Instrumentation. (Figure 2)
|
|
|
- Noel Grant
- 9 years ago
- Views:
Transcription
1 X-Ray Fluorescence Lab Report Nydia Esparza Victoria Rangel Physics of XRF XRF is a non destructive analytical technique that is used for elemental and chemical analysis. X-Ray Fluorescence Spectroscopy is the emission of characteristic secondary x-rays from a material that has been excited by bombarding with high energy gamma rays or x-rays. XRF can be used to investigate metals, glass, ceramics and building materials, and for research in geochemistry, forensic science and archaeology. In the case of the geological materials that we are studying the analyses of major trace elements is made possible by the behavior of atoms when they interact with radiation. When a material is excited short wave length high-energy radiation like x-rays, they become ionized. When the energy of the radiation is sufficient it will knock out an inner electron the atom that is knocked out becomes unstable and an outer electron will fall into the place of the missing inner electron, as shown in figure 1. (Figure 1) Energy is released due to the decrease in binding energy of the inner electron orbital compared to the outer orbital. The energy that is being let off is released in the form or x-rays, this is termed fluorescent radiation. The fluorescent x-rays are used to detect the abundance of elements that are present in the sample.
2 Instrumentation (Figure 2) We used a portable X-ray Fluorescence gun to perform this lab. The model we used was X-MET 3000TXV+, figure 2 is a similar representation of the device that was used for the lab. XRF Project Results Project Team (Nydia Esparza and Victoria Rangel)
3 Materials and Methodology There were three clay ceramic samples provided for analysis as can be observed in the figures below. The samples were labeled 17153Q, 17153S, and 17297D respectively. The samples were analyzed using the XMET3000TXV+ which consisted of aluminum casing protected with lead tape to prevent radiation from escaping. The handheld device provided x- rays for the elemental analysis by running at 40 kv and 7mA. The device was ran at 300 seconds at a time to provide the spectrum for each sample. These spectrums were then analyzed using PyMca. Data and Results The graphs below are in log scale for each sample and were modeled using a computer program. In each image, we can appreciate that two peaks failed to be modeled. The modeling provided the data in the tables seen below each image which include the elements present, the counts of each element, and the mass fraction of each element found. The following images are the data plots for the three samples. The data is represented by lines in three colors. The descriptive meaning for each line color is described below: :Spectrum-source data, : Fit-Fitted curve : Pileup-Background
4 Sample 17153Q Data plot for sample 17153Q in log scale Table A: Data for sample 17153Q Element Group Fit Area K K 2.51E+03 Ca K 4.40E+03 Ti K 2.27E+03 Cr K 6.25E+02 Mn K 1.43E+03 Fe K 8.34E+04 Ni K 1.92E+02 Cu K 5.45E+02 Zn K 2.91E+03 Ga K 2.20E+02 As K 6.33E+02 Rb K 3.74E+03 Sr K 1.81E+04 Y K 2.69E+03 Zr K 1.95E+04 Nb K 2.83E+03 Ag K 8.92E+03 W L 4.13E+02 Au L 8.37E+03 Sigma Area Mass fraction 6.37E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-06
5 Sample 17153S Data plot for sample 17153S in log scale Table B: Data for sample 17153S Element Group Fit Area K K 2.51E+03 Ca K 4.40E+03 Ti K 2.27E+03 Cr K 6.25E+02 Mn K 1.43E+03 Fe K 8.34E+04 Ni K 1.92E+02 Cu K 5.45E+02 Zn K 2.91E+03 Ga K 2.20E+02 As K 6.33E+02 Rb K 3.74E+03 Sr K 1.81E+04 Y K 2.69E+03 Zr K 1.95E+04 Nb K 2.83E+03 Ag K 8.92E+03 W L 4.13E+02 Au L 8.37E+03 Sigma Area Mass fraction 6.37E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-06
6 Sample D Data plot for sample 17297D in log scale Table C: Data for sample 17297D Element Group Fit Area Sigma K K 2.31E+03 Ca K 3.54E+03 Ti K 2.85E+03 Cr K 6.18E+02 Mn K 1.24E+03 Fe K 1.62E+05 Ni K 1.40E+02 Cu K 4.88E+02 Zn K 2.28E+03 Ga K 2.90E+02 As K 4.78E+02 Rb K 4.46E+03 Sr K 2.65E+04 Y K 3.30E+03 Zr K 1.80E+04 Nb K 3.31E+03 Ag K 1.20E+04 W L 1.54E+01 Au L 8.64E+03 Sigma Area Mass fraction 5.41E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-06
7 In each table, the data of importance for this lab was the fit area which gave the counts of each element. The fit area does not give the amount of the respective element present in the sample. The mass fraction is the amount of the element in each sample and this data is given for each element found in each sample. Graphs: Plots of the highest counts were taken which are given by the fit area in the tables above and compared between the three samples. These plots can be appreciated in the figures below. The elements with the highest counts common to all three samples included: Fe, Ag, Au, As, Cr, and Cu. Two elements were compared at a time between all three samples for a total of fifteen plots. Sample 17153Q is represented by a red triangle, Sample 17153S by a green diamond, and Sample 17297D by a purple circle. Fe vs Ag Ag Count 1.60E E E E E E E E E+00 Fe Count 17153Q 8.34E S 1.22E D 1.62E+05
8 Au Count Fe vs Au 9.60E E E E E E E E+03 Fe Count 17153Q 8.34E S 1.22E D 1.62E+05 As Count 9.00E E E E E E E E E E+00 Fe vs As Fe Count 17153Q 8.34E S 1.22E D 1.62E+05
9 6.45E+02 Fe vs Cr Cr Count 6.40E E E E E E+02 Fe Count 17153Q 8.34E S 1.22E D 1.62E+05 Cu Count Fe vs Cu 5.50E E E E E E E E+02 Fe Count 17153Q 8.34E S 1.22E D 1.62E+05
10 6.45E+02 Au vs Cr Cr Count 6.40E E E E E E+02 Au Count 17153Q 8.37E S 9.35E D 8.64E+03 As Count 9.00E E E E E E E E E E+00 Au vs As Au Count 17153Q 8.37E S 9.35E D 8.64E+03
11 Au vs Cu Cu Count 5.50E E E E E E E E+02 Au Count 17153Q 8.37E S 9.35E D 8.64E+03 Au Count Ag vs Au 9.60E E E E E E E E+03 Ag Count 17153Q 8.92E S 1.36E D 1.20E+04
12 As Count 9.00E E E E E E E E E E+00 Ag vs As Ag Count 17153Q 8.92E S 1.36E D 1.20E+04 Cr Count Ag vs Cr 6.45E E E E E E E+02 Ag Count 17153Q 8.92E S 1.36E D 1.20E+04
13 Cu Count Ag vs Cu 5.50E E E E E E E E+02 Ag Count 17153Q 8.92E S 1.36E D 1.20E+04 Cr vs Cu Cu Count 5.50E E E E E E E E E E E E E E E+02 Cr Count 6.25E E E+02
14 6.45E+02 As vs Cr Cr Count 6.40E E E E E E+02 As Count 17153Q 6.33E S 8.52E D 4.78E+02 Cu Count As vs Cu 5.50E E E E E E E E+02 As Count 17153Q 6.33E S 8.52E D 4.78E+02
15 Mass Fraction Mass Fraction per Element Mass Fraction S 17153Q 17297D E-08 K Ca Ti Cr Mn Fe Ni Cu Zn Ga As Rb Sr Y Zr Nb Ag W Au Element Conclusion From the data obtained, we can conclude that although the samples looked very similar, they have slightly different counts in each element. Their composition is pretty consistent meaning that the mass fractions of each element was similar to each sample if not the same. Each sample contained about the same of each element. From the last figure, we can see that the most abundant elements in the samples from the mass fraction data are K, Ca, Ti, and Fe.
16 Calibration Details The calibration method used was the process provided by Dr. Lopez. It can be seen as follows: 1. Load your data. 2. Select S# 2.1 on left top window; this opens the window on the right with the calibrate button. 3. Select Internal(from Source or PyMCA) on the calibration menu. 4. Click on Calibrate > Compute. 5. Click on Search on the MCA Calibration window that opens. 6. Click on the Ag peak see graph below. 7. Select Ag(47) from the Element menu and KL3( ) from the Line menu, click OK. 8. Click OK to go back to PyMCA Main Window, the energy axis should then be calibrated. 9. Once the energy is calibrated you can continue playing with the software to identify the peaks.
X Ray Flourescence (XRF)
X Ray Flourescence (XRF) Aspiring Geologist XRF Technique XRF is a rapid, relatively non destructive process that produces chemical analysis of rocks, minerals, sediments, fluids, and soils It s purpose
Using the Bruker Tracer III-SD Handheld X-Ray Fluorescence Spectrometer using PC Software for Data Collection
Using the Bruker Tracer III-SD Handheld X-Ray Fluorescence Spectrometer using PC Software for Data Collection Scott A Speakman, Ph.D Center for Materials Science and Engineering at MIT [email protected]
EDXRF of Used Automotive Catalytic Converters
EDXRF of Used Automotive Catalytic Converters Energy Dispersive X-Ray Fluorescence (EDXRF) is a very powerful technique for measuring the concentration of elements in a sample. It is fast, nondestructive,
Portable X-ray fluorescence Spectroscopy. Michael A. Wilson Research Soil Scientist USDA-NRCS National Soil Survey Center Lincoln, NE
Portable X-ray fluorescence Spectroscopy Michael A. Wilson Research Soil Scientist USDA-NRCS National Soil Survey Center Lincoln, NE OBJECTIVES Background of the method Features of the instrument Applications
EXPERIMENT 4 The Periodic Table - Atoms and Elements
EXPERIMENT 4 The Periodic Table - Atoms and Elements INTRODUCTION Primary substances, called elements, build all the materials around you. There are more than 109 different elements known today. The elements
X-ray Production. Target Interactions. Principles of Imaging Science I (RAD119) X-ray Production & Emission
Principles of Imaging Science I (RAD119) X-ray Production & Emission X-ray Production X-rays are produced inside the x-ray tube when high energy projectile electrons from the filament interact with the
X-RAY FLUORESCENCE SPECTROSCOPY IN PLASTICS RECYCLING
X-RAY FLUORESCENCE SPECTROSCOPY IN PLASTICS RECYCLING Brian L. Riise and Michael B. Biddle MBA Polymers, Inc., Richmond, CA, USA Michael M. Fisher American Plastics Council, Arlington, VA, USA X-Ray Fluorescence
Coating Thickness and Composition Analysis by Micro-EDXRF
Application Note: XRF Coating Thickness and Composition Analysis by Micro-EDXRF www.edax.com Coating Thickness and Composition Analysis by Micro-EDXRF Introduction: The use of coatings in the modern manufacturing
MODERN ATOMIC THEORY AND THE PERIODIC TABLE
CHAPTER 10 MODERN ATOMIC THEORY AND THE PERIODIC TABLE SOLUTIONS TO REVIEW QUESTIONS 1. Wavelength is defined as the distance between consecutive peaks in a wave. It is generally symbolized by the Greek
Electrons in Atoms & Periodic Table Chapter 13 & 14 Assignment & Problem Set
Electrons in Atoms & Periodic Table Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Electrons in Atoms & Periodic Table 2 Study Guide: Things You
3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur?
PSI AP Chemistry Periodic Trends MC Review Name Periodic Law and the Quantum Model Use the PES spectrum of Phosphorus below to answer questions 1-3. 1. Which peak corresponds to the 1s orbital? (A) 1.06
From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?
From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly
Austin Peay State University Department of Chemistry Chem 1111. The Use of the Spectrophotometer and Beer's Law
Purpose To become familiar with using a spectrophotometer and gain an understanding of Beer s law and it s relationship to solution concentration. Introduction Scientists use many methods to determine
Quality Control on Aerospace Components Using Handheld X-ray Fluorescence (XRF)
International Workshop SMART MATERIALS, STRUCTURES & NDT in AEROSPACE Conference NDT in Canada 2011 2-4 November 2011, Montreal, Quebec, Canada Quality Control on Aerospace Components Using Handheld X-ray
Ionizing Radiation, Czech Republic, CMI (Czech Metrology Institute)
Ionizing Radiation, Czech Republic, (Czech Metrology Institute) Calibration or Measurement RADIOACTIVITY 1.0E+00 1.0E+02 Bq cm -2 C-14 1.0E+01 1.0E+02 Bq cm -2 Co-60 1.0E+01 1.0E+02 Bq cm -2 Sr-90 1.0E+01
SCH 3UI Unit 2 Outline Up to Quiz #1 Atomic Theory and the Periodic Table
Lesson Topics Covered SCH 3UI Unit 2 Outline Up to Quiz #1 Atomic Theory and the Periodic Table 1 Note: History of Atomic Theory progression of understanding of composition of matter; ancient Greeks and
Electronegativity and Polarity
and Polarity N Goalby Chemrevise.org Definition: is the relative tendency of an atom in a molecule to attract electrons in a covalent bond to itself. is measured on the Pauling scale (ranges from 0 to
ELECTRON CONFIGURATION (SHORT FORM) # of electrons in the subshell. valence electrons Valence electrons have the largest value for "n"!
179 ELECTRON CONFIGURATION (SHORT FORM) - We can represent the electron configuration without drawing a diagram or writing down pages of quantum numbers every time. We write the "electron configuration".
EDS system. CRF Oxford Instruments INCA CRF EDAX Genesis EVEX- NanoAnalysis Table top system
EDS system Most common X-Ray measurement system in the SEM lab. Major elements (10 wt% or greater) identified in ~10 secs. Minor elements identifiable in ~100 secs. Rapid qualitative and accurate quantitative
h e l p s y o u C O N T R O L
contamination analysis for compound semiconductors ANALYTICAL SERVICES B u r i e d d e f e c t s, E v a n s A n a l y t i c a l g r o u p h e l p s y o u C O N T R O L C O N T A M I N A T I O N Contamination
Universal Data Acquisition (UDA)
Universal Data Acquisition (UDA) I C P - O P T I C A L E M I S S I O N P R O D U C T N O T E Introduction Historically, Inductively Coupled Plasma (ICP) spectroscopy has been used for multiple analyte
Electron Configurations, Isoelectronic Elements, & Ionization Reactions. Chemistry 11
Electron Configurations, Isoelectronic Elements, & Ionization Reactions Chemistry 11 Note: Of the 3 subatomic particles, the electron plays the greatest role in determining the physical and chemical properties
REVIEW QUESTIONS Chapter 8
Chemistry 101 ANSWER KEY REVIEW QUESTIONS Chapter 8 Use only a periodic table to answer the following questions. 1. Write complete electron configuration for each of the following elements: a) Aluminum
Chalcophile and Key Element Distribution in the Eastern Goldfields: seismic traverse EGF01. Aleks Kalinowski Geoscience Australia, pmdcrc Y2 project
pmd CR C Chalcophile and Key Element Distribution in the Eastern Goldfields: seismic traverse EGF01 predictive mineral discovery Aleks Kalinowski Geoscience Australia, pmdcrc Y2 project [email protected]
Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry
Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Jon H. Hardesty, PhD and Bassam Attili, PhD Collin College Department of Chemistry Introduction: In the last lab
Introduktion til røntgenfluorescens (XRF) og skanning elektron mikroskopi (SEM) Michelle Taube Nationalmuseet Bevaringsafdelingen
Introduktion til røntgenfluorescens (XRF) og skanning elektron mikroskopi (SEM) Michelle Taube Nationalmuseet Bevaringsafdelingen Introduktion til røntgenfluorescens (XRF) og skanning elektron mikroskopi
Amptek Application Note XRF-1: XRF Spectra and Spectra Analysis Software By R.Redus, Chief Scientist, Amptek Inc, 2008.
Amptek Application Note XRF-1: XRF Spectra and Spectra Analysis Software By R.Redus, Chief Scientist, Amptek Inc, 2008. X-Ray Fluorescence (XRF) is a very simple analytical technique: X-rays excite atoms
Introduction to Geiger Counters
Introduction to Geiger Counters A Geiger counter (Geiger-Muller tube) is a device used for the detection and measurement of all types of radiation: alpha, beta and gamma radiation. Basically it consists
Name period AP chemistry Unit 2 worksheet Practice problems
Name period AP chemistry Unit 2 worksheet Practice problems 1. What are the SI units for a. Wavelength of light b. frequency of light c. speed of light Meter hertz (s -1 ) m s -1 (m/s) 2. T/F (correct
AP Chemistry Semester One Study Guide
AP Chemistry Semester One Study Guide Unit One: General Chemistry Review Unit Two: Organic Nomenclature Unit Three: Reactions Unit Four: Thermochemistry Unit Five: Electronic Structure of the Atom Unit
Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry
Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Why? Chemists are concerned with mass relationships in chemical reactions, usually run on a macroscopic scale (grams, kilograms, etc.). To deal with
Data Analysis and Validation Support for PM2.5 Chemical Speciation Networks- #82
Data Analysis and Validation Support for PM2.5 Chemical Speciation Networks- #82 Max R. Peterson and Edward E. Rickman Research Triangle Institute 3040 Cornwallis Road P.O. Box 12194 Research Triangle
2. John Dalton did his research work in which of the following countries? a. France b. Greece c. Russia d. England
CHAPTER 3 1. Which combination of individual and contribution is not correct? a. Antoine Lavoisier - clarified confusion over cause of burning b. John Dalton - proposed atomic theory c. Marie Curie - discovered
The Advanced Placement Examination in Chemistry. Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010
The Advanced Placement Examination in Chemistry Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010 Atomic Theory and Periodicity Part I 1984 1. Which of
Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers
Key Questions & Exercises Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers 1. The atomic weight of carbon is 12.0107 u, so a mole of carbon has a mass of 12.0107 g. Why doesn t a mole of
X-ray Spectroscopy. 1. Introduction. 2. X-Ray Spectra of the Elements. Physics 441-442 Advanced Physics Laboratory
University of Michigan February 2005 Physics 441-442 Advanced Physics Laboratory X-ray Spectroscopy 1. Introduction X-rays are KeV photons. Atomic X-rays are emitted during electronic transitions to the
B I N G O B I N G O. Hf Cd Na Nb Lr. I Fl Fr Mo Si. Ho Bi Ce Eu Ac. Md Co P Pa Tc. Uut Rh K N. Sb At Md H. Bh Cm H Bi Es. Mo Uus Lu P F.
Hf Cd Na Nb Lr Ho Bi Ce u Ac I Fl Fr Mo i Md Co P Pa Tc Uut Rh K N Dy Cl N Am b At Md H Y Bh Cm H Bi s Mo Uus Lu P F Cu Ar Ag Mg K Thomas Jefferson National Accelerator Facility - Office of cience ducation
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Practice Questions - Chapter 7 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which one of the following represents an impossible set of
CHEM 1411 Chapter 5 Homework Answers
1 CHEM 1411 Chapter 5 Homework Answers 1. Which statement regarding the gold foil experiment is false? (a) It was performed by Rutherford and his research group early in the 20 th century. (b) Most of
OLIVÉR BÁNHIDI 1. Introduction
Materials Science and Engineering, Volume 39, No. 1 (2014), pp. 5 13. DETERMINATION OF THE ANTIMONY- AND STRONTIUM- CONTENT OF ALUMINIUM ALLOYS BY INDUCTIVELY COUPLED PLASMA ATOM EMISSION SPECTROMETRY
Analyses on copper samples from Micans
PDF rendering: DokumentID 1473479, Version 1., Status Godkänt, Sekretessklass Öppen Analyses on copper samples from Micans P. Berastegui, M. Hahlin, M. Ottosson, M. Korvela, Y. Andersson, R. Berger and
Background Information
1 Gas Chromatography/Mass Spectroscopy (GC/MS/MS) Background Information Instructions for the Operation of the Varian CP-3800 Gas Chromatograph/ Varian Saturn 2200 GC/MS/MS See the Cary Eclipse Software
Lectures about XRF (X-Ray Fluorescence)
1 / 38 Lectures about XRF (X-Ray Fluorescence) Advanced Physics Laboratory Laurea Magistrale in Fisica year 2013 - Camerino 2 / 38 X-ray Fluorescence XRF is an acronym for X-Ray Fluorescence. The XRF technique
Sample Analysis Design Isotope Dilution
Isotope Dilution Most accurate and precise calibration method available Requires analyte with two stable isotopes Monoisotopic elements cannot be determined via isotope dilution Spike natural sample with
The Electromagnetic Spectrum
INTRODUCTION The Electromagnetic Spectrum I. What is electromagnetic radiation and the electromagnetic spectrum? What do light, X-rays, heat radiation, microwaves, radio waves, and gamma radiation have
Acceleration of Gravity Lab Basic Version
Acceleration of Gravity Lab Basic Version In this lab you will explore the motion of falling objects. As an object begins to fall, it moves faster and faster (its velocity increases) due to the acceleration
Nuclear Physics. Nuclear Physics comprises the study of:
Nuclear Physics Nuclear Physics comprises the study of: The general properties of nuclei The particles contained in the nucleus The interaction between these particles Radioactivity and nuclear reactions
13- What is the maximum number of electrons that can occupy the subshell 3d? a) 1 b) 3 c) 5 d) 2
Assignment 06 A 1- What is the energy in joules of an electron undergoing a transition from n = 3 to n = 5 in a Bohr hydrogen atom? a) -3.48 x 10-17 J b) 2.18 x 10-19 J c) 1.55 x 10-19 J d) -2.56 x 10-19
Atomic and Nuclear Physics Laboratory (Physics 4780)
Gamma Ray Spectroscopy Week of September 27, 2010 Atomic and Nuclear Physics Laboratory (Physics 4780) The University of Toledo Instructor: Randy Ellingson Gamma Ray Production: Co 60 60 60 27Co28Ni *
Advanced Physics Laboratory. XRF X-Ray Fluorescence: Energy-Dispersive analysis (EDXRF)
Advanced Physics Laboratory XRF X-Ray Fluorescence: Energy-Dispersive analysis (EDXRF) Bahia Arezki Contents 1. INTRODUCTION... 2 2. FUNDAMENTALS... 2 2.1 X-RAY PRODUCTION... 2 2. 1. 1 Continuous radiation...
ILLUSTRATIVE EXAMPLE: Given: A = 3 and B = 4 if we now want the value of C=? C = 3 + 4 = 9 + 16 = 25 or 2
Forensic Spectral Anaylysis: Warm up! The study of triangles has been done since ancient times. Many of the early discoveries about triangles are still used today. We will only be concerned with the "right
B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal
1. The elements on the Periodic Table are arranged in order of increasing A) atomic mass B) atomic number C) molar mass D) oxidation number 2. Which list of elements consists of a metal, a metalloid, and
ORTEC DET-SW-UPG. Latest Software Features. Ease of Use. Source Location with the Detective V3 Software
ORTEC DET-SW-UPG Latest Software Features Three Search Modes: Gamma/Neutron total count rate. SNM search mode. Sliding average "monitor" mode. (NEW) User choice of identification schemes: Classify mode
Chapter NP-1. Nuclear Physics. Atomic Nature of Matter TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 PROPERTIES OF SUBSTANCES
Chapter NP-1 Nuclear Physics Atomic Nature of Matter TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 PROPERTIES OF SUBSTANCES 1.1 CHEMICAL AND PHYSICAL PROPERTIES 2.0 COMPOSITION OF ATOMS 2.1 ATOMIC STRUCTURE
Introduction to Elemental Analysis by ED-XRF Justin Masone Product Specialist 3 June 2015
Introduction to Elemental Analysis by EDXRF Justin Masone Product Specialist 3 June 2015 1 / 9 Shimadzu Corporation Established in 1875. Headquartered in Kyoto, Japan Ranked Top 5 Instrument Providers
UNIT (2) ATOMS AND ELEMENTS
UNIT (2) ATOMS AND ELEMENTS 2.1 Elements An element is a fundamental substance that cannot be broken down by chemical means into simpler substances. Each element is represented by an abbreviation called
Chemistry CP Unit 2 Atomic Structure and Electron Configuration. Learning Targets (Your exam at the end of Unit 2 will assess the following:)
Chemistry CP Unit 2 Atomic Structure and Electron Learning Targets (Your exam at the end of Unit 2 will assess the following:) 2. Atomic Structure and Electron 2-1. Give the one main contribution to the
Release notes: Thermo-Calc software package 4.1
Release notes: Thermo-Calc software package 4.1 1995-2014 Foundation of Computational Thermodynamics Stockholm, Sweden Introduction Contents Release notes This document provides information on new products,
Nanoparticle Deposition on Packaging Materials by the Liquid Flame Spray
Nanoparticle Deposition on Packaging Materials by the Liquid Flame Spray Hannu Teisala a, Mikko Tuominen a, Mikko Aromaa b, Jyrki M. Mäkelä b, Milena Stepien c, Jarkko J. Saarinen c, Martti Toivakka c
IUCLID 5 COMPOSITION AND ANALYSIS GUIDANCE DOCUMENT: IRON ORES, AGGLOMERATES [EINECS NUMBER 265 996 3, CAS NUMBER 65996 65 8] IRON ORE PELLETS
IUCLID 5 COMPOSITION AND ANALYSIS GUIDANCE DOCUMENT: IRON ORES, AGGLOMERATES [EINECS NUMBER 265 996 3, CAS NUMBER 65996 65 8] IRON ORE PELLETS INTRODUCTION Each REACH registrant is required to file its
Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics
13 ELECTRONS IN ATOMS Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options
FLUXearch User Information
FLUXearch User Information The web search engine FLUXearch helps you to find commercial available certified reference materials (CRM) for optical emission spectroscopy (OES) and x ray fluorescence analysis
Nuclear ZPE Tapping. Horace Heffner May 2007
ENERGY FROM UNCERTAINTY The uncertainty of momentum for a particle constrained by distance Δx is given, according to Heisenberg, by: Δmv = h/(2 π Δx) but since KE = (1/2) m v 2 = (1/(2 m) ) (Δmv) 2 ΔKE
Lab #11: Determination of a Chemical Equilibrium Constant
Lab #11: Determination of a Chemical Equilibrium Constant Objectives: 1. Determine the equilibrium constant of the formation of the thiocyanatoiron (III) ions. 2. Understand the application of using a
Basic Concepts of X-ray X Fluorescence by Miguel Santiago, Scientific Instrumentation Specialist
Basic Concepts of X-ray X Fluorescence by Miguel Santiago, Scientific Instrumentation Specialist University of Puerto Rico Mayagüez Campus Department of Geology X-ray / Microanalysis Laboratory F - 304
Using the PDF for material identification using elemental data. from XRF and SEM EDS.
XRF and SEM EDS Using the PDF for material identification using elemental data from XRF and SEM EDS. XRF and SEM EDS What? The Powder Diffraction File contains data on pure solid state compounds of well
Measurement of Charge-to-Mass (e/m) Ratio for the Electron
Measurement of Charge-to-Mass (e/m) Ratio for the Electron Experiment objectives: measure the ratio of the electron charge-to-mass ratio e/m by studying the electron trajectories in a uniform magnetic
Chapter 8 Atomic Electronic Configurations and Periodicity
Chapter 8 Electron Configurations Page 1 Chapter 8 Atomic Electronic Configurations and Periodicity 8-1. Substances that are weakly attracted to a magnetic field but lose their magnetism when removed from
Building your own Spectroscope
Building your own Spectroscope 0-0.341-0.445-0.606-0.872-1.36 Lyman Balmer Paschen n=4 n=8 n=7 n=6 n=5 n=4 ENERGY/10-19 J -2.42-5.45 E 5 2 E 4 2 E 3 2 E E 5 3 4 3 n=3 n=2 (Many other transitions beyond
IDENTIFICATION OF PAINTING MATERIALS USED FOR MURAL PAINTINGS BY IMAGE ANALYSIS AND XRF
213 IDENTIFICATION OF PAINTING MATERIALS USED FOR MURAL PAINTINGS BY IMAGE ANALYSIS AND XRF Seiji SHIRONO, Yasuhiro HAYAKAWA National Research Institute for Cultural Properties, Tokyo, Japan ABSTRACT The
Find a pair of elements in the periodic table with atomic numbers less than 20 that are an exception to the original periodic law.
Example Exercise 6.1 Periodic Law Find the two elements in the fifth row of the periodic table that violate the original periodic law proposed by Mendeleev. Mendeleev proposed that elements be arranged
CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 6: Chemical change
CLASS TEST GRADE PHYSICAL SCIENCES: CHEMISTRY Test 6: Chemical change MARKS: 45 TIME: hour INSTRUCTIONS AND INFORMATION. Answer ALL the questions. 2. You may use non-programmable calculators. 3. You may
Question: Do all electrons in the same level have the same energy?
Question: Do all electrons in the same level have the same energy? From the Shells Activity, one important conclusion we reached based on the first ionization energy experimental data is that electrons
Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs
Spectroscopy Biogeochemical Methods OCN 633 Rebecca Briggs Definitions of Spectrometry Defined by the method used to prepare the sample 1. Optical spectrometry Elements are converted to gaseous atoms or
PHYSICAL METHODS, INSTRUMENTS AND MEASUREMENTS Vol. III - Surface Characterization - Marie-Geneviève Barthés-Labrousse
SURFACE CHARACTERIZATION Marie-Geneviève Centre d Etudes de Chimie Métallurgique, CNRS, Vitry-sur-Seine, France Keywords: Surface Analysis, Surface imaging, Surface composition, Surface chemical analysis,
GAMMA-RAY SPECTRA REFERENCES
GAMMA-RAY SPECTRA REFERENCES 1. K. Siegbahn, Alpha, Beta and Gamma-Ray Spectroscopy, Vol. I, particularly Chapts. 5, 8A. 2. Nucleonics Data Sheets, Nos. 1-45 (available from the Resource Centre) 3. H.E.
The Limitations of Hand-held XRF Analyzers as a Quantitative Tool for Measuring Heavy Metal Pesticides on Art Objects. By Özge Gençay Üstün
N.B. A shorter version of this article was published in the ICOM-CC Ethnographic Conservation Newsletter, Number 30, January 2009, pp. 5-8. The Limitations of Hand-held XRF Analyzers as a Quantitative
Periodic Table, Valency and Formula
Periodic Table, Valency and Formula Origins of the Periodic Table Mendelѐѐv in 1869 proposed that a relationship existed between the chemical properties of elements and their atomic masses. He noticed
Chemistry: The Periodic Table and Periodicity
Chemistry: The Periodic Table and Periodicity Name: per: Date:. 1. By what property did Mendeleev arrange the elements? 2. By what property did Moseley suggest that the periodic table be arranged? 3. What
THERMO NORAN SYSTEM SIX ENERGY DISPERSIVE X- RAY SPECTROMETER. Insert Nickname Here. Operating Instructions
THERMO NORAN SYSTEM SIX ENERGY DISPERSIVE X- RAY SPECTROMETER Insert Nickname Here Operating Instructions Table of Contents 1 INTRODUCTION Safety 1 Samples 1 2 BACKGROUND Background Information 3 References
Gold Refining and Coin Manufacturing at the Royal Canadian Mint
INTERNET Sub title will go here The Application of XRF to Gold Refining and Coin Manufacturing at the Royal Canadian Mint Michael W. Hinds, Ph.D. The Business of the Mint Circulation Coins (Canada & Other
Upon completion of this lab, the student will be able to:
1 Learning Outcomes EXPERIMENT B4: CHEMICAL EQUILIBRIUM Upon completion of this lab, the student will be able to: 1) Analyze the absorbance spectrum of a sample. 2) Calculate the equilibrium constant for
1051-232 Imaging Systems Laboratory II. Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002
05-232 Imaging Systems Laboratory II Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002 Abstract: For designing the optics of an imaging system, one of the main types of tools used today is optical
Chapter 5: Diffusion. 5.1 Steady-State Diffusion
: Diffusion Diffusion: the movement of particles in a solid from an area of high concentration to an area of low concentration, resulting in the uniform distribution of the substance Diffusion is process
Quantitative Analysis Software for X-Ray Fluorescence. XRF-FP is a full-featured quantitative analysis package for XRF
Quantitative Analysis Software for X-Ray Fluorescence XRF-FP XRF-FP is a full-featured quantitative analysis package for XRF APPLICATIONS X-Ray Fluorescence Thin-film Analysis RoHS/WEEE Analysis Teaching
All answers must use the correct number of significant figures, and must show units!
CHEM 10113, Quiz 2 September 7, 2011 Name (please print) All answers must use the correct number of significant figures, and must show units! IA Periodic Table of the Elements VIIIA (1) (18) 1 2 1 H IIA
EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions.
EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions. Outcomes After completing this experiment, the student should be able to: 1. Prepare
100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals.
2.21 Ionic Bonding 100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. Forming ions Metal atoms lose electrons to form +ve ions. Non-metal
CHE334 Identification of an Unknown Compound By NMR/IR/MS
CHE334 Identification of an Unknown Compound By NMR/IR/MS Purpose The object of this experiment is to determine the structure of an unknown compound using IR, 1 H-NMR, 13 C-NMR and Mass spectroscopy. Infrared
Basics of Nuclear Physics and Fission
Basics of Nuclear Physics and Fission A basic background in nuclear physics for those who want to start at the beginning. Some of the terms used in this factsheet can be found in IEER s on-line glossary.
University of Wisconsin Chemistry 524 Spectroscopic Applications (GFAA, ICP, UV/Vis, Fluorescence)
University of Wisconsin Chemistry 524 Spectroscopic Applications (GFAA, ICP, UV/Vis, Fluorescence) For this laboratory exercise, you will explore a variety of spectroscopic methods used in an analytical
Chem 1A Exam 2 Review Problems
Chem 1A Exam 2 Review Problems 1. At 0.967 atm, the height of mercury in a barometer is 0.735 m. If the mercury were replaced with water, what height of water (in meters) would be supported at this pressure?
CHAPTER 8 PRACTICE TEST QUESTIONS (END OF CHAPTER 7 TOO)
CHAPTER 8 PRACTICE TEST QUESTIONS (END OF CHAPTER 7 TOO) Information that most likely will be on the front cover of your exam: h i Z 2 ΔE = @ 2.18 x 10 @ 18 f Z 2 f J j @ k n f 2 n i 2 1. Which of the
Copyrighted by Gabriel Tang B.Ed., B.Sc.
Chapter 8: The Periodic Table 8.1: Development of the Periodic Table Johann Dobereiner: - first to discover a pattern of a group of elements like Cl, Br, and I (called triads). John Newland: - suggested
AN INVESTIGATION INTO THE USEFULNESS OF THE ISOCS MATHEMATICAL EFFICIENCY CALIBRATION FOR LARGE RECTANGULAR 3 x5 x16 NAI DETECTORS
AN INVESTIGATION INTO THE USEFULNESS OF THE ISOCS MATHEMATICAL EFFICIENCY CALIBRATION FOR LARGE RECTANGULAR 3 x5 x16 NAI DETECTORS Frazier L. Bronson CHP Canberra Industries, Inc. 800 Research Parkway,
Chemistry 4631. Instrumental Analysis Lecture 1. Chem 4631
Chemistry 4631 Instrumental Analysis Lecture 1 Syllabus Chemistry 4631 Spring 2016 Lecture: MWF 9:00 9:50 a.m. Chem 352 Attendance is expected. Instructor: Dr. Teresa D. Golden Chem 279, 565-2888, [email protected].
CHAPTER 21 ELECTROCHEMISTRY
Chapter 21: Electrochemistry Page 1 CHAPTER 21 ELECTROCHEMISTRY 21-1. Consider an electrochemical cell formed from a Cu(s) electrode submerged in an aqueous Cu(NO 3 ) 2 solution and a Cd(s) electrode submerged
Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total
Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total 1. Calculate the energy in joules of a photon of red light that has a frequency
Atoms and Elements. Atoms: Learning Goals. Chapter 3. Atoms and Elements; Isotopes and Ions; Minerals and Rocks. Clicker 1. Chemistry Background?
Chapter 3 Atoms Atoms and Elements; Isotopes and Ions; Minerals and Rocks A Review of Chemistry: What geochemistry tells us Clicker 1 Chemistry Background? A. No HS or College Chemistry B. High School
Sustainable energy products Simulation based design for recycling
Sustainable energy products Simulation based design for recycling Markus A. Reuter (Prof. Dr. Dr. hc) Director: Technology Management, Outotec Oyj Aalto University (Finland), Central South University (China),
