, we used 1 a control variate Y such that E(Y ) = m is known: Z = φ(x) + β(y m), where β was tuned optimally to β = C(φ(X), Y )/V(Y ). 2 antithetic variables V and V such that E(V ) = E(V ) = τ and C(V, V ) < 0: W = V + V. 2 M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L5 (4)

5 Last time: Variance reduction The following theorem turned out to be useful when constructing antithetic variables. Theorem Let V = ϕ(u), where ϕ : R R is a monotone function. Moreover, assume that there exists a non-increasing transform T : R R such that U = d. T (U). Then V = ϕ(u) and V = ϕ(t (U)) are identically distributed and C(V, V ) = C(ϕ(U), ϕ(t (U))) 0. An important application of this theorem is the following: Let F be a distribution function. Then, letting U U(0, 1), T (u) = 1 u, and ϕ = F 1 yields, for X = F 1 (U) and X = F 1 (1 U), X d. = X (with distribution function F ) and C(X, X ) 0. M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L5 (5)

6 Last time: Variance reduction τ = 2 π/2 0 exp(cos 2 (x)) dx, V = 2 π 2 exp(cos2 (X)), V = 2 π 2 exp(sin2 (X)), W = V +V With Antithetic sampling Standard MC Sample size N V (= 2 N W ) M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L5 (6)

7 Control variates reconsidered A problem with the control variate approach is that the optimal β, i.e. β = C(φ(X), Y ), V(Y ) is generally not known explicitly. Thus, it was suggested to 1 draw (X i ) N i=1, 2 draw (Y i ) N i=1, 3 estimate, via MC, β using the drawn samples, and 4 use this to optimally construct (Z i ) N i=1. This yields a so-called batch estimator of β. However, this procedure is computationally somewhat complex. M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L5 (7)

8 An online approach to optimal control variates The estimators C N def = 1 N V N def = 1 N N φ(x i )(Y i m) i=1 N (Y i m) 2 i=1 of C(φ(X), Y ) and V(Y ), respectively, can be implemented recursively according to and C l+1 = with C 0 = V 0 = 0. V l+1 = l l + 1 C l + 1 l + 1 φ(x l+1 )(Y l+1 m) l l + 1 V l + 1 l + 1 (Y l+1 m) 2. M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L5 (8)

9 An online approach to optimal control variates (cont.) Inspired by this we set for l = 0, 1, 2,..., N 1, Z l+1 = φ(x l+1 ) + β l (Y l+1 m), τ l+1 = l l + 1 τ l + 1 l + 1 Z l+1, ( ) def def def where β 0 = 1, β l = C l /V l for l > 0, and τ 0 = 0 yielding an online estimator. One may then establish the following convergence results. Theorem Let τ N be obtained through ( ). Then, as N, (i) τ N τ (a.s.), (ii) N(τ N τ) where σ 2 d. N (0, σ ), 2 def = V(φ(X)){1 ρ(φ(x), Y ) 2 } is the optimal variance. M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L5 (9)

10 Example: the tricky integral again We estimate τ = using π/2 π/2 π/2 exp(cos 2 (x)) dx sym = 2 0 π 2 exp(cos2 (x)) } {{ } =φ(x) Z = φ(x) + β (Y m), where Y = cos 2 (X) is a control variate with m = E(Y ) = π/2 0 2 π }{{} =f(x) dx = E f (φ(x)) cos 2 (x) 2 π dx = {use integration by parts} = 1 2. However, the optimal coecient β is not known explicitly. M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L5 (10)

11 Example: the tricky integral again cos2 cos(x).^2; phi 2(pi/2)*exp(cos2(x)); m = 1/2; X = (pi/2)*rand; Y = cos2(x); c = phi(x)*(y m); v = (Y m)^2; tau_cv = phi(x) + (Y m); beta = c/v; for k = 2:N, X = (pi/2)*rand; Y = cos2(x); Z = phi(x) + beta*(y m); tau_cv = (k 1)*tau_CV/k + Z/k; c = (k 1)*c/k + phi(x)*(y m)/k; v = (k 1)*v/k + (Y m)^2/k; beta = c/v; end M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L5 (11)

12 Example: the tricky integral again Batch algorithm 5.2 Adaptive algorithm 5.1 Standard MC Sample size N M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L5 (12)

13 We are here Variance reduction reconsidered 1 Variance reduction reconsidered 2 3 M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L5 (13)

14 We will now (and for the coming two lectures) extend the principal goal of the course to the problem of estimating sequentially sequences (τ n ) n 0 of expectations τ n = E fn (φ(x 0:n )) = φ(x 0:n )f n (x 0:n ) dx 0:n X n over spaces X n of increasing dimension, where again the densities (f n ) n 0 are known up to normalizing constants only; i.e. for every n 0, f(x 0:n ) = z n(x 0:n ) c n, where c n is an unknown constant and z n is a known positive function on X n. As we will see, such sequences appear in many applications in statistics and numerical analysis. M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L5 (14)

15 We are here Variance reduction reconsidered 1 Variance reduction reconsidered 2 3 M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L5 (15)

16 We are here Variance reduction reconsidered 1 Variance reduction reconsidered 2 3 M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L5 (16)

17 A Markov chain on X R d is a family of random variables (= stochastic process) (X k ) k 0 taking values in X such that P(X k+1 B X 0, X 1,..., X k ) = P(X k+1 B X k ) for all B X. We call the chain time homogeneous if the conditional distribution of X k+1 given X k does not depend on k. The distribution of X k+1 given X k = x determines completely the dynamics of the process, and the density q of this distribution is called the transition density of (X k ). Consequently, P(X k+1 B X k = x k ) = q(x k+1 x k ) dx k+1. B M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L5 (17)

18 Markov chains (cont.) Variance reduction reconsidered The following theorem provides the joint density f n (x 0, x 1,..., x n ) of X 0, X 1,..., X n. Theorem Let (X k ) be Markov with initial distribution χ. Then for n > 0, n 1 f n (x 0, x 1,..., x n ) = χ(x 0 ) q(x k+1 x k ). Corollary (Chapman-Kolmogorov equation) Let (X k ) be Markov. Then for n > 1, f n (x n x 0 ) = ( n 1 k=0 k=0 q(x k+1 x k ) ) dx 1 dx n 1. M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L5 (18)

19 Example: The AR(1) process As a rst example we consider a rst order autoregressive process (AR(1)) in R. Set X 0 = 0, X k+1 = αx k + ɛ k+1, where α is a constant and the variables (ɛ k ) k 1 of the noise sequence are i.i.d. with density function f. In this case, P(X k+1 x k+1 X k = x k ) = P(αX k + ɛ k+1 x k+1 X k = x k ) implying that q(x k+1 x k ) = = P(ɛ k+1 x k+1 αx k X k = x k ) = P(ɛ k+1 x k+1 αx k ), x k+1 P(X k+1 x k+1 X k = x k ) = x k+1 P(ɛ k+1 x k+1 αx k ) = f(x k+1 αx k ). M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L5 (19)

20 We are here Variance reduction reconsidered 1 Variance reduction reconsidered 2 3 M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L5 (20)

21 Simulation of rare events for Markov chains Let (X k ) be a Markov chain on X = R and consider the rectangle B = B 0 B 1 B n R n, where every B l = (a l, b l ) is an interval. Here B can be a possibly extreme event. Say that we wish to to compute, sequentially as n increases, some expectation under the conditional distribution f n B of the states X 0:n = (X 0, X 2,..., X n ) given X 0:n B, i.e. τ n = E fn (φ(x 0:n ) X 0:n B) = E fn B (φ(x 0:n )) f(x 0:n ) = φ(x 0:n ) dx 0:n. B P(X 0:n B) } {{ } =f n B (x 0:n )=z n(x 0:n )/c n Here the unknown probability c n = P(X 0:n B) of the rare event B is often the quantity of interest. M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L5 (21)

22 Simulation of rare events for Markov chains (cont.) As c n = P(X 0:n B) = 1 B (x 0:n )f(x 0:n ) dx 0:n a rstnaiveapproach could of course be to use standard MC and simply 1 simulate the Markov chain N times, yielding trajectories (X 0:n i ) N i=1, 2 count the number N B of trajectories that fall into B, and 3 estimate c n using the MC estimator c N n = N B N. Problem: if c n = 10 9 we may expect to produce a billion draws before obtaining a single draw belonging to B! As we will se, SMC methods solve the problem eciently. M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L5 (22)

23 We are here Variance reduction reconsidered 1 Variance reduction reconsidered 2 3 M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L5 (23)

24 Estimation in general hidden Markov models (HMMs) A hidden Markov model (HMM) comprises two stochastic processes: 1 A Markov chain (X k ) k 0 with transition density q: X k+1 X k = x k q(x k+1 x k ). The Markov chain is not seen by us (hidden) but partially observed through 2 an observation process (Y k ) k 0 such that conditionally on the chain (X k ) k 0, (i) (ii) the Y k 's are independent with conditional distribution of each Y k depending on the corresponding X k only. The density of the conditional distribution Y k (X k ) k 0 d. = Y k X k will be denoted by p(y k x k ). M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L5 (24)

25 Estimation in general HMMs (cont.) Graphically: Y k 1 Y k Y k+1 (Observations)... X k 1 X k X k+1... (Markov chain) Y k X k = x k p(y k x k ) X k+1 X k = x k q(x k+1 x k ) X 0 χ(x 0 ) (Observation density) (Transition density) (Initial distribution) M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L5 (25)

26 Example HMM: A stochastic volatility model The following dynamical system is used in nancial economy (see e.g. Jacuquier et al., 1994). Let { Xk+1 = αx k + σɛ k+1, Y k = β exp ( Xk 2 ) ε k, where α (0, 1), σ > 0, and β > 0 are constants and (ɛ k ) k 1 and (ε k ) k 0 are sequences of i.i.d. standard normal-distributed noise variables. In this model the values of the observation process (Y k ) are observed daily log-returns (from e.g. the Swedish OMXS30 index) and the hidden chain (X k ) is the unobserved log-volatility (modeled by a stationary AR(1) process). The strength of this model is that it allows for volatility clustering, a phenomenon that is often observed in real nancial time series. M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L5 (26)

27 Example HMM: A stochastic volatility model A realization of the the model looks like follows (here α = 0.975, σ = 0.16, and β = 0.63) Log returns Log volatility process log returns Days M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L5 (27)

28 Example HMM: A stochastic volatility model Daily log-returns from the Swedish stock index OMXS30, from to y k k M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L5 (28)

29 The smoothing distribution When operating on HMMs, one is most often interested in the smoothing distribution f n (x 0:n y 0:n ), i.e. the conditional distribution of a set X 0:n of hidden states given Y 0:n = y 0:n. Theorem (Smoothing distribution) f n (x 0:n y 0:n ) = χ(x 0)p(y 0 x 0 ) n k=1 p(y k x k )q(x k x k 1 ), L n (y 0:n ) where L n (y 0:n ) is the likelihood function given by L n (y 0:n ) = density of the observations y 0:n n = χ(x 0 )p(y 0 x 0 ) p(y k x k )q(x k x k 1 ) dx 0 dx n. k=1 M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L5 (29)

30 Estimation of smoothed expectations Being a high-dimensional (say n 1000 or 10, 000) integral over complicated integrands, L n (y 0:n ) is in general unknown. However by writing τ n = E(φ(X 0:n ) Y 0:n = y 0:n ) = φ(x 0:n )f n (x 0:n y 0:n ) dx 0 dx n with = φ(x 0:n ) z n(x 0:n ) c n dx 0 dx n, { z n (x 0:n ) = χ(x 0 )p(y 0 x 0 ) n k=1 p(y k x k )q(x k x k 1 ), c n = L n (y 0:n ), we may cast the problem of computing τ n into the framework of self-normalized IS. In particular we would like to update sequentially, in n, the approximation as new data (Y k ) appears. M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L5 (30)

31 We are here Variance reduction reconsidered 1 Variance reduction reconsidered 2 3 M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L5 (31)

32 Self-avoiding walks (SAWs) Denote by N (x) the set of neighbors of a point x in Z 2. Let def S n = {x 0:n Z 2n : x 0 = 0, x k+1 x k = 1, x k x l, 0 l < k n} be the set of n-step self-avoiding walks in Z 2. 6 A self avoiding walk of length M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L5 (32)

33 Application of SAWs Variance reduction reconsidered In addition, let SAWs are used in c n = S n = The number of possible SAWs of length n. polymer science for describing long chain polymers, with the self-avoidance condition modeling the excluded volume eect. statistical mechanics and the theory of critical phenomena in equilibrium. However, computing c n (and in analyzing how c n depends on n) is known to be a very challenging combinatorial problem! M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L5 (33)

34 An MC approach to SAWs Trick: let f n (x 0:n ) be the uniform distribution on S n : f n (x 0:n ) = 1 1 Sn (x 0:n ), x c n } {{ } 0:n Z 2n, =z(x 0:n ) We may thus cast the problem of computing the number c n (= the normalizing constant of f n ) into the framework of self-normalized IS based on some convenient instrumental distribution g n on Z 2n. In addition, solving this problem for n = 1, 2, 3,..., 508, 509,... calls for sequential implementation of IS. This will be the topic of HA2! M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L5 (34)

Monte Carlo-based statistical methods (MASM11/FMS091)

Monte Carlo-based statistical methods (MASM11/FMS091) Monte Carlo-based statistical methods (MASM11/FMS091) Jimmy Olsson Centre for Mathematical Sciences Lund University, Sweden Lecture 5 Sequential Monte Carlo methods I February 5, 2013 J. Olsson Monte Carlo-based

More information

Monte Carlo-based statistical methods (MASM11/FMS091)

Monte Carlo-based statistical methods (MASM11/FMS091) Monte Carlo-based statistical methods (MASM11/FMS091) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 6 Sequential Monte Carlo methods II February 7, 2014 M. Wiktorsson

More information

How To Solve A Sequential Mca Problem

How To Solve A Sequential Mca Problem Monte Carlo-based statistical methods (MASM11/FMS091) Jimmy Olsson Centre for Mathematical Sciences Lund University, Sweden Lecture 6 Sequential Monte Carlo methods II February 3, 2012 Changes in HA1 Problem

More information

I. Pointwise convergence

I. Pointwise convergence MATH 40 - NOTES Sequences of functions Pointwise and Uniform Convergence Fall 2005 Previously, we have studied sequences of real numbers. Now we discuss the topic of sequences of real valued functions.

More information

Generating Random Numbers Variance Reduction Quasi-Monte Carlo. Simulation Methods. Leonid Kogan. MIT, Sloan. 15.450, Fall 2010

Generating Random Numbers Variance Reduction Quasi-Monte Carlo. Simulation Methods. Leonid Kogan. MIT, Sloan. 15.450, Fall 2010 Simulation Methods Leonid Kogan MIT, Sloan 15.450, Fall 2010 c Leonid Kogan ( MIT, Sloan ) Simulation Methods 15.450, Fall 2010 1 / 35 Outline 1 Generating Random Numbers 2 Variance Reduction 3 Quasi-Monte

More information

1 Sufficient statistics

1 Sufficient statistics 1 Sufficient statistics A statistic is a function T = rx 1, X 2,, X n of the random sample X 1, X 2,, X n. Examples are X n = 1 n s 2 = = X i, 1 n 1 the sample mean X i X n 2, the sample variance T 1 =

More information

A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails

A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails 12th International Congress on Insurance: Mathematics and Economics July 16-18, 2008 A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails XUEMIAO HAO (Based on a joint

More information

1 Prior Probability and Posterior Probability

1 Prior Probability and Posterior Probability Math 541: Statistical Theory II Bayesian Approach to Parameter Estimation Lecturer: Songfeng Zheng 1 Prior Probability and Posterior Probability Consider now a problem of statistical inference in which

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Math 541: Statistical Theory II Lecturer: Songfeng Zheng Maximum Likelihood Estimation 1 Maximum Likelihood Estimation Maximum likelihood is a relatively simple method of constructing an estimator for

More information

Monte Carlo Methods in Finance

Monte Carlo Methods in Finance Author: Yiyang Yang Advisor: Pr. Xiaolin Li, Pr. Zari Rachev Department of Applied Mathematics and Statistics State University of New York at Stony Brook October 2, 2012 Outline Introduction 1 Introduction

More information

Model-based Synthesis. Tony O Hagan

Model-based Synthesis. Tony O Hagan Model-based Synthesis Tony O Hagan Stochastic models Synthesising evidence through a statistical model 2 Evidence Synthesis (Session 3), Helsinki, 28/10/11 Graphical modelling The kinds of models that

More information

Basics of Statistical Machine Learning

Basics of Statistical Machine Learning CS761 Spring 2013 Advanced Machine Learning Basics of Statistical Machine Learning Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu Modern machine learning is rooted in statistics. You will find many familiar

More information

Sales forecasting # 2

Sales forecasting # 2 Sales forecasting # 2 Arthur Charpentier arthur.charpentier@univ-rennes1.fr 1 Agenda Qualitative and quantitative methods, a very general introduction Series decomposition Short versus long term forecasting

More information

Binomial lattice model for stock prices

Binomial lattice model for stock prices Copyright c 2007 by Karl Sigman Binomial lattice model for stock prices Here we model the price of a stock in discrete time by a Markov chain of the recursive form S n+ S n Y n+, n 0, where the {Y i }

More information

Lecture notes: single-agent dynamics 1

Lecture notes: single-agent dynamics 1 Lecture notes: single-agent dynamics 1 Single-agent dynamic optimization models In these lecture notes we consider specification and estimation of dynamic optimization models. Focus on single-agent models.

More information

Principle of Data Reduction

Principle of Data Reduction Chapter 6 Principle of Data Reduction 6.1 Introduction An experimenter uses the information in a sample X 1,..., X n to make inferences about an unknown parameter θ. If the sample size n is large, then

More information

Time Series Analysis

Time Series Analysis Time Series Analysis hm@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of the lecture Identification of univariate time series models, cont.:

More information

INDIRECT INFERENCE (prepared for: The New Palgrave Dictionary of Economics, Second Edition)

INDIRECT INFERENCE (prepared for: The New Palgrave Dictionary of Economics, Second Edition) INDIRECT INFERENCE (prepared for: The New Palgrave Dictionary of Economics, Second Edition) Abstract Indirect inference is a simulation-based method for estimating the parameters of economic models. Its

More information

Numerical Methods for Option Pricing

Numerical Methods for Option Pricing Chapter 9 Numerical Methods for Option Pricing Equation (8.26) provides a way to evaluate option prices. For some simple options, such as the European call and put options, one can integrate (8.26) directly

More information

Lecture 8. Confidence intervals and the central limit theorem

Lecture 8. Confidence intervals and the central limit theorem Lecture 8. Confidence intervals and the central limit theorem Mathematical Statistics and Discrete Mathematics November 25th, 2015 1 / 15 Central limit theorem Let X 1, X 2,... X n be a random sample of

More information

Metric Spaces. Chapter 7. 7.1. Metrics

Metric Spaces. Chapter 7. 7.1. Metrics Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some

More information

Lecture 13: Martingales

Lecture 13: Martingales Lecture 13: Martingales 1. Definition of a Martingale 1.1 Filtrations 1.2 Definition of a martingale and its basic properties 1.3 Sums of independent random variables and related models 1.4 Products of

More information

Bayesian Statistics in One Hour. Patrick Lam

Bayesian Statistics in One Hour. Patrick Lam Bayesian Statistics in One Hour Patrick Lam Outline Introduction Bayesian Models Applications Missing Data Hierarchical Models Outline Introduction Bayesian Models Applications Missing Data Hierarchical

More information

Nonparametric adaptive age replacement with a one-cycle criterion

Nonparametric adaptive age replacement with a one-cycle criterion Nonparametric adaptive age replacement with a one-cycle criterion P. Coolen-Schrijner, F.P.A. Coolen Department of Mathematical Sciences University of Durham, Durham, DH1 3LE, UK e-mail: Pauline.Schrijner@durham.ac.uk

More information

Random access protocols for channel access. Markov chains and their stability. Laurent Massoulié.

Random access protocols for channel access. Markov chains and their stability. Laurent Massoulié. Random access protocols for channel access Markov chains and their stability laurent.massoulie@inria.fr Aloha: the first random access protocol for channel access [Abramson, Hawaii 70] Goal: allow machines

More information

Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models Introduction to General and Generalized Linear Models General Linear Models - part I Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby

More information

Some stability results of parameter identification in a jump diffusion model

Some stability results of parameter identification in a jump diffusion model Some stability results of parameter identification in a jump diffusion model D. Düvelmeyer Technische Universität Chemnitz, Fakultät für Mathematik, 09107 Chemnitz, Germany Abstract In this paper we discuss

More information

MATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators...

MATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators... MATH4427 Notebook 2 Spring 2016 prepared by Professor Jenny Baglivo c Copyright 2009-2016 by Jenny A. Baglivo. All Rights Reserved. Contents 2 MATH4427 Notebook 2 3 2.1 Definitions and Examples...................................

More information

Polarization codes and the rate of polarization

Polarization codes and the rate of polarization Polarization codes and the rate of polarization Erdal Arıkan, Emre Telatar Bilkent U., EPFL Sept 10, 2008 Channel Polarization Given a binary input DMC W, i.i.d. uniformly distributed inputs (X 1,...,

More information

Probabilistic Models for Big Data. Alex Davies and Roger Frigola University of Cambridge 13th February 2014

Probabilistic Models for Big Data. Alex Davies and Roger Frigola University of Cambridge 13th February 2014 Probabilistic Models for Big Data Alex Davies and Roger Frigola University of Cambridge 13th February 2014 The State of Big Data Why probabilistic models for Big Data? 1. If you don t have to worry about

More information

. (3.3) n Note that supremum (3.2) must occur at one of the observed values x i or to the left of x i.

. (3.3) n Note that supremum (3.2) must occur at one of the observed values x i or to the left of x i. Chapter 3 Kolmogorov-Smirnov Tests There are many situations where experimenters need to know what is the distribution of the population of their interest. For example, if they want to use a parametric

More information

Note on the EM Algorithm in Linear Regression Model

Note on the EM Algorithm in Linear Regression Model International Mathematical Forum 4 2009 no. 38 1883-1889 Note on the M Algorithm in Linear Regression Model Ji-Xia Wang and Yu Miao College of Mathematics and Information Science Henan Normal University

More information

Separable First Order Differential Equations

Separable First Order Differential Equations Separable First Order Differential Equations Form of Separable Equations which take the form = gx hy or These are differential equations = gxĥy, where gx is a continuous function of x and hy is a continuously

More information

Spatial Statistics Chapter 3 Basics of areal data and areal data modeling

Spatial Statistics Chapter 3 Basics of areal data and areal data modeling Spatial Statistics Chapter 3 Basics of areal data and areal data modeling Recall areal data also known as lattice data are data Y (s), s D where D is a discrete index set. This usually corresponds to data

More information

Introduction to Markov Chain Monte Carlo

Introduction to Markov Chain Monte Carlo Introduction to Markov Chain Monte Carlo Monte Carlo: sample from a distribution to estimate the distribution to compute max, mean Markov Chain Monte Carlo: sampling using local information Generic problem

More information

ARMA, GARCH and Related Option Pricing Method

ARMA, GARCH and Related Option Pricing Method ARMA, GARCH and Related Option Pricing Method Author: Yiyang Yang Advisor: Pr. Xiaolin Li, Pr. Zari Rachev Department of Applied Mathematics and Statistics State University of New York at Stony Brook September

More information

On closed-form solutions to a class of ordinary differential equations

On closed-form solutions to a class of ordinary differential equations International Journal of Advanced Mathematical Sciences, 2 (1 (2014 57-70 c Science Publishing Corporation www.sciencepubco.com/index.php/ijams doi: 10.14419/ijams.v2i1.1556 Research Paper On closed-form

More information

CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is.

CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is. Some Continuous Probability Distributions CHAPTER 6: Continuous Uniform Distribution: 6. Definition: The density function of the continuous random variable X on the interval [A, B] is B A A x B f(x; A,

More information

Statistics Graduate Courses

Statistics Graduate Courses Statistics Graduate Courses STAT 7002--Topics in Statistics-Biological/Physical/Mathematics (cr.arr.).organized study of selected topics. Subjects and earnable credit may vary from semester to semester.

More information

Scalar Valued Functions of Several Variables; the Gradient Vector

Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions vector valued function of n variables: Let us consider a scalar (i.e., numerical, rather than y = φ(x = φ(x 1,

More information

Gaussian Processes to Speed up Hamiltonian Monte Carlo

Gaussian Processes to Speed up Hamiltonian Monte Carlo Gaussian Processes to Speed up Hamiltonian Monte Carlo Matthieu Lê Murray, Iain http://videolectures.net/mlss09uk_murray_mcmc/ Rasmussen, Carl Edward. "Gaussian processes to speed up hybrid Monte Carlo

More information

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab 1 Overview of Monte Carlo Simulation 1.1 Why use simulation?

More information

Tutorial on Markov Chain Monte Carlo

Tutorial on Markov Chain Monte Carlo Tutorial on Markov Chain Monte Carlo Kenneth M. Hanson Los Alamos National Laboratory Presented at the 29 th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Technology,

More information

Monte Carlo Simulation

Monte Carlo Simulation 1 Monte Carlo Simulation Stefan Weber Leibniz Universität Hannover email: sweber@stochastik.uni-hannover.de web: www.stochastik.uni-hannover.de/ sweber Monte Carlo Simulation 2 Quantifying and Hedging

More information

Simulating Stochastic Differential Equations

Simulating Stochastic Differential Equations Monte Carlo Simulation: IEOR E473 Fall 24 c 24 by Martin Haugh Simulating Stochastic Differential Equations 1 Brief Review of Stochastic Calculus and Itô s Lemma Let S t be the time t price of a particular

More information

Nonlinear Algebraic Equations. Lectures INF2320 p. 1/88

Nonlinear Algebraic Equations. Lectures INF2320 p. 1/88 Nonlinear Algebraic Equations Lectures INF2320 p. 1/88 Lectures INF2320 p. 2/88 Nonlinear algebraic equations When solving the system u (t) = g(u), u(0) = u 0, (1) with an implicit Euler scheme we have

More information

1. (First passage/hitting times/gambler s ruin problem:) Suppose that X has a discrete state space and let i be a fixed state. Let

1. (First passage/hitting times/gambler s ruin problem:) Suppose that X has a discrete state space and let i be a fixed state. Let Copyright c 2009 by Karl Sigman 1 Stopping Times 1.1 Stopping Times: Definition Given a stochastic process X = {X n : n 0}, a random time τ is a discrete random variable on the same probability space as

More information

The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1].

The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1]. Probability Theory Probability Spaces and Events Consider a random experiment with several possible outcomes. For example, we might roll a pair of dice, flip a coin three times, or choose a random real

More information

An Introduction to Basic Statistics and Probability

An Introduction to Basic Statistics and Probability An Introduction to Basic Statistics and Probability Shenek Heyward NCSU An Introduction to Basic Statistics and Probability p. 1/4 Outline Basic probability concepts Conditional probability Discrete Random

More information

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS STEVEN P. LALLEY AND ANDREW NOBEL Abstract. It is shown that there are no consistent decision rules for the hypothesis testing problem

More information

The Heat Equation. Lectures INF2320 p. 1/88

The Heat Equation. Lectures INF2320 p. 1/88 The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)

More information

Marshall-Olkin distributions and portfolio credit risk

Marshall-Olkin distributions and portfolio credit risk Marshall-Olkin distributions and portfolio credit risk Moderne Finanzmathematik und ihre Anwendungen für Banken und Versicherungen, Fraunhofer ITWM, Kaiserslautern, in Kooperation mit der TU München und

More information

Generating Random Variables and Stochastic Processes

Generating Random Variables and Stochastic Processes Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Generating Random Variables and Stochastic Processes 1 Generating U(0,1) Random Variables The ability to generate U(0, 1) random variables

More information

1 Simulating Brownian motion (BM) and geometric Brownian motion (GBM)

1 Simulating Brownian motion (BM) and geometric Brownian motion (GBM) Copyright c 2013 by Karl Sigman 1 Simulating Brownian motion (BM) and geometric Brownian motion (GBM) For an introduction to how one can construct BM, see the Appendix at the end of these notes A stochastic

More information

Generating Random Variables and Stochastic Processes

Generating Random Variables and Stochastic Processes Monte Carlo Simulation: IEOR E4703 c 2010 by Martin Haugh Generating Random Variables and Stochastic Processes In these lecture notes we describe the principal methods that are used to generate random

More information

A Dynamic Supply-Demand Model for Electricity Prices

A Dynamic Supply-Demand Model for Electricity Prices A Dynamic Supply-Demand Model for Electricity Prices Manuela Buzoianu, Anthony E. Brockwell, and Duane J. Seppi Abstract We introduce a new model for electricity prices, based on the principle of supply

More information

Chapter 3 RANDOM VARIATE GENERATION

Chapter 3 RANDOM VARIATE GENERATION Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.

More information

Two Topics in Parametric Integration Applied to Stochastic Simulation in Industrial Engineering

Two Topics in Parametric Integration Applied to Stochastic Simulation in Industrial Engineering Two Topics in Parametric Integration Applied to Stochastic Simulation in Industrial Engineering Department of Industrial Engineering and Management Sciences Northwestern University September 15th, 2014

More information

Moreover, under the risk neutral measure, it must be the case that (5) r t = µ t.

Moreover, under the risk neutral measure, it must be the case that (5) r t = µ t. LECTURE 7: BLACK SCHOLES THEORY 1. Introduction: The Black Scholes Model In 1973 Fisher Black and Myron Scholes ushered in the modern era of derivative securities with a seminal paper 1 on the pricing

More information

Lecture 3: Linear methods for classification

Lecture 3: Linear methods for classification Lecture 3: Linear methods for classification Rafael A. Irizarry and Hector Corrada Bravo February, 2010 Today we describe four specific algorithms useful for classification problems: linear regression,

More information

Portfolio Distribution Modelling and Computation. Harry Zheng Department of Mathematics Imperial College h.zheng@imperial.ac.uk

Portfolio Distribution Modelling and Computation. Harry Zheng Department of Mathematics Imperial College h.zheng@imperial.ac.uk Portfolio Distribution Modelling and Computation Harry Zheng Department of Mathematics Imperial College h.zheng@imperial.ac.uk Workshop on Fast Financial Algorithms Tanaka Business School Imperial College

More information

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce

More information

Chapter 2: Binomial Methods and the Black-Scholes Formula

Chapter 2: Binomial Methods and the Black-Scholes Formula Chapter 2: Binomial Methods and the Black-Scholes Formula 2.1 Binomial Trees We consider a financial market consisting of a bond B t = B(t), a stock S t = S(t), and a call-option C t = C(t), where the

More information

A Brief Review of Elementary Ordinary Differential Equations

A Brief Review of Elementary Ordinary Differential Equations 1 A Brief Review of Elementary Ordinary Differential Equations At various points in the material we will be covering, we will need to recall and use material normally covered in an elementary course on

More information

2WB05 Simulation Lecture 8: Generating random variables

2WB05 Simulation Lecture 8: Generating random variables 2WB05 Simulation Lecture 8: Generating random variables Marko Boon http://www.win.tue.nl/courses/2wb05 January 7, 2013 Outline 2/36 1. How do we generate random variables? 2. Fitting distributions Generating

More information

Parameter estimation for nonlinear models: Numerical approaches to solving the inverse problem. Lecture 12 04/08/2008. Sven Zenker

Parameter estimation for nonlinear models: Numerical approaches to solving the inverse problem. Lecture 12 04/08/2008. Sven Zenker Parameter estimation for nonlinear models: Numerical approaches to solving the inverse problem Lecture 12 04/08/2008 Sven Zenker Assignment no. 8 Correct setup of likelihood function One fixed set of observation

More information

Non-Stationary Time Series andunitroottests

Non-Stationary Time Series andunitroottests Econometrics 2 Fall 2005 Non-Stationary Time Series andunitroottests Heino Bohn Nielsen 1of25 Introduction Many economic time series are trending. Important to distinguish between two important cases:

More information

IEOR 6711: Stochastic Models I Fall 2012, Professor Whitt, Tuesday, September 11 Normal Approximations and the Central Limit Theorem

IEOR 6711: Stochastic Models I Fall 2012, Professor Whitt, Tuesday, September 11 Normal Approximations and the Central Limit Theorem IEOR 6711: Stochastic Models I Fall 2012, Professor Whitt, Tuesday, September 11 Normal Approximations and the Central Limit Theorem Time on my hands: Coin tosses. Problem Formulation: Suppose that I have

More information

Message-passing sequential detection of multiple change points in networks

Message-passing sequential detection of multiple change points in networks Message-passing sequential detection of multiple change points in networks Long Nguyen, Arash Amini Ram Rajagopal University of Michigan Stanford University ISIT, Boston, July 2012 Nguyen/Amini/Rajagopal

More information

Estimating the Degree of Activity of jumps in High Frequency Financial Data. joint with Yacine Aït-Sahalia

Estimating the Degree of Activity of jumps in High Frequency Financial Data. joint with Yacine Aït-Sahalia Estimating the Degree of Activity of jumps in High Frequency Financial Data joint with Yacine Aït-Sahalia Aim and setting An underlying process X = (X t ) t 0, observed at equally spaced discrete times

More information

LECTURE 4. Last time: Lecture outline

LECTURE 4. Last time: Lecture outline LECTURE 4 Last time: Types of convergence Weak Law of Large Numbers Strong Law of Large Numbers Asymptotic Equipartition Property Lecture outline Stochastic processes Markov chains Entropy rate Random

More information

Recent Developments of Statistical Application in. Finance. Ruey S. Tsay. Graduate School of Business. The University of Chicago

Recent Developments of Statistical Application in. Finance. Ruey S. Tsay. Graduate School of Business. The University of Chicago Recent Developments of Statistical Application in Finance Ruey S. Tsay Graduate School of Business The University of Chicago Guanghua Conference, June 2004 Summary Focus on two parts: Applications in Finance:

More information

Example of the Glicko-2 system

Example of the Glicko-2 system Example of the Glicko-2 system Professor Mark E. Glickman Boston University November 30, 203 Every player in the Glicko-2 system has a rating, r, a rating deviation, RD, and a rating volatility σ. The

More information

Efficiency and the Cramér-Rao Inequality

Efficiency and the Cramér-Rao Inequality Chapter Efficiency and the Cramér-Rao Inequality Clearly we would like an unbiased estimator ˆφ (X of φ (θ to produce, in the long run, estimates which are fairly concentrated i.e. have high precision.

More information

ALGORITHMIC TRADING WITH MARKOV CHAINS

ALGORITHMIC TRADING WITH MARKOV CHAINS June 16, 2010 ALGORITHMIC TRADING WITH MARKOV CHAINS HENRIK HULT AND JONAS KIESSLING Abstract. An order book consists of a list of all buy and sell offers, represented by price and quantity, available

More information

Markov Chain Monte Carlo Simulation Made Simple

Markov Chain Monte Carlo Simulation Made Simple Markov Chain Monte Carlo Simulation Made Simple Alastair Smith Department of Politics New York University April2,2003 1 Markov Chain Monte Carlo (MCMC) simualtion is a powerful technique to perform numerical

More information

3. Monte Carlo Simulations. Math6911 S08, HM Zhu

3. Monte Carlo Simulations. Math6911 S08, HM Zhu 3. Monte Carlo Simulations Math6911 S08, HM Zhu References 1. Chapters 4 and 8, Numerical Methods in Finance. Chapters 17.6-17.7, Options, Futures and Other Derivatives 3. George S. Fishman, Monte Carlo:

More information

The Engle-Granger representation theorem

The Engle-Granger representation theorem The Engle-Granger representation theorem Reference note to lecture 10 in ECON 5101/9101, Time Series Econometrics Ragnar Nymoen March 29 2011 1 Introduction The Granger-Engle representation theorem is

More information

A SURVEY ON CONTINUOUS ELLIPTICAL VECTOR DISTRIBUTIONS

A SURVEY ON CONTINUOUS ELLIPTICAL VECTOR DISTRIBUTIONS A SURVEY ON CONTINUOUS ELLIPTICAL VECTOR DISTRIBUTIONS Eusebio GÓMEZ, Miguel A. GÓMEZ-VILLEGAS and J. Miguel MARÍN Abstract In this paper it is taken up a revision and characterization of the class of

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

3. Regression & Exponential Smoothing

3. Regression & Exponential Smoothing 3. Regression & Exponential Smoothing 3.1 Forecasting a Single Time Series Two main approaches are traditionally used to model a single time series z 1, z 2,..., z n 1. Models the observation z t as a

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes

More information

Nonparametric Tests for Randomness

Nonparametric Tests for Randomness ECE 461 PROJECT REPORT, MAY 2003 1 Nonparametric Tests for Randomness Ying Wang ECE 461 PROJECT REPORT, MAY 2003 2 Abstract To decide whether a given sequence is truely random, or independent and identically

More information

An Introduction to Machine Learning

An Introduction to Machine Learning An Introduction to Machine Learning L5: Novelty Detection and Regression Alexander J. Smola Statistical Machine Learning Program Canberra, ACT 0200 Australia Alex.Smola@nicta.com.au Tata Institute, Pune,

More information

Package SCperf. February 19, 2015

Package SCperf. February 19, 2015 Package SCperf February 19, 2015 Type Package Title Supply Chain Perform Version 1.0 Date 2012-01-22 Author Marlene Silva Marchena Maintainer The package implements different inventory models, the bullwhip

More information

Financial Market Microstructure Theory

Financial Market Microstructure Theory The Microstructure of Financial Markets, de Jong and Rindi (2009) Financial Market Microstructure Theory Based on de Jong and Rindi, Chapters 2 5 Frank de Jong Tilburg University 1 Determinants of the

More information

INTERPOLATION. Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y).

INTERPOLATION. Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y). INTERPOLATION Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y). As an example, consider defining and x 0 =0, x 1 = π 4, x

More information

The Ergodic Theorem and randomness

The Ergodic Theorem and randomness The Ergodic Theorem and randomness Peter Gács Department of Computer Science Boston University March 19, 2008 Peter Gács (Boston University) Ergodic theorem March 19, 2008 1 / 27 Introduction Introduction

More information

Determining distribution parameters from quantiles

Determining distribution parameters from quantiles Determining distribution parameters from quantiles John D. Cook Department of Biostatistics The University of Texas M. D. Anderson Cancer Center P. O. Box 301402 Unit 1409 Houston, TX 77230-1402 USA cook@mderson.org

More information

Econometrics Simple Linear Regression

Econometrics Simple Linear Regression Econometrics Simple Linear Regression Burcu Eke UC3M Linear equations with one variable Recall what a linear equation is: y = b 0 + b 1 x is a linear equation with one variable, or equivalently, a straight

More information

Real Business Cycle Models

Real Business Cycle Models Real Business Cycle Models Lecture 2 Nicola Viegi April 2015 Basic RBC Model Claim: Stochastic General Equlibrium Model Is Enough to Explain The Business cycle Behaviour of the Economy Money is of little

More information

Detection of changes in variance using binary segmentation and optimal partitioning

Detection of changes in variance using binary segmentation and optimal partitioning Detection of changes in variance using binary segmentation and optimal partitioning Christian Rohrbeck Abstract This work explores the performance of binary segmentation and optimal partitioning in the

More information

False-Alarm and Non-Detection Probabilities for On-line Quality Control via HMM

False-Alarm and Non-Detection Probabilities for On-line Quality Control via HMM Int. Journal of Math. Analysis, Vol. 6, 2012, no. 24, 1153-1162 False-Alarm and Non-Detection Probabilities for On-line Quality Control via HMM C.C.Y. Dorea a,1, C.R. Gonçalves a, P.G. Medeiros b and W.B.

More information

Variance Reduction. Pricing American Options. Monte Carlo Option Pricing. Delta and Common Random Numbers

Variance Reduction. Pricing American Options. Monte Carlo Option Pricing. Delta and Common Random Numbers Variance Reduction The statistical efficiency of Monte Carlo simulation can be measured by the variance of its output If this variance can be lowered without changing the expected value, fewer replications

More information

BayesX - Software for Bayesian Inference in Structured Additive Regression

BayesX - Software for Bayesian Inference in Structured Additive Regression BayesX - Software for Bayesian Inference in Structured Additive Regression Thomas Kneib Faculty of Mathematics and Economics, University of Ulm Department of Statistics, Ludwig-Maximilians-University Munich

More information

1. First-order Ordinary Differential Equations

1. First-order Ordinary Differential Equations Advanced Engineering Mathematics 1. First-order ODEs 1 1. First-order Ordinary Differential Equations 1.1 Basic concept and ideas 1.2 Geometrical meaning of direction fields 1.3 Separable differential

More information

Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not.

Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not. Statistical Learning: Chapter 4 Classification 4.1 Introduction Supervised learning with a categorical (Qualitative) response Notation: - Feature vector X, - qualitative response Y, taking values in C

More information

Elliptical copulae. Dorota Kurowicka, Jolanta Misiewicz, Roger Cooke

Elliptical copulae. Dorota Kurowicka, Jolanta Misiewicz, Roger Cooke Elliptical copulae Dorota Kurowicka, Jolanta Misiewicz, Roger Cooke Abstract: In this paper we construct a copula, that is, a distribution with uniform marginals. This copula is continuous and can realize

More information

Master s Theory Exam Spring 2006

Master s Theory Exam Spring 2006 Spring 2006 This exam contains 7 questions. You should attempt them all. Each question is divided into parts to help lead you through the material. You should attempt to complete as much of each problem

More information

A LOGNORMAL MODEL FOR INSURANCE CLAIMS DATA

A LOGNORMAL MODEL FOR INSURANCE CLAIMS DATA REVSTAT Statistical Journal Volume 4, Number 2, June 2006, 131 142 A LOGNORMAL MODEL FOR INSURANCE CLAIMS DATA Authors: Daiane Aparecida Zuanetti Departamento de Estatística, Universidade Federal de São

More information