Julie Rotthoff Brian Ruffles. No Pi Allowed
|
|
|
- Ashley Edwards
- 9 years ago
- Views:
Transcription
1 Julie Rotthoff Brian Ruffles No Pi Allowed Introduction: Students often confuse or forget the area and circumference formulas for circles. In addition, students rarely are given the opportunity to derive such critical formulas. Below are four different activities you can incorporate in your classroom to derive the formula for the area of a circle: 1. Pie Tastes Better Than π.. Marble Madness! 3. Hitting the Target! 4. No π, No Weigh! NYS MST Standards: 6.R.7 Use mathematics to show and understand physical phenomena (e.g., determine the perimeter of a bulletin board). 6.G.6 Understand the relationship between the diameter and radius of a circle. 6.G.7 Determine the area and circumference of a circle, using the appropriate formula. 6.M.7 Estimate volume, area, and circumference (see figures identified in geometry strand). NCTM Standards: Precisely describe, classify, and understand relationships among types of two- and three-dimensional objects using their defining properties. Understand relationships among the angles, side lengths, perimeters, areas, and volumes of similar objects. Select and apply techniques and tools to accurately find length, area, volume, and angle measures to appropriate levels of precision. Instructional Objectives: Objectives of this lesson include: Introduce fun ways of calculating the area of a circle. Provide a solid base understanding of the area of a circle. Introduce estimation of the area of a circle. Instructional Protocol/Itinerary: The audience will be asked questions before presenting each method to spark their interest and get their minds thinking about circles. The lessons will be hands on and will involve the students. All lessons will be designed as a visual aide to understanding the concepts behind finding the area of a circle. Lessons can be altered to use different models appropriate for the setting.
2 Pie Tastes Better Than π Why is it that the area of a square or a rectangle is base x height but the area of a circle is πr? Wouldn t it make sense to have just one formula for area? Well actually, we do. It is base x height. Now this might get a little bit confusing, so since it s getting to be that beautiful fall season again, here is a way to help illustrate why the area of a circle is equal to base x height. Why can t we use base x height to calculate the area of a circle? We don t know what the base and the height of the circle are. In that case, what we are really trying to find is a way to show that: r base height Here is a step by step process to help us see this more clearly, and give us a tasty treat: Step 1: Start with a delicious pumpkin pie with a diameter of 9 inches. Cut the pie into 8 equal slices.
3 Step : Remove slices from the pie tin and arrange them as a parallelogram. Step 3: Now we have a parallelogram. The area of a parallelogram is base x height. Measure the base and the height of the parallelogram in inches. Notice that the height of the parallelogram is also the radius of the pie, and the base is one half the circumference. The base of the parallelogram was 14 inches and the height was 4 and a half inches. Step 4: Find the area of the parallelogram: A base height A 14in 4.5in A 63in How close are we? Now compute the area of the circular pie using r. A r A (4.5in) A 0.5 in A in
4 Why does this work? A base height 1 A Circumference radius 1 A ( radius) radius A ( radius) *MODIFICATIONS OF THIS ACTIVITY: You can have students cut paper plates and form the parallelogram. Then they can find the area of the parallelogram and derive the formula for the area of a circle. Marble Madness! Let s face it: some students do not like circles and their formulas. Marble Madness is all about manipulating the area of a circle into a more pleasant area that we can work with, namely, a rectangle. Let s see how this works: How can we approximate the area of a circle without its dimensions or using the formula? One possible method would be using marbles. Just follow these four easy steps. Step 1: Take your circular cake pan, and fill the bottom with one flat layer of marbles. Step : Transfer your Marbles to the rectangular cake pan. Position the marbles such that you have only one layer, and the marbles are packed as tightly as possible. Step 3: Note how much of the cake pan is filled by the marbles. Step 4: Now actually measure the dimensions that the marbles fill in the rectangular pan. Apply the area formula for a rectangle, and you have your estimate for the area of a circle! (To compare this value to the actual area of the circle, measure the radius of the circular pan, and apply the formula for area of a circle.) *MODIFICATIONS AND OTHER APPLICATIONS OF THIS ACTIVITY: Instead of marbles, feel free to use other small objects to take up the area; candy works great! You can also use this activity to find an approximation of π. Create the rectangular pan or box such that the radius of the circle is the height (h=r), and four times the
5 radius of the circle is the base (b=4r). Once you transfer the marbles and measure to where they fill, you will note that the marbles fill to a little over ¾ of the base. Thus applying the area formula for rectangles, we obtain A= ¾(4r)(r) = 3r. Comparing this to the formula for the area of a circle, we see that 3. Hitting the Target! How does playing darts relate to determining the area of a circle? Well, let s find out how on target you and your classmates are. THE SETUP: Create a square circumscribed about the dart board (this can be done by taping off a square closely around the dart board). Now you are ready to fire away. THE RULES: Each student will be allowed three chances to hit the target from a fixed distance away from the dart board. Each student is to tally his/her hits and misses as well as other classmates hits and misses in the given table. How to Get a Hit: o The dart is counted as a hit only when it lands and sticks inside the circle. o If the dart lands inside the square but not in the circle, it is counted as a miss. o If the dart lands outside of both the circle and square, it is not counted. HITS MISSES TOTAL HITS: TOTAL MISSES:
6 TIME FOR THE MATH: Now time for the fun part! Based on the total hits, we can determine an estimate for the area of our circular dart board, no π allowed! Here s how: Setup the following proportion: TOTALHITS HITS MISSES ESTIMATEOFCIRCLEAREA AREAOFSQUARE Fill in the known information (total hits, hits plus misses, and the area of the square), then solve the proportion for our unknown value, the estimate area of the circle (dart board). (The total hits and hits plus misses can be calculated by simple addition. We can physically measure the length and width of our square and compute the area). Once we have our estimate, we can then compare that value to the exact area of the circle by implementing the area formula for a circle, measure the radius of the circle). WERE WE ON TARGET? Discuss the following questions: A r. (We can physically 1. Was our estimated area of the dart board a good or bad estimate? Why? SOLUTION: This depends on your data. If you had a reasonable amount of hits compared to the total amount of darts thrown, your area estimate for the circle should be close. If for some reason every dart was a hit or you had a substantial amount of misses, then your area estimate will have a higher percent error.. Is there anyway to provide a better estimate using this method? Explain. SOLUTION: Yes, because the more trials you have, the closer your estimate should be. The ratio should become more exact. 3. Why does this proportion seem to work? SOLUTION: This has to do with the concept of area and the probability of hitting the circle. The way we circumscribed the square around the dart board made for the circle to cover most of the same area of the square. Thus the probability of hitting the circle is equivalent to the area of the circle over the area of the square. Notice that every hit in the circle also is a hit in the square, but every hit in the square is not necessarily a hit in the circle. Therefore, when tossing darts, more of them seem to land in the circle because this covered most of the square, which relates to our concept of area.
7 *MODIFICATIONS OF THIS ACTIVITY: Instead of using darts, this activity can be done by: Using a circle inscribed in a square grid divided into 100 parts, each part labeled in coordinate fashion from 00 in the lower left corner to 99 in the upper right corner. You then can use a random number generator to plot points according to the coordinates (a hit in this case would be if the point was plotted inside the circle). Apply the same proportion and follow up questions. Have a hula-hoop lie flat on the ground; use masking tape to tape off a square around the outside of the hoop. Use the same chart, and have students toss bean bags into the hoop from a fixed distance away (a hit will be counted if the bean bag lands and stays inside the hula-hoop). Apply the same proportion and follow up questions. No π, No Weigh! Can we really estimate the area of a circle by its weight? I think so and here is what you will need: Materials: Circular cutout of a floor tile with the diameter of 1.5 cm (Trace a pie tin). Three 10 cm x 10 cm squares of linoleum. Five 10 cm x 1 cm rectangles of linoleum. Ten 1 cm x 1 cm squares of linoleum. Scale (preferable a mass balance scale, but any scale will work). I still don t get it? How is this going to work? Procedure: Let s take our circular cutout and place it on one of the balances. Record the weight. Now let s try to match the weight of the circular cutout with our four sided weights. Try to come as close as possible to achieve the same weight as the circular cutout by combining various square or rectangle tiles.
8 So, the weight of the circular cutout and the combined weight of the various squares and rectangles came pretty close in number. What s that have to do with area? The Magic behind the Mystery: Take a look at your circular cutout and the weights you ended up using to balance their mass. Try to arrange the weights you used to resemble a circle. Any thoughts yet? o The scale should balance when the weights covered exactly the same area as the circular region! You could also compute out the areas of both and then compare: o For the total area of the weights, sum together each individual area of the rectangles and squares using A=b h. o For the area of the circular region, measure the radius (if not known), then apply the formula for area of a circle, A=πr. o Compare the two areas; I bet that you ll find they are relatively close. NO WEIGH!
The GED math test gives you a page of math formulas that
Math Smart 643 The GED Math Formulas The GED math test gives you a page of math formulas that you can use on the test, but just seeing the formulas doesn t do you any good. The important thing is understanding
Student Outcomes. Lesson Notes. Classwork. Exercises 1 3 (4 minutes)
Student Outcomes Students give an informal derivation of the relationship between the circumference and area of a circle. Students know the formula for the area of a circle and use it to solve problems.
Circumference and Area of a Circle
Overview Math Concepts Materials Students explore how to derive pi (π) as a ratio. Students also study the circumference and area of a circle using formulas. numbers and operations TI-30XS MultiView two-dimensional
Characteristics of the Four Main Geometrical Figures
Math 40 9.7 & 9.8: The Big Four Square, Rectangle, Triangle, Circle Pre Algebra We will be focusing our attention on the formulas for the area and perimeter of a square, rectangle, triangle, and a circle.
Postulate 17 The area of a square is the square of the length of a. Postulate 18 If two figures are congruent, then they have the same.
Chapter 11: Areas of Plane Figures (page 422) 11-1: Areas of Rectangles (page 423) Rectangle Rectangular Region Area is measured in units. Postulate 17 The area of a square is the square of the length
Solids. Objective A: Volume of a Solids
Solids Math00 Objective A: Volume of a Solids Geometric solids are figures in space. Five common geometric solids are the rectangular solid, the sphere, the cylinder, the cone and the pyramid. A rectangular
PIZZA! PIZZA! TEACHER S GUIDE and ANSWER KEY
PIZZA! PIZZA! TEACHER S GUIDE and ANSWER KEY The Student Handout is page 11. Give this page to students as a separate sheet. Area of Circles and Squares Circumference and Perimeters Volume of Cylinders
Grade 8 Mathematics Geometry: Lesson 2
Grade 8 Mathematics Geometry: Lesson 2 Read aloud to the students the material that is printed in boldface type inside the boxes. Information in regular type inside the boxes and all information outside
Geometry Unit 6 Areas and Perimeters
Geometry Unit 6 Areas and Perimeters Name Lesson 8.1: Areas of Rectangle (and Square) and Parallelograms How do we measure areas? Area is measured in square units. The type of the square unit you choose
GAP CLOSING. 2D Measurement. Intermediate / Senior Student Book
GAP CLOSING 2D Measurement Intermediate / Senior Student Book 2-D Measurement Diagnostic...3 Areas of Parallelograms, Triangles, and Trapezoids...6 Areas of Composite Shapes...14 Circumferences and Areas
Show that when a circle is inscribed inside a square the diameter of the circle is the same length as the side of the square.
Week & Day Week 6 Day 1 Concept/Skill Perimeter of a square when given the radius of an inscribed circle Standard 7.MG:2.1 Use formulas routinely for finding the perimeter and area of basic twodimensional
Geometry Notes VOLUME AND SURFACE AREA
Volume and Surface Area Page 1 of 19 VOLUME AND SURFACE AREA Objectives: After completing this section, you should be able to do the following: Calculate the volume of given geometric figures. Calculate
Geometry Notes PERIMETER AND AREA
Perimeter and Area Page 1 of 57 PERIMETER AND AREA Objectives: After completing this section, you should be able to do the following: Calculate the area of given geometric figures. Calculate the perimeter
SURFACE AREA AND VOLUME
SURFACE AREA AND VOLUME In this unit, we will learn to find the surface area and volume of the following threedimensional solids:. Prisms. Pyramids 3. Cylinders 4. Cones It is assumed that the reader has
Geometry and Measurement
The student will be able to: Geometry and Measurement 1. Demonstrate an understanding of the principles of geometry and measurement and operations using measurements Use the US system of measurement for
Calculating Area, Perimeter and Volume
Calculating Area, Perimeter and Volume You will be given a formula table to complete your math assessment; however, we strongly recommend that you memorize the following formulae which will be used regularly
Section 7.2 Area. The Area of Rectangles and Triangles
Section 7. Area The Area of Rectangles and Triangles We encounter two dimensional objects all the time. We see objects that take on the shapes similar to squares, rectangle, trapezoids, triangles, and
Perimeter. 14ft. 5ft. 11ft.
Perimeter The perimeter of a geometric figure is the distance around the figure. The perimeter could be thought of as walking around the figure while keeping track of the distance traveled. To determine
Applications for Triangles
Not drawn to scale Applications for Triangles 1. 36 in. 40 in. 33 in. 1188 in. 2 69 in. 2 138 in. 2 1440 in. 2 2. 188 in. 2 278 in. 2 322 in. 2 none of these Find the area of a parallelogram with the given
Calculating Perimeter
Calculating Perimeter and Area Formulas are equations used to make specific calculations. Common formulas (equations) include: P = 2l + 2w perimeter of a rectangle A = l + w area of a square or rectangle
G C.3 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.
Performance Assessment Task Circle and Squares Grade 10 This task challenges a student to analyze characteristics of 2 dimensional shapes to develop mathematical arguments about geometric relationships.
Exploring Geometric Probabilities with Buffon s Coin Problem
Exploring Geometric Probabilities with Buffon s Coin Problem Kady Schneiter Utah State University [email protected] Published: October 2012 Overview of Lesson Investigate Buffon s coin problem using
Perimeter, Area, and Volume
Perimeter, Area, and Volume Perimeter of Common Geometric Figures The perimeter of a geometric figure is defined as the distance around the outside of the figure. Perimeter is calculated by adding all
Finding Volume of Rectangular Prisms
MA.FL.7.G.2.1 Justify and apply formulas for surface area and volume of pyramids, prisms, cylinders, and cones. MA.7.G.2.2 Use formulas to find surface areas and volume of three-dimensional composite shapes.
9 Area, Perimeter and Volume
9 Area, Perimeter and Volume 9.1 2-D Shapes The following table gives the names of some 2-D shapes. In this section we will consider the properties of some of these shapes. Rectangle All angles are right
Dŵr y Felin Comprehensive School. Perimeter, Area and Volume Methodology Booklet
Dŵr y Felin Comprehensive School Perimeter, Area and Volume Methodology Booklet Perimeter, Area & Volume Perimeters, Area & Volume are key concepts within the Shape & Space aspect of Mathematics. Pupils
Circumference Pi Regular polygon. Dates, assignments, and quizzes subject to change without advance notice.
Name: Period GPreAP UNIT 14: PERIMETER AND AREA I can define, identify and illustrate the following terms: Perimeter Area Base Height Diameter Radius Circumference Pi Regular polygon Apothem Composite
Calculating the Surface Area of a Cylinder
Calculating the Measurement Calculating The Surface Area of a Cylinder PRESENTED BY CANADA GOOSE Mathematics, Grade 8 Introduction Welcome to today s topic Parts of Presentation, questions, Q&A Housekeeping
Inv 1 5. Draw 2 different shapes, each with an area of 15 square units and perimeter of 16 units.
Covering and Surrounding: Homework Examples from ACE Investigation 1: Questions 5, 8, 21 Investigation 2: Questions 6, 7, 11, 27 Investigation 3: Questions 6, 8, 11 Investigation 5: Questions 15, 26 ACE
PERIMETER AND AREA. In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures.
PERIMETER AND AREA In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures. Perimeter Perimeter The perimeter of a polygon, denoted by P, is the
Think About This Situation
Think About This Situation A popular game held at fairs or parties is the jelly bean guessing contest. Someone fills a jar or other large transparent container with a known quantity of jelly beans and
43 Perimeter and Area
43 Perimeter and Area Perimeters of figures are encountered in real life situations. For example, one might want to know what length of fence will enclose a rectangular field. In this section we will study
Geometry Solve real life and mathematical problems involving angle measure, area, surface area and volume.
Performance Assessment Task Pizza Crusts Grade 7 This task challenges a student to calculate area and perimeters of squares and rectangles and find circumference and area of a circle. Students must find
Area of Parallelograms, Triangles, and Trapezoids (pages 314 318)
Area of Parallelograms, Triangles, and Trapezoids (pages 34 38) Any side of a parallelogram or triangle can be used as a base. The altitude of a parallelogram is a line segment perpendicular to the base
Kristen Kachurek. Circumference, Perimeter, and Area Grades 7-10 5 Day lesson plan. Technology and Manipulatives used:
Kristen Kachurek Circumference, Perimeter, and Area Grades 7-10 5 Day lesson plan Technology and Manipulatives used: TI-83 Plus calculator Area Form application (for TI-83 Plus calculator) Login application
CSU Fresno Problem Solving Session. Geometry, 17 March 2012
CSU Fresno Problem Solving Session Problem Solving Sessions website: http://zimmer.csufresno.edu/ mnogin/mfd-prep.html Math Field Day date: Saturday, April 21, 2012 Math Field Day website: http://www.csufresno.edu/math/news
GAP CLOSING. 2D Measurement GAP CLOSING. Intermeditate / Senior Facilitator s Guide. 2D Measurement
GAP CLOSING 2D Measurement GAP CLOSING 2D Measurement Intermeditate / Senior Facilitator s Guide 2-D Measurement Diagnostic...4 Administer the diagnostic...4 Using diagnostic results to personalize interventions...4
16 Circles and Cylinders
16 Circles and Cylinders 16.1 Introduction to Circles In this section we consider the circle, looking at drawing circles and at the lines that split circles into different parts. A chord joins any two
GAP CLOSING. Volume and Surface Area. Intermediate / Senior Student Book
GAP CLOSING Volume and Surface Area Intermediate / Senior Student Book Volume and Surface Area Diagnostic...3 Volumes of Prisms...6 Volumes of Cylinders...13 Surface Areas of Prisms and Cylinders...18
Lesson 21. Circles. Objectives
Student Name: Date: Contact Person Name: Phone Number: Lesson 1 Circles Objectives Understand the concepts of radius and diameter Determine the circumference of a circle, given the diameter or radius Determine
MATH STUDENT BOOK. 6th Grade Unit 8
MATH STUDENT BOOK 6th Grade Unit 8 Unit 8 Geometry and Measurement MATH 608 Geometry and Measurement INTRODUCTION 3 1. PLANE FIGURES 5 PERIMETER 5 AREA OF PARALLELOGRAMS 11 AREA OF TRIANGLES 17 AREA OF
Filling and Wrapping: Homework Examples from ACE
Filling and Wrapping: Homework Examples from ACE Investigation 1: Building Smart Boxes: Rectangular Prisms, ACE #3 Investigation 2: Polygonal Prisms, ACE #12 Investigation 3: Area and Circumference of
Area of a triangle: The area of a triangle can be found with the following formula: 1. 2. 3. 12in
Area Review Area of a triangle: The area of a triangle can be found with the following formula: 1 A 2 bh or A bh 2 Solve: Find the area of each triangle. 1. 2. 3. 5in4in 11in 12in 9in 21in 14in 19in 13in
Discovering Math: Exploring Geometry Teacher s Guide
Teacher s Guide Grade Level: 6 8 Curriculum Focus: Mathematics Lesson Duration: Three class periods Program Description Discovering Math: Exploring Geometry From methods of geometric construction and threedimensional
MATH 110 Landscape Horticulture Worksheet #4
MATH 110 Landscape Horticulture Worksheet #4 Ratios The math name for a fraction is ratio. It is just a comparison of one quantity with another quantity that is similar. As a Landscape Horticulturist,
Mensuration. The shapes covered are 2-dimensional square circle sector 3-dimensional cube cylinder sphere
Mensuration This a mixed selection of worksheets on a standard mathematical topic. A glance at each will be sufficient to determine its purpose and usefulness in any given situation. These notes are intended
Circumference of a Circle
Circumference of a Circle A circle is a shape with all points the same distance from the center. It is named by the center. The circle to the left is called circle A since the center is at point A. If
CHAPTER 8, GEOMETRY. 4. A circular cylinder has a circumference of 33 in. Use 22 as the approximate value of π and find the radius of this cylinder.
TEST A CHAPTER 8, GEOMETRY 1. A rectangular plot of ground is to be enclosed with 180 yd of fencing. If the plot is twice as long as it is wide, what are its dimensions? 2. A 4 cm by 6 cm rectangle has
Circumference CHAPTER. www.ck12.org 1
www.ck12.org 1 CHAPTER 1 Circumference Here you ll learn how to find the distance around, or the circumference of, a circle. What if you were given the radius or diameter of a circle? How could you find
Radius, Diameter, Circumference, π, Geometer s Sketchpad, and You! T. Scott Edge
TMME,Vol.1, no.1,p.9 Radius, Diameter, Circumference, π, Geometer s Sketchpad, and You! T. Scott Edge Introduction I truly believe learning mathematics can be a fun experience for children of all ages.
Algebra Geometry Glossary. 90 angle
lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:
YOU MUST BE ABLE TO DO THE FOLLOWING PROBLEMS WITHOUT A CALCULATOR!
DETAILED SOLUTIONS AND CONCEPTS - SIMPLE GEOMETRIC FIGURES Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to [email protected]. Thank you! YOU MUST
7.4A/7.4B STUDENT ACTIVITY #1
7.4A/7.4B STUDENT ACTIVITY #1 Write a formula that could be used to find the radius of a circle, r, given the circumference of the circle, C. The formula in the Grade 7 Mathematics Chart that relates the
Grade 7 Circumference
Grade 7 Circumference 7.SS.1 Demonstrate an understanding of circles by describing the relationships among radius, diameter, and circumference of circles relating circumference to PI determining the sum
Math Girls Rock! Math Club for Young Women http://www.uvu.edu/csh/mathematics/mgr/ Project 2. Geometric Probability and Buffon s Needle Problem
Math Club for Young Women http://www.uvu.edu/csh/mathematics/mgr/ Project 2 Geometric Probability and Buffon s Needle Problem Project 2 Coordinators: Prof. Carolyn Hamilton (e-mail: [email protected]) Prof.
Perimeter, Area and Volume What Do Units Tell You About What Is Being Measured? Overview
Perimeter, Area and Volume What Do Units Tell You About What Is Being Measured? Overview Summary of Lessons: This set of lessons was designed to develop conceptual understanding of the unique attributes
Activity Set 4. Trainer Guide
Geometry and Measurement of Solid Figures Activity Set 4 Trainer Guide Mid_SGe_04_TG Copyright by the McGraw-Hill Companies McGraw-Hill Professional Development GEOMETRY AND MEASUREMENT OF SOLID FIGURES
FCAT FLORIDA COMPREHENSIVE ASSESSMENT TEST. Mathematics Reference Sheets. Copyright Statement for this Assessment and Evaluation Services Publication
FCAT FLORIDA COMPREHENSIVE ASSESSMENT TEST Mathematics Reference Sheets Copyright Statement for this Assessment and Evaluation Services Publication Authorization for reproduction of this document is hereby
Charlesworth School Year Group Maths Targets
Charlesworth School Year Group Maths Targets Year One Maths Target Sheet Key Statement KS1 Maths Targets (Expected) These skills must be secure to move beyond expected. I can compare, describe and solve
Measurement. Volume It All Stacks Up. Activity:
Measurement Activity: TEKS: Overview: Materials: Grouping: Time: Volume It All Stacks Up (7.9) Measurement. The student solves application problems involving estimation and measurement. The student is
Grade 5 Math Content 1
Grade 5 Math Content 1 Number and Operations: Whole Numbers Multiplication and Division In Grade 5, students consolidate their understanding of the computational strategies they use for multiplication.
Volume of Right Prisms Objective To provide experiences with using a formula for the volume of right prisms.
Volume of Right Prisms Objective To provide experiences with using a formula for the volume of right prisms. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM Facts Workshop Game
DATE PERIOD. Estimate the product of a decimal and a whole number by rounding the Estimation
A Multiplying Decimals by Whole Numbers (pages 135 138) When you multiply a decimal by a whole number, you can estimate to find where to put the decimal point in the product. You can also place the decimal
2006 Geometry Form A Page 1
2006 Geometry Form Page 1 1. he hypotenuse of a right triangle is 12" long, and one of the acute angles measures 30 degrees. he length of the shorter leg must be: () 4 3 inches () 6 3 inches () 5 inches
Grade 7 & 8 Math Circles Circles, Circles, Circles March 19/20, 2013
Faculty of Mathematics Waterloo, Ontario N2L 3G Introduction Grade 7 & 8 Math Circles Circles, Circles, Circles March 9/20, 203 The circle is a very important shape. In fact of all shapes, the circle is
Surface Area Quick Review: CH 5
I hope you had an exceptional Christmas Break.. Now it's time to learn some more math!! :) Surface Area Quick Review: CH 5 Find the surface area of each of these shapes: 8 cm 12 cm 4cm 11 cm 7 cm Find
Sandia High School Geometry Second Semester FINAL EXAM. Mark the letter to the single, correct (or most accurate) answer to each problem.
Sandia High School Geometry Second Semester FINL EXM Name: Mark the letter to the single, correct (or most accurate) answer to each problem.. What is the value of in the triangle on the right?.. 6. D.
CBA Volume: Student Sheet 1
CBA Volume: Student Sheet 1 For each problem, decide which cube building has more room inside, or if they have the same amount of room. Then find two ways to use cubes to check your answers, one way that
Session 7 Circles and Pi (π)
Key Terms in This Session Session 7 Circles and Pi (π) Previously Introduced accuracy area precision scale factor similar figures New in This Session circumference diameter irrational number perimeter
Geometry - Calculating Area and Perimeter
Geometry - Calculating Area and Perimeter In order to complete any of mechanical trades assessments, you will need to memorize certain formulas. These are listed below: (The formulas for circle geometry
Area of Parallelograms (pages 546 549)
A Area of Parallelograms (pages 546 549) A parallelogram is a quadrilateral with two pairs of parallel sides. The base is any one of the sides and the height is the shortest distance (the length of a perpendicular
Name: Date: Period: PIZZA! PIZZA! Area of Circles and Squares Circumference and Perimeters Volume of Cylinders and Rectangular Prisms Comparing Cost
Name: Date: Period: PIZZA! PIZZA! Area of Circles and Squares Circumference and Perimeters Volume of Cylinders and Rectangular Prisms Comparing Cost Lesson One Day One: Area and Cost A. Area of Pizza Triplets
VOLUME of Rectangular Prisms Volume is the measure of occupied by a solid region.
Math 6 NOTES 7.5 Name VOLUME of Rectangular Prisms Volume is the measure of occupied by a solid region. **The formula for the volume of a rectangular prism is:** l = length w = width h = height Study Tip:
1. Kyle stacks 30 sheets of paper as shown to the right. Each sheet weighs about 5 g. How can you find the weight of the whole stack?
Prisms and Cylinders Answer Key Vocabulary: cylinder, height (of a cylinder or prism), prism, volume Prior Knowledge Questions (Do these BEFORE using the Gizmo.) [Note: The purpose of these questions is
LESSON 7 Don t Be A Square by Michael Torres
CONCEPT AREA GRADE LEVEL Measurement 5-6 TIME ALLOTMENT Two 60-minute sessions LESSON OVERVIEW LESSON ACTIVITIES OVERVIEW LEARNING OBJECTIVES STANDARDS (TEKS) Students will learn the relationship between
Area. Area Overview. Define: Area:
Define: Area: Area Overview Kite: Parallelogram: Rectangle: Rhombus: Square: Trapezoid: Postulates/Theorems: Every closed region has an area. If closed figures are congruent, then their areas are equal.
Glow-in-the-Dark Geometry
The Big Idea Glow-in-the-Dark Geometry This week you ll make geometric shapes out of glow sticks. The kids will try all sizes and shapes of triangles and quadrilaterials, then lay out sticks in mystical
EDEXCEL FUNCTIONAL SKILLS PILOT TEACHER S NOTES. Maths Level 2. Chapter 5. Shape and space
Shape and space 5 EDEXCEL FUNCTIONAL SKILLS PILOT TEACHER S NOTES Maths Level 2 Chapter 5 Shape and space SECTION H 1 Perimeter 2 Area 3 Volume 4 2-D Representations of 3-D Objects 5 Remember what you
Solving Geometric Applications
1.8 Solving Geometric Applications 1.8 OBJECTIVES 1. Find a perimeter 2. Solve applications that involve perimeter 3. Find the area of a rectangular figure 4. Apply area formulas 5. Apply volume formulas
Scope and Sequence KA KB 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B
Scope and Sequence Earlybird Kindergarten, Standards Edition Primary Mathematics, Standards Edition Copyright 2008 [SingaporeMath.com Inc.] The check mark indicates where the topic is first introduced
8 th Grade Task 2 Rugs
8 th Grade Task 2 Rugs Student Task Core Idea 4 Geometry and Measurement Find perimeters of shapes. Use Pythagorean theorem to find side lengths. Apply appropriate techniques, tools and formulas to determine
AP Physics 1 Summer Assignment
AP Physics 1 Summer Assignment AP Physics 1 Summer Assignment Welcome to AP Physics 1. This course and the AP exam will be challenging. AP classes are taught as college courses not just college-level courses,
Open-Ended Problem-Solving Projections
MATHEMATICS Open-Ended Problem-Solving Projections Organized by TEKS Categories TEKSING TOWARD STAAR 2014 GRADE 7 PROJECTION MASTERS for PROBLEM-SOLVING OVERVIEW The Projection Masters for Problem-Solving
Finding Areas of Shapes
Baking Math Learning Centre Finding Areas of Shapes Bakers often need to know the area of a shape in order to plan their work. A few formulas are required to find area. First, some vocabulary: Diameter
Area and Circumference
4.4 Area and Circumference 4.4 OBJECTIVES 1. Use p to find the circumference of a circle 2. Use p to find the area of a circle 3. Find the area of a parallelogram 4. Find the area of a triangle 5. Convert
Objective To introduce a formula to calculate the area. Family Letters. Assessment Management
Area of a Circle Objective To introduce a formula to calculate the area of a circle. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM Facts Workshop Game Family Letters Assessment
Area of a triangle: The area of a triangle can be found with the following formula: You can see why this works with the following diagrams:
Area Review Area of a triangle: The area of a triangle can be found with the following formula: 1 A 2 bh or A bh 2 You can see why this works with the following diagrams: h h b b Solve: Find the area of
How does one make and support a reasonable conclusion regarding a problem? How does what I measure influence how I measure?
Middletown Public Schools Mathematics Unit Planning Organizer Subject Mathematics Grade/Course Grade 7 Unit 3 Two and Three Dimensional Geometry Duration 23 instructional days (+4 days reteaching/enrichment)
Area is a measure of how much space is occupied by a figure. 1cm 1cm
Area Area is a measure of how much space is occupied by a figure. Area is measured in square units. For example, one square centimeter (cm ) is 1cm wide and 1cm tall. 1cm 1cm A figure s area is the number
Mathematics (Project Maths Phase 1)
2011. S133S Coimisiún na Scrúduithe Stáit State Examinations Commission Junior Certificate Examination Sample Paper Mathematics (Project Maths Phase 1) Paper 2 Ordinary Level Time: 2 hours 300 marks Running
0.75 75% ! 3 40% 0.65 65% Percent Cards. This problem gives you the chance to: relate fractions, decimals and percents
Percent Cards This problem gives you the chance to: relate fractions, decimals and percents Mrs. Lopez makes sets of cards for her math class. All the cards in a set have the same value. Set A 3 4 0.75
Cylinder Volume Lesson Plan
Cylinder Volume Lesson Plan Concept/principle to be demonstrated: This lesson will demonstrate the relationship between the diameter of a circle and its circumference, and impact on area. The simplest
Black Problems - Prime Factorization, Greatest Common Factor and Simplifying Fractions
Black Problems Prime Factorization, Greatest Common Factor and Simplifying Fractions A natural number n, such that n >, can t be written as the sum of two more consecutive odd numbers if and only if n
Numeracy and mathematics Experiences and outcomes
Numeracy and mathematics Experiences and outcomes My learning in mathematics enables me to: develop a secure understanding of the concepts, principles and processes of mathematics and apply these in different
The Circumference Function
2 Geometry You have permission to make copies of this document for your classroom use only. You may not distribute, copy or otherwise reproduce any part of this document or the lessons contained herein
3. Relationship between this Unit and the Principles and Standards for School Mathematics (NCTM 2000). This Unit
4 th Grade Mathematics Lesson Plan April 16-18, 2002 Brewer Island School, San Mateo, CA Instructor: Akihiko Takahashi 1. Title of Unit: Finding the Area of Shapes 2. Goal: a. To deepen students understanding
MATH 100 PRACTICE FINAL EXAM
MATH 100 PRACTICE FINAL EXAM Lecture Version Name: ID Number: Instructor: Section: Do not open this booklet until told to do so! On the separate answer sheet, fill in your name and identification number
NEW MEXICO Grade 6 MATHEMATICS STANDARDS
PROCESS STANDARDS To help New Mexico students achieve the Content Standards enumerated below, teachers are encouraged to base instruction on the following Process Standards: Problem Solving Build new mathematical
Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9
Glencoe correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 STANDARDS 6-8 Number and Operations (NO) Standard I. Understand numbers, ways of representing numbers, relationships among numbers,
Area and Perimeter. Name: Class: Date: Short Answer
Name: Class: Date: ID: A Area and Perimeter Short Answer 1. The squares on this grid are 1 centimeter long and 1 centimeter wide. Outline two different figures with an area of 12 square centimeters and
