Black Problems - Prime Factorization, Greatest Common Factor and Simplifying Fractions
|
|
|
- Leslie Collins
- 9 years ago
- Views:
Transcription
1 Black Problems Prime Factorization, Greatest Common Factor and Simplifying Fractions A natural number n, such that n >, can t be written as the sum of two more consecutive odd numbers if and only if n is prime or n is twice an odd number Of the ten natural numbers 0 through 9, how many can t be written as the sum of two or more consecutive odd numbers? Count prime dates A prime day has a month and day which are both prime Thus 5/3 is a prime date How many prime dates are there in the year 000? [Dec 998 (3)] 3 What is the positive difference between the greatest and least prime factors of 000? 4 What is the greatest prime factor of ? 5 What is the least whole number value of x such that f(x) x x is not prime? 6 The 6 letters of the alphabet are assigned prime number values in consecutive order beginning with The product of the values of the letters of a common math term is 595,034 What is the term? What is the only prime number which is the sum of four consecutive prime numbers? 8 What is the smallest prime factor of 8? 9 What is the least positive fraction whose numerator is two less than a perfect square and whose denominator is one more than the same perfect square? 0 Between 3:00 pm and 4:00 pm, for what fractional part of the hour does the digit appear on a hour digital clock that shows hours and minutes? Express your answer as a common fraction Simplify: 3a 5m a 5am 6m a m a 3m Think about all of the positive common (reduced) fractions with a denominator of or less How many of these common fractions have a value less than? 3 Supposed we replace each x in the expression x with the expression x x x What is the value of the resulting expression when x 4? Express your answer as a 5 common fraction
2 4 ABCD is a rectangle, AB 6, BC 4, EFGH is a parallelogram, AE/BE /, and BF/FC /3 What is the ratio of the area of parallelogram EFGH to the area of rectangle ABCD? Express your answer as a common fraction A E B F H D G C 5 Both 5 and 9 are prime numbers that can be written as sums of squares: 5 and 9 5 Which of the following numbers has the same properties: 3,, 53, 3, 69? Black Solutions The primes from 0 to 9 are 3 and 9 The numbers that are twice an odd number are and 6 These 4 natural numbers can t be written as the sum of two or more consecutive odd numbers Count prime dates Fiftythree Prime months are, 3, 5,, and ; prime days are, 3, 5,,, 3,, 9, 3, 9, and 3 If all prime months had 3 days, there would be 55 prime dates But February in 000 has 9, and November has 30 So there are 53 prime dates 3 The prime factorization of 000 is 4 x 5 3 The greatest prime factor is 5, and the least prime factor is The difference between these two numbers is Factoring gives ( ) (308) Further factorization gives 5 00 x 00 x (3 x 3 x 9) The greatest prime factor is 9 5 Value of the function can be checked with a chart x x x When x 0, the value of the function is x x 0 0 This is the first value of the function which is not prime, so the answer is 6 Since the product consists of values that are primes, find the prime factorization of 595,034 When factoring only try prime values, because if a prime doesn t work then no multiple of that prime will work The number is even, so quite obviously is a factor: 595,034 x 9,5 Trying to find factors of 9,5 is a bit more difficult; 3 doesn t work, 5 doesn t work, doesn t work The first to work is : 9,5 x,04 Using a calculator then yields that,04 x 3 x 43 The prime factors are,,, 3 and 43, and these primes correspond to the letters a, e, g, l, and n, which can be rearranged to spell angle Every prime number except is odd The sum of any four odd numbers is even Thus, the only way to get an odd sum for four primes is if one of the primes is The only set of consecutive primes that
3 contains is the set {, 3, 5, } The sum of these four primes is Thus, is the only prime that can be written as the sum of four consecutive primes The perfect squares around which our fraction will be built are, 4, 9, 6, etc We cannot use since the numerator will become negative when we subtract Let s try 4 The numerator is two less, which is 4, and the denominator is one more, which is 4 5 The fraction is /5 To be sure, we check that the next possibility, /0, is clearly more than /5, as is 4/, and the rest, which get closer and closer to a value of In each case out numerator is three less than our denominator In terms of a pizza, for instance, the smaller the denominator (or number of total pizza pieces), the more of an impact it is to decrease the numerator by three (take away three pizza pieces), so we want the smallest possible denominator 0 The digit will appear on the digital clock for a full ten minutes from 3:0 through 3:9 and for five more full minutes at 3:0, 3:, 3:3, 3:4, and 3:5 That s 5 minutes in all, which is /4 of the hour 3a 5m a 5am 6m a m 3a 5m a 3m (a m)(a 3m) a m a 3m 3a 5m a 3m (a m) 3a 5m a 3m a 4m (a m)(a 3m) (a m)(a 3m) a 4m (a m)(a 3m) (a m) (a m)(a 3m) a 3m A positive fraction can be represented as a lattice point on a grid using the ordered pair (denominator, numerator) One fraction is less than another fraction if the segment joining it to the origin (0, 0) is below the segment joining the other fraction to the origin In Figure we have drawn the segment connecting to the origin with a solid line Every Figure other common fraction with a denominator of will fall along the line x The segments representing the positive fractions with a denominator of and a value less than are drawn with dotted lines We can see there are only six dotted lines, so there are six positive fractions with a denominator of that are less than We can then go to a denominator of 0 and see how many of these fractions work In Figure other words, how many lattice points are along the line x 0 and below the segment representing Notice that when we eventually draw in the corresponding segment for the fraction 5, if will fall along the exact same segment that was drawn for 0, so we ll know not to count it again This is how we will ensure we are counting only common fractions We can see from Figure that this is going to get messy and difficult to count, so it might not be the best method However, without drawing in all of the lines, we can get good idea from the lattice points about which fractions are less than Careful graphing and counting yields an answer of 6 In Figure 3 we see there are 36 lattice points below the segment representing Figure 3 (and above the xaxis) but the 0 open circle lattice points do not represent common fractions The answer is fractions
4 3 Substituting the value 4/5 into expression (x )/(x ), we get (4/5 )(4/5 ) (9/5)/(/5) 9 Now we substitute this value again into the expression (x )/(x ), which gives us (9 )/(9 ) ( 8)/(0) 4/5 4 The area of rectangle ABCD is 6 x 4 4 square units Triangles AEH and CFG together make a rectangle that is 3 x 4 square units Likewise, triangles DGH and BEF together make a rectangle that is x square units Subtracting and from 4, we find that parallelogram EFGH has an area of 0 square units The ratio of the area of parallelogram EFGH to rectangle ABCD is Notice that 3 is prime We must only look at values that are less than 3 By trial and error we find that 3 6 4
5 Bibliography Information Teachers attempted to cite the sources for the problems included in this problem set In some cases, sources were not known Problems Bibliography Information Collier, C Patrick Menu Collection Problems Adapted from Mathematics Teaching in the Middle School New York: National Council of Teachers of Mathematics, 000 Print, 3 4 Math Counts ( 5 Cook, Allen, and Natalia Romalis Content Area Mathematics for Secondary Teachers The Problem Solver New York: Christopher Gordon, Inc, 006
1. When the least common multiple of 8 and 20 is multiplied by the greatest common factor of 8 and 20, what is the result?
Black Equivalent Fractions and LCM 1. When the least common multiple of 8 and 20 is multiplied by the greatest common factor of 8 and 20, what is the result? 2. The sum of three consecutive integers is
SAT Math Strategies Quiz
When you are stumped on an SAT or ACT math question, there are two very useful strategies that may help you to get the correct answer: 1) work with the answers; and 2) plug in real numbers. This review
Unit 1 Number Sense. In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions.
Unit 1 Number Sense In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions. BLM Three Types of Percent Problems (p L-34) is a summary BLM for the material
Advanced GMAT Math Questions
Advanced GMAT Math Questions Version Quantitative Fractions and Ratios 1. The current ratio of boys to girls at a certain school is to 5. If 1 additional boys were added to the school, the new ratio of
Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.
Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS A. Thursday, January 29, 2009 1:15 to 4:15 p.m.
MATHEMATICS A The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS A Thursday, January 29, 2009 1:15 to 4:15 p.m., only Print Your Name: Print Your School s Name: Print your
SAT Math Facts & Formulas Review Quiz
Test your knowledge of SAT math facts, formulas, and vocabulary with the following quiz. Some questions are more challenging, just like a few of the questions that you ll encounter on the SAT; these questions
Session 6 Number Theory
Key Terms in This Session Session 6 Number Theory Previously Introduced counting numbers factor factor tree prime number New in This Session composite number greatest common factor least common multiple
4. How many integers between 2004 and 4002 are perfect squares?
5 is 0% of what number? What is the value of + 3 4 + 99 00? (alternating signs) 3 A frog is at the bottom of a well 0 feet deep It climbs up 3 feet every day, but slides back feet each night If it started
Paper 1. Calculator not allowed. Mathematics test. First name. Last name. School. Remember KEY STAGE 3 TIER 4 6
Ma KEY STAGE 3 Mathematics test TIER 4 6 Paper 1 Calculator not allowed First name Last name School 2009 Remember The test is 1 hour long. You must not use a calculator for any question in this test. You
Factoring Polynomials
UNIT 11 Factoring Polynomials You can use polynomials to describe framing for art. 396 Unit 11 factoring polynomials A polynomial is an expression that has variables that represent numbers. A number can
Solving Rational Equations
Lesson M Lesson : Student Outcomes Students solve rational equations, monitoring for the creation of extraneous solutions. Lesson Notes In the preceding lessons, students learned to add, subtract, multiply,
If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C?
Problem 3 If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Suggested Questions to ask students about Problem 3 The key to this question
SAT Math Hard Practice Quiz. 5. How many integers between 10 and 500 begin and end in 3?
SAT Math Hard Practice Quiz Numbers and Operations 5. How many integers between 10 and 500 begin and end in 3? 1. A bag contains tomatoes that are either green or red. The ratio of green tomatoes to red
Parallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular.
CONDENSED L E S S O N. Parallel and Perpendicular In this lesson you will learn the meaning of parallel and perpendicular discover how the slopes of parallel and perpendicular lines are related use slopes
Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test
Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important
MATHEMATICS TEST. Paper 1 calculator not allowed LEVEL 6 TESTS ANSWER BOOKLET. First name. Middle name. Last name. Date of birth Day Month Year
LEVEL 6 TESTS ANSWER BOOKLET Ma MATHEMATICS TEST LEVEL 6 TESTS Paper 1 calculator not allowed First name Middle name Last name Date of birth Day Month Year Please circle one Boy Girl Year group School
International Indian School, Riyadh SA1 Worksheet 2015-2016 Class: VI Mathematics
International Indian School, Riyadh SA1 Worksheet 2015-2016 Class: VI Mathematics CH KNOWING OUR NUMBERS I Fill In the blanks 1. 1km = mm 2. 1 gram = milligrams 3. The roman numeral M stands for the number
Multiplying and Dividing Signed Numbers. Finding the Product of Two Signed Numbers. (a) (3)( 4) ( 4) ( 4) ( 4) 12 (b) (4)( 5) ( 5) ( 5) ( 5) ( 5) 20
SECTION.4 Multiplying and Dividing Signed Numbers.4 OBJECTIVES 1. Multiply signed numbers 2. Use the commutative property of multiplication 3. Use the associative property of multiplication 4. Divide signed
Vocabulary Cards and Word Walls Revised: June 29, 2011
Vocabulary Cards and Word Walls Revised: June 29, 2011 Important Notes for Teachers: The vocabulary cards in this file match the Common Core, the math curriculum adopted by the Utah State Board of Education,
13. Write the decimal approximation of 9,000,001 9,000,000, rounded to three significant
æ If 3 + 4 = x, then x = 2 gold bar is a rectangular solid measuring 2 3 4 It is melted down, and three equal cubes are constructed from this gold What is the length of a side of each cube? 3 What is the
CBA Fractions Student Sheet 1
Student Sheet 1 1. If 3 people share 12 cookies equally, how many cookies does each person get? 2. Four people want to share 5 cakes equally. Show how much each person gets. Student Sheet 2 1. The candy
GAP CLOSING. 2D Measurement. Intermediate / Senior Student Book
GAP CLOSING 2D Measurement Intermediate / Senior Student Book 2-D Measurement Diagnostic...3 Areas of Parallelograms, Triangles, and Trapezoids...6 Areas of Composite Shapes...14 Circumferences and Areas
Chapter 11 Number Theory
Chapter 11 Number Theory Number theory is one of the oldest branches of mathematics. For many years people who studied number theory delighted in its pure nature because there were few practical applications
6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives
6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise
PowerScore Test Preparation (800) 545-1750
Question 1 Test 1, Second QR Section (version 2) Two triangles QA: x QB: y Geometry: Triangles Answer: Quantity A is greater 1. The astute student might recognize the 0:60:90 and 45:45:90 triangle right
Scope and Sequence KA KB 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B
Scope and Sequence Earlybird Kindergarten, Standards Edition Primary Mathematics, Standards Edition Copyright 2008 [SingaporeMath.com Inc.] The check mark indicates where the topic is first introduced
Inv 1 5. Draw 2 different shapes, each with an area of 15 square units and perimeter of 16 units.
Covering and Surrounding: Homework Examples from ACE Investigation 1: Questions 5, 8, 21 Investigation 2: Questions 6, 7, 11, 27 Investigation 3: Questions 6, 8, 11 Investigation 5: Questions 15, 26 ACE
Years after 2000. US Student to Teacher Ratio 0 16.048 1 15.893 2 15.900 3 15.900 4 15.800 5 15.657 6 15.540
To complete this technology assignment, you should already have created a scatter plot for your data on your calculator and/or in Excel. You could do this with any two columns of data, but for demonstration
Paper 1. Calculator not allowed. Mathematics test. First name. Last name. School. Remember KEY STAGE 3 TIER 5 7
Ma KEY STAGE 3 Mathematics test TIER 5 7 Paper 1 Calculator not allowed First name Last name School 2009 Remember The test is 1 hour long. You must not use a calculator for any question in this test. You
Primes. Name Period Number Theory
Primes Name Period A Prime Number is a whole number whose only factors are 1 and itself. To find all of the prime numbers between 1 and 100, complete the following exercise: 1. Cross out 1 by Shading in
Mathematics Common Core Sample Questions
New York State Testing Program Mathematics Common Core Sample Questions Grade The materials contained herein are intended for use by New York State teachers. Permission is hereby granted to teachers and
SQUARE-SQUARE ROOT AND CUBE-CUBE ROOT
UNIT 3 SQUAREQUARE AND CUBEUBE (A) Main Concepts and Results A natural number is called a perfect square if it is the square of some natural number. i.e., if m = n 2, then m is a perfect square where m
MATH 10034 Fundamental Mathematics IV
MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.
LESSON 4 Missing Numbers in Multiplication Missing Numbers in Division LESSON 5 Order of Operations, Part 1 LESSON 6 Fractional Parts LESSON 7 Lines,
Saxon Math 7/6 Class Description: Saxon mathematics is based on the principle of developing math skills incrementally and reviewing past skills daily. It also incorporates regular and cumulative assessments.
1 ST GRADE COMMON CORE STANDARDS FOR SAXON MATH
1 ST GRADE COMMON CORE STANDARDS FOR SAXON MATH Calendar The following tables show the CCSS focus of The Meeting activities, which appear at the beginning of each numbered lesson and are taught daily,
Charlesworth School Year Group Maths Targets
Charlesworth School Year Group Maths Targets Year One Maths Target Sheet Key Statement KS1 Maths Targets (Expected) These skills must be secure to move beyond expected. I can compare, describe and solve
IB Maths SL Sequence and Series Practice Problems Mr. W Name
IB Maths SL Sequence and Series Practice Problems Mr. W Name Remember to show all necessary reasoning! Separate paper is probably best. 3b 3d is optional! 1. In an arithmetic sequence, u 1 = and u 3 =
EVERY DAY COUNTS CALENDAR MATH 2005 correlated to
EVERY DAY COUNTS CALENDAR MATH 2005 correlated to Illinois Mathematics Assessment Framework Grades 3-5 E D U C A T I O N G R O U P A Houghton Mifflin Company YOUR ILLINOIS GREAT SOURCE REPRESENTATIVES:
Lesson 3.1 Factors and Multiples of Whole Numbers Exercises (pages 140 141)
Lesson 3.1 Factors and Multiples of Whole Numbers Exercises (pages 140 141) A 3. Multiply each number by 1, 2, 3, 4, 5, and 6. a) 6 1 = 6 6 2 = 12 6 3 = 18 6 4 = 24 6 5 = 30 6 6 = 36 So, the first 6 multiples
Postulate 17 The area of a square is the square of the length of a. Postulate 18 If two figures are congruent, then they have the same.
Chapter 11: Areas of Plane Figures (page 422) 11-1: Areas of Rectangles (page 423) Rectangle Rectangular Region Area is measured in units. Postulate 17 The area of a square is the square of the length
PYTHAGOREAN TRIPLES KEITH CONRAD
PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient
Answer Key for California State Standards: Algebra I
Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.
Paper 1. Calculator not allowed. Mathematics test. First name. Last name. School. Remember KEY STAGE 3 TIER 6 8
Ma KEY STAGE 3 Mathematics test TIER 6 8 Paper 1 Calculator not allowed First name Last name School 2009 Remember The test is 1 hour long. You must not use a calculator for any question in this test. You
Convert between units of area and determine the scale factor of two similar figures.
CHAPTER 5 Units of Area c GOAL Convert between units of area and determine the scale factor of two. You will need a ruler centimetre grid paper a protractor a calculator Learn about the Math The area of
Prime Factorization 0.1. Overcoming Math Anxiety
0.1 Prime Factorization 0.1 OBJECTIVES 1. Find the factors of a natural number 2. Determine whether a number is prime, composite, or neither 3. Find the prime factorization for a number 4. Find the GCF
SPECIAL PRODUCTS AND FACTORS
CHAPTER 442 11 CHAPTER TABLE OF CONTENTS 11-1 Factors and Factoring 11-2 Common Monomial Factors 11-3 The Square of a Monomial 11-4 Multiplying the Sum and the Difference of Two Terms 11-5 Factoring the
Stanford Math Circle: Sunday, May 9, 2010 Square-Triangular Numbers, Pell s Equation, and Continued Fractions
Stanford Math Circle: Sunday, May 9, 00 Square-Triangular Numbers, Pell s Equation, and Continued Fractions Recall that triangular numbers are numbers of the form T m = numbers that can be arranged in
3.1. RATIONAL EXPRESSIONS
3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers
CSU Fresno Problem Solving Session. Geometry, 17 March 2012
CSU Fresno Problem Solving Session Problem Solving Sessions website: http://zimmer.csufresno.edu/ mnogin/mfd-prep.html Math Field Day date: Saturday, April 21, 2012 Math Field Day website: http://www.csufresno.edu/math/news
ModuMath Basic Math Basic Math 1.1 - Naming Whole Numbers Basic Math 1.2 - The Number Line Basic Math 1.3 - Addition of Whole Numbers, Part I
ModuMath Basic Math Basic Math 1.1 - Naming Whole Numbers 1) Read whole numbers. 2) Write whole numbers in words. 3) Change whole numbers stated in words into decimal numeral form. 4) Write numerals in
We can express this in decimal notation (in contrast to the underline notation we have been using) as follows: 9081 + 900b + 90c = 9001 + 100c + 10b
In this session, we ll learn how to solve problems related to place value. This is one of the fundamental concepts in arithmetic, something every elementary and middle school mathematics teacher should
MATHS LEVEL DESCRIPTORS
MATHS LEVEL DESCRIPTORS Number Level 3 Understand the place value of numbers up to thousands. Order numbers up to 9999. Round numbers to the nearest 10 or 100. Understand the number line below zero, and
Numerator Denominator
Fractions A fraction is any part of a group, number or whole. Fractions are always written as Numerator Denominator A unitary fraction is one where the numerator is always 1 e.g 1 1 1 1 1...etc... 2 3
Mathematics 2540 Paper 5540H/3H
Edexcel GCSE Mathematics 540 Paper 5540H/3H November 008 Mark Scheme 1 (a) 3bc 1 B1 for 3bc (accept 3cb or bc3 or cb3 or 3 b c oe, but 7bc 4bc gets no marks) (b) x + 5y B for x+5y (accept x+y5 or x + 5
Grade 5 Mathematics Curriculum Guideline Scott Foresman - Addison Wesley 2008. Chapter 1: Place, Value, Adding, and Subtracting
Grade 5 Math Pacing Guide Page 1 of 9 Grade 5 Mathematics Curriculum Guideline Scott Foresman - Addison Wesley 2008 Test Preparation Timeline Recommendation: September - November Chapters 1-5 December
1MA0/3H Edexcel GCSE Mathematics (Linear) 1MA0 Practice Paper 3H (Non-Calculator) Set C Higher Tier Time: 1 hour 45 minutes
1MA0/H Edexcel GCSE Mathematics (Linear) 1MA0 Practice Paper H (Non-Calculator) Set C Higher Tier Time: 1 hour 45 minutes Materials required for examination Ruler graduated in centimetres and millimetres,
MTH 100 College Algebra Essex County College Division of Mathematics Sample Review Questions 1 Created June 6, 2011
MTH 00 College Algebra Essex County College Division of Mathematics Sample Review Questions Created June 6, 0 Math 00, Introductory College Mathematics, covers the mathematical content listed below. In
Parts and Wholes. In a tangram. 2 small triangles (S) cover a medium triangle (M) 2 small triangles (S) cover a square (SQ)
Parts and Wholes. L P S SQ M In a tangram small triangles (S) cover a medium triangle (M) small triangles (S) cover a square (SQ) L S small triangles (S) cover a parallelogram (P) small triangles (S) cover
Math 0306 Final Exam Review
Math 006 Final Exam Review Problem Section Answers Whole Numbers 1. According to the 1990 census, the population of Nebraska is 1,8,8, the population of Nevada is 1,01,8, the population of New Hampshire
1.7 Graphs of Functions
64 Relations and Functions 1.7 Graphs of Functions In Section 1.4 we defined a function as a special type of relation; one in which each x-coordinate was matched with only one y-coordinate. We spent most
Primary Curriculum 2014
Primary Curriculum 2014 Suggested Key Objectives for Mathematics at Key Stages 1 and 2 Year 1 Maths Key Objectives Taken from the National Curriculum 1 Count to and across 100, forwards and backwards,
NF5-12 Flexibility with Equivalent Fractions and Pages 110 112
NF5- Flexibility with Equivalent Fractions and Pages 0 Lowest Terms STANDARDS preparation for 5.NF.A., 5.NF.A. Goals Students will equivalent fractions using division and reduce fractions to lowest terms.
Objectives. Materials
Activity 4 Objectives Understand what a slope field represents in terms of Create a slope field for a given differential equation Materials TI-84 Plus / TI-83 Plus Graph paper Introduction One of the ways
LINEAR INEQUALITIES. Mathematics is the art of saying many things in many different ways. MAXWELL
Chapter 6 LINEAR INEQUALITIES 6.1 Introduction Mathematics is the art of saying many things in many different ways. MAXWELL In earlier classes, we have studied equations in one variable and two variables
Grade 5 Math Content 1
Grade 5 Math Content 1 Number and Operations: Whole Numbers Multiplication and Division In Grade 5, students consolidate their understanding of the computational strategies they use for multiplication.
POLYNOMIAL FUNCTIONS
POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a
SAT Subject Math Level 2 Facts & Formulas
Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Arithmetic Sequences: PEMDAS (Parentheses
Illinois State Standards Alignments Grades Three through Eleven
Illinois State Standards Alignments Grades Three through Eleven Trademark of Renaissance Learning, Inc., and its subsidiaries, registered, common law, or pending registration in the United States and other
Mathematics. Steps to Success. and. Top Tips. Year 5
Pownall Green Primary School Mathematics and Year 5 1 Contents Page 1. Multiplication and Division 3 2. Positive and Negative Numbers 4 3. Decimal Notation 4. Reading Decimals 5 5. Fractions Linked to
Higher Education Math Placement
Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication
10-4-10 Year 9 mathematics: holiday revision. 2 How many nines are there in fifty-four?
DAY 1 Mental questions 1 Multiply seven by seven. 49 2 How many nines are there in fifty-four? 54 9 = 6 6 3 What number should you add to negative three to get the answer five? 8 4 Add two point five to
4. Write a mixed number and an improper fraction for the picture below.
5.5.1 Name Grade 5: Fractions 1. Write the fraction for the shaded part. 2. Write the equivalent fraction. 3. Circle the number equal to 1. A) 9 B) 7 C) 4 D) 7 8 7 0 1 4. Write a mixed number and an improper
MEP Pupil Text 12. A list of numbers which form a pattern is called a sequence. In this section, straightforward sequences are continued.
MEP Pupil Text Number Patterns. Simple Number Patterns A list of numbers which form a pattern is called a sequence. In this section, straightforward sequences are continued. Worked Example Write down the
Number Sense and Operations
Number Sense and Operations representing as they: 6.N.1 6.N.2 6.N.3 6.N.4 6.N.5 6.N.6 6.N.7 6.N.8 6.N.9 6.N.10 6.N.11 6.N.12 6.N.13. 6.N.14 6.N.15 Demonstrate an understanding of positive integer exponents
Session 7 Fractions and Decimals
Key Terms in This Session Session 7 Fractions and Decimals Previously Introduced prime number rational numbers New in This Session period repeating decimal terminating decimal Introduction In this session,
Math 132. Population Growth: the World
Math 132 Population Growth: the World S. R. Lubkin Application If you think growth in Raleigh is a problem, think a little bigger. The population of the world has been growing spectacularly fast in the
SUNY ECC. ACCUPLACER Preparation Workshop. Algebra Skills
SUNY ECC ACCUPLACER Preparation Workshop Algebra Skills Gail A. Butler Ph.D. Evaluating Algebraic Epressions Substitute the value (#) in place of the letter (variable). Follow order of operations!!! E)
Revision Notes Adult Numeracy Level 2
Revision Notes Adult Numeracy Level 2 Place Value The use of place value from earlier levels applies but is extended to all sizes of numbers. The values of columns are: Millions Hundred thousands Ten thousands
Grade 3 Core Standard III Assessment
Grade 3 Core Standard III Assessment Geometry and Measurement Name: Date: 3.3.1 Identify right angles in two-dimensional shapes and determine if angles are greater than or less than a right angle (obtuse
http://www.castlelearning.com/review/teacher/assignmentprinting.aspx 5. 2 6. 2 1. 10 3. 70 2. 55 4. 180 7. 2 8. 4
of 9 1/28/2013 8:32 PM Teacher: Mr. Sime Name: 2 What is the slope of the graph of the equation y = 2x? 5. 2 If the ratio of the measures of corresponding sides of two similar triangles is 4:9, then the
Possible Stage Two Mathematics Test Topics
Possible Stage Two Mathematics Test Topics The Stage Two Mathematics Test questions are designed to be answerable by a good problem-solver with a strong mathematics background. It is based mainly on material
MTH 092 College Algebra Essex County College Division of Mathematics Sample Review Questions 1 Created January 17, 2006
MTH 092 College Algebra Essex County College Division of Mathematics Sample Review Questions Created January 7, 2006 Math 092, Elementary Algebra, covers the mathematical content listed below. In order
Grade 4 Unit 3: Multiplication and Division; Number Sentences and Algebra
Grade 4 Unit 3: Multiplication and Division; Number Sentences and Algebra Activity Lesson 3-1 What s My Rule? page 159) Everyday Mathematics Goal for Mathematical Practice GMP 2.2 Explain the meanings
Factor Trees. Objective To provide experiences with finding the greatest common factor and the least common multiple of two numbers.
Factor Trees Objective To provide experiences with finding the greatest common factor and the least common multiple of two numbers. www.everydaymathonline.com epresentations etoolkit Algorithms Practice
Julie Rotthoff Brian Ruffles. No Pi Allowed
Julie Rotthoff Brian Ruffles [email protected] [email protected] No Pi Allowed Introduction: Students often confuse or forget the area and circumference formulas for circles. In addition, students
FRACTIONS: A CONCEPTUAL APPROACH
FRACTIONS: A CONCEPTUAL APPROACH A Singapore Math Topical Presentation Grades -6 Dr. Suchint Sarangarm Three distinct meanings of fractions Part of a Whole: the fraction indicates that a whole has been
Assessment Anchors and Eligible Content
M07.A-N The Number System M07.A-N.1 M07.A-N.1.1 DESCRIPTOR Assessment Anchors and Eligible Content Aligned to the Grade 7 Pennsylvania Core Standards Reporting Category Apply and extend previous understandings
PowerScore Test Preparation (800) 545-1750
Question 1 Test 1, Second QR Section (version 1) List A: 0, 5,, 15, 20... QA: Standard deviation of list A QB: Standard deviation of list B Statistics: Standard Deviation Answer: The two quantities are
Introduction to Fractions, Equivalent and Simplifying (1-2 days)
Introduction to Fractions, Equivalent and Simplifying (1-2 days) 1. Fraction 2. Numerator 3. Denominator 4. Equivalent 5. Simplest form Real World Examples: 1. Fractions in general, why and where we use
DigitalCommons@University of Nebraska - Lincoln
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-1-007 Pythagorean Triples Diane Swartzlander University
Prime Time: Homework Examples from ACE
Prime Time: Homework Examples from ACE Investigation 1: Building on Factors and Multiples, ACE #8, 28 Investigation 2: Common Multiples and Common Factors, ACE #11, 16, 17, 28 Investigation 3: Factorizations:
Welcome to Math 19500 Video Lessons. Stanley Ocken. Department of Mathematics The City College of New York Fall 2013
Welcome to Math 19500 Video Lessons Prof. Department of Mathematics The City College of New York Fall 2013 An important feature of the following Beamer slide presentations is that you, the reader, move
Prentice Hall Mathematics: Course 1 2008 Correlated to: Arizona Academic Standards for Mathematics (Grades 6)
PO 1. Express fractions as ratios, comparing two whole numbers (e.g., ¾ is equivalent to 3:4 and 3 to 4). Strand 1: Number Sense and Operations Every student should understand and use all concepts and
Florida Math 0018. Correlation of the ALEKS course Florida Math 0018 to the Florida Mathematics Competencies - Lower
Florida Math 0018 Correlation of the ALEKS course Florida Math 0018 to the Florida Mathematics Competencies - Lower Whole Numbers MDECL1: Perform operations on whole numbers (with applications, including
Warm-Up 1. 1. What is the least common multiple of 6, 8 and 10?
Warm-Up 1 1. What is the least common multiple of 6, 8 and 10? 2. A 16-page booklet is made from a stack of four sheets of paper that is folded in half and then joined along the common fold. The 16 pages
SOLVING EQUATIONS WITH RADICALS AND EXPONENTS 9.5. section ( 3 5 3 2 )( 3 25 3 10 3 4 ). The Odd-Root Property
498 (9 3) Chapter 9 Radicals and Rational Exponents Replace the question mark by an expression that makes the equation correct. Equations involving variables are to be identities. 75. 6 76. 3?? 1 77. 1
Quick Reference ebook
This file is distributed FREE OF CHARGE by the publisher Quick Reference Handbooks and the author. Quick Reference ebook Click on Contents or Index in the left panel to locate a topic. The math facts listed
Grade 2 Level. Math Common Core Sampler Test
Grade 2 Level Math Common Core Sampler Test Everyone we come in contact with is scrambling to get their hands on example questions for this grade level. This test sampler is put together to give you an
1.6 The Order of Operations
1.6 The Order of Operations Contents: Operations Grouping Symbols The Order of Operations Exponents and Negative Numbers Negative Square Roots Square Root of a Negative Number Order of Operations and Negative
