Magnetic Materials: Hard Magnets
|
|
|
- Kathleen Norton
- 9 years ago
- Views:
Transcription
1 Magnetic Materials: Hard Magnets Hard magnets, also referred to as permanent magnets, are magnetic materials that retain their magnetism after being magnetised. Practically, this means materials that have an intrinsic coercivity of greater than ~10kAm-1. It is believed that permanent magnets have been used for compasses by the Chinese since ~2500BC. However, it was only in the early twentieth century that high carbon steels and then tungsten / chromium containing steels replaced lodestone as the best available permanent magnet material. These magnets were permanent magnets due to the pinning of domain walls by dislocations and inclusions. The movement of dislocations within a material is often hindered by the same factors that affect the motion of domain walls and as a consequence these steels are mechanically very hard and are the origin of the term hard magnetic. These magnets had an energy product of approximately 8kJm -3. Alnicos In the development of permanent magnets the first improvement over steels came about in the early 1930s with the discovery of the group of alloys called the Alnico alloys. These alloys are based mainly on the elements nickel, cobalt and iron with smaller amounts of aluminium, copper and titanium (Typical weight%: Fe-35, Co-35, Ni-15, Al-7, Cu-4, Ti-4). The alloy composition and processing were developed over the years and the properties reached a maximum in 1956 with the introduction of anisotropic columnar alnico 9, with an energy product of ~80kJm -3. These alloys are still used today as they have a high Curie temperature (~850 C), and as a result can operate at higher temperatures as well as having more stable properties around room temperature than some of the more modern alloys. However, their main disadvantage is that they have low intrinsic coercivity (~50kAm -1 ) and as a consequence must be made in the form of horseshoes or long thin cylinders, which cannot be exposed to significant demagnetising fields. The magnets are either sintered or directionally cast, and then annealed in a magnetic field. This processing route develops an oriented microstructure consisting of rods of strongly magnetic Fe-Co (α') in a matrix of weakly magnetic Ni-Al (α). The coercivity derives from the rod shaped nature of the α' phase generating shape anisotropy along with the weak magnetism of the a phase pinning the domain walls.
2 Hard ferrites The next advance in the development of permanent magnets came in the 1950s with the introduction of hard hexagonal ferrites, often referred to as ceramic magnets. These materials are ferrimagnetic and considering the proportion of iron within the material have quite a low remanence (~400mT). The coercivity of these magnets (~250kAm -1 ), however, is far in excess of any previous material. The low remanence means that the maximum energy product is only ~40kJm -3, which is lower than the alnicos, but due to the high coercivity these magnets can be made into thinner sections. The magnets could also be exposed to moderate demagnetising fields and hence could be used for applications such as permanent magnet motors. The hexagonal ferrite structure is found in both BaO. 6 F e2 O 3 and SrO. 6 Fe 2 O 3, but Sr ferrite has slightly superior magnetic properties. The main advantage of ferrites is that they are extremely low cost, due to the ease of processing and the low cost of raw materials, which makes them the most widely used permanent magnet material. The magnets are made by a powder metallurgy processing route and there are no problems with oxidation of the powder during processing, as the material is already a stable oxide. The powder processing route ensures that the magnets comprise of very small grains (<1mm), which is essential for generating coercivity in these magnets. During processing the powder is compacted in a magnetic field in order to align the easy direction of magnetisation of the particles and hence enhances the remanence and the maximum energy product. SmCo Type In 1966 the magnetic properties of the YCo5 phase were discovered. This was the first phase based on a rare-earth (RE) and a transition metal (TM) to be found to have permanent magnetic properties. The combination of RE and TM is ideal as the RE provides the anisotropy to the phase and the TM provides the high magnetisation and Curie temperature. The discovery of SmCo 5 soon followed in 1967 and this became the first commercial RE/TM permanent magnetic material, which was polymer bonded and had an energy product of ~40kJm -3. It was later (1969) found that SmCo 5 sintered magnets could be made with energy products of the ~160kJm -3. These magnets have excess Sm which forms a smoothing grain boundary phase and coercivity is achieved by prevention of the nucleation of reverse domains.
3 In 1976 the record maximum energy product was increased to 240kJm -3, with a Sm 2 Co 17 based alloy. These materials are based on the general composition Sm 2 (Co,Fe,Cu,Zr) 17 and achieve their permanent magnetic properties by careful control of the microstructure. The magnets are produced by powder metallurgy and are solution treated at ~1100ºC, where they are single phase. This homogenising stage is followed by several aging treatments at lower temperature where a cellular microstructure is formed. The cells are based on the Sm 2 Co 17 type phase, which is enriched in Fe and the cell boundaries comprise of a layer of SmCo 5 type phase, which is enriched in Cu. The intrinsic magnetic properties of the cells and the cell boundaries vary such that the magnetic domain wall energy is greatly reduced within the cell boundary and hence pin the domain walls, leading to permanent magnetic properties. There is still a great deal of interest in these materials as they have the potential for operating at high temperature (~500ºC), making new applications possible, for example as bearings in gas turbine engines. The main problem with Sm/Co based magnets is the expense of the raw materials. Samarium is much less abundant than other light rare-earth elements, such as La, Ce, Pr and Nd, which account for over 90% of rare-earth metals in typical rare-earth ores. Cobalt is classified as a strategically important metal and hence sales are restricted. NdFeB Type In 1984 the magnetic properties of NdFeB were discovered simultaneously by General Motors in the USA, and Sumitomo Special Metals of Japan. Both groups produced materials based on the magnetic phase Nd2Fe14B, but employed different processing routes. Sintering In Japan, Sumitomo special metals developed a powder metallurgy processing route, which initially gave the highest ever observed energy product, in excess of 300kJm -3. Subsequently NdFeB based sintered permanent magnets have been produced with maximum energy products of ~450kJm -3, by improved heat treatment, more controlled processing and the use of more iron rich compositions. Sintered NdFeB based magnets achieve their coercivity by virtue of a Nd-rich phase at the grain boundaries which acts to produce liquid phase sintering, smooth the boundaries and hence prevent nucleation of reverse magnetic domains. The processing route for sintered NdFeB based magnets is shown in figure 9. The as-cast ingot must first be broken into a powder. This is achieved most conveniently by exposing the ingot to hydrogen, which is absorbed at the surface. The hydrogen enters the material in the spaces
4 between the atoms and causes the material to expand. The differential expansion generates stress in the ingot and the alloy breaks down into a fine powder. This process is known as Hydrogen Decrepitation (HD). The HD powder is then broken up further by a jet milling stage which reduces the particle size to around 5mm. It must be noted that when the alloy is in a powdered form then it is very flammable and must be handled under an inert gas. Figure 9: The processing route for sintered NdFeB magnets. When the powder has been broken down to so fine a size, each particle of powder is a single crystal, which can be aligned in a magnetic field. This alignment is held in place by pressing the powder into a green compact, which is about 60% dense. The compact is then heated in vacuum to ~1060ºC for 1 hour. During the heating stage the hydrogen comes out of the material and is pumped away. When held at ~1060ºC for 1 hour sintering occurs and the compact densifies, with the assistance of a liquid formed by the melting of the Nd-rich phase. After sintering the magnets are quenched and then heat treated in order to achieve the optimum magnetic properties. The magnet must then be machined to the final dimensions required for the intended application. Due to the large degree of shrinkage that occurs during sintering, which is greater in the direction of alignment, it is not possible to press compacts that will shrink to the exact size required. The
5 machining is a very expensive operation and, particularly for small magnets, a large proportion of the material may need to be machined away. Due to the highly reactive nature of the Nd-rich phase, the magnets tend to corrode very rapidly, particularly in moist environments. Therefore, the next stage in the processing is to provide a protective barrier on the surface of the magnets. This is usually done with a nickel coating, although aluminium, zinc and epoxy resins are also used. Finally, the magnets are magnetised and tested prior to shipping to the customer. Melt Spinning In the USA, melt-spinning was used to produce a ribbon like powdered material. In this process, molten alloy is ejected onto the surface of a rotating water cooled wheel (see figure 10), and cooling rates of the order of one million C/s are achieved. The microstructure and magnetic properties of the NdFeB ribbons formed by melt-spinning are very sensitive to the quench rate, i.e. the speed of the rotating wheel. High quench rates produce essentially amorphous ribbons (i.e. no crystal grains) having negligible intrinsic coercivity. Optimum quench rates yield ribbons with the highest coercivities; they are comprised of roughly spherical Nd 2 Fe 14 B grains ( nm in diameter), which are single domain particles thus have a high coercivity (~1000kAm -1 ). At wheel velocities below the optimum, the slow cooling rate produces ribbons that consist of larger grains and are characterised by low coercivities. This powder cannot be sintered to produce fully dense magnets without destroying the magnetic properties, but can be employed in one of three ways: MQ-I The melt spun ribbon is blended with a resin to produce a bonded permanent magnet. The crystals of MQI material are randomly oriented so that the magnets are isotropic and can be magnetised along any axis. The isotropic nature of the material limits the (BH) max to ~80 kjm -3. MQ-II Improved densification of melt-spun ribbons can be achieved by hot pressing at ~750ºC, without adversely affecting the coercivity of the powder. These "MQII" type magnets exhibit a slight (~10%) degree of magnetic alignment and are 100% dense, i.e. the magnetic properties are not diluted by a non-magnetic material, such as a resin. This gives MQII a higher (BH) max than MQI of kJm -3. MQ III Substantially greater alignment (> 75%), and hence greater maximum energy products, can be obtained by an additional processing step. The MQII material is heated to ~750ºC in a die cavity having a larger diameter and then slowly deformed. This second hot press, termed die upset forging, produces plastic flow and a reorientation of the crystals. Such magnets, known as MQIII are 100% dense, and because of the alignment of crystals have maximum energy products of ~400 kjm -3.
6 Figure 10: The processing routes for melt spun NdFeB magnets. Applications of Hard Magnetic Materials The rate of growth in the production of RE-Magnets has continued unabated, despite fluctuations in the world economy. Thus, sintered NdFeB magnets are exhibiting a current growth rate of ~12% whereas the growth rate for bonded NdFeB magnets is in excess of 20%. The total value of hard magnets now exceeds that of soft magnets and the gap is widening. The reason for this spectacular growth has been due partially to the booming global PC market, as around 60% of NdFeB magnet production goes into disc-drive applications, primarily voice-coilmotors (VCMs). This is by no means the whole story however and a summary of the very wide range of applications for RE-magnets is given below, with many of these being capable of substantial further growth. In general terms, permanent magnets are far more important than is generally realised and this is perhaps, best illustrated by their use in the motor car. In the early fifties a car would have one
7 magnet (the speedometer) whereas some modern cars can have over a hundred permanent magnet motors. Currently these are almost exclusively based on Sr-ferrite (SrFe12019) and the penetration of NdFeB magnets into this area requires a significant cost reduction, an increase in the maximum operating temperature and improvement in corrosion resistance. The potential benefits of using NdFeB magnets would be a significant reduction in volume and weight and an improved efficiency. This will probably be a major influence in the use of these magnets in the future. Growing concern about global warming has scientific and technological implications and many of these impinge on the use of NdFeB magnets. Future uses could include their more widespread use in white goods such as washing machines, refrigerators etc, in order to improve energy efficiency and hence reduce CO 2 emissions. Another large use could be in generators for domestic combined heat and power units and in clean energy production such as windmills. The biggest potential however is in electric vehicles (EVs) which could be hybrid vehicles or totally driven by electricity in the form of batteries or a fuel cell. There has been an enormous increase of interest and activity in this area over the past 5 years and the Japanese have been the first to commercialise these vehicles. Examples of applications for permanent magnetic materials: Automotive: Starter motors, Anti-lock braking systems (ABS), Motor drives for wipers, Injection pumps, Fans and controls for windows, seats etc, Loudspeakers, Eddy current brakes, Alternators. Telecommunications: Loudspeakers, Microphones, Telephone ringers, Electro-acoustic pick-ups, Switches and relays. Data Processing: Disc drives and actuators, Stepping motors, Printers. Consumer Electronics: DC motors for showers, Washing machines, Drills, Low voltage DC drives for cordless appliances, Loudspeakers for TV and Audio, TV beam correction and focusing device, Compact-disc drives, Home computers, Video Recorders, Clocks. Electronic and Instrumentation: Sensors, Contactless switches, NMR spectrometer, Energy meter disc, Electro-mechanical transducers, Crossed field tubes, Flux-transfer trip device, Dampers. Industrial: DC motors for magnetic tools, Robotics, Magnetic separators for extracting metals and ores, Magnetic bearings, Servo-motor drives, Lifting apparatus, Brakes and clutches, Meters and measuring equipment. Astro and Aerospace: Frictionless bearings, Stepping motors, Couplings, Instrumentation, Travelling wave tubes, Auto-compass. Biosurgical: Dentures, Orthodontics, Orthopaedics, Wound closures, Stomach seals, Repulsion collars, Ferromagnetic probes, Cancer cell separators, Magnetomotive artificial hearts, NMR / MRI body scanner.
Figure 1 Hysteresis loop of ferromagnetic material
5 Introduction The use of magnets goes back deep into history with the early magnetic stones being varieties of magnetite (Fe 3 O 4 ). Practical magnets however came much later and were based on quenched
Guide to Magnetic Materials
Guide to Magnetic s Abstract The purpose of this guide is to present the various materials and their performance, and also to give you the basic knowledge in choosing the right magnet material for your
KOLEKTOR MAGNET TECHNOLOGY
ZIT S KOERZIT S Sintered AlNiCo Koerzit is the KOLEKTOR MAGNET TECHNOLOGY GmbH tradename for sintered permanent magnets based on AlNi and AlNiCo alloys. Koerzit magnets are made by powder metallurgy. KOLEKTOR
FEATURES AND BENEFITS OF DIFFERENT PLATINUM ALLOYS. Kris Vaithinathan and Richard Lanam Engelhard Corporation
FEATURES AND BENEFITS OF DIFFERENT PLATINUM ALLOYS Kris Vaithinathan and Richard Lanam Engelhard Corporation Introduction There has been a significant increase in the world wide use of platinum for jewelry
Insertion Devices Lecture 4 Permanent Magnet Undulators. Jim Clarke ASTeC Daresbury Laboratory
Insertion Devices Lecture 4 Permanent Magnet Undulators Jim Clarke ASTeC Daresbury Laboratory Introduction to Lecture 4 So far we have discussed at length what the properties of SR are, when it is generated,
NetShape - MIM. Metal Injection Molding Design Guide. NetShape Technologies - MIM Phone: 440-248-5456 31005 Solon Road FAX: 440-248-5807
Metal Injection Molding Design Guide NetShape Technologies - MIM Phone: 440-248-5456 31005 Solon Road FAX: 440-248-5807 Solon, OH 44139 [email protected] 1 Frequently Asked Questions Page What
Casting. Training Objective
Training Objective After watching the program and reviewing this printed material, the viewer will learn the essentials of the various metal casting processes used in industry today. The basic principles
EFFECT OF PARTICLE SIZE DISTRIBUTION ON THE MICROSTRUCTURE AND MAGNETIC PROPERTIES OF SINTERED NdFeB MAGNETS
Effect Rev. Adv. of particle Mater. Sci. size 28 distribution (2011) 185-189 on the microstructure and magnetic properties of sintered... 185 EFFECT OF PARTICLE SIZE DISTRIBUTION ON THE MICROSTRUCTURE
Permanent Magnet Materials
Measurements with a VSM Permanent Magnet Materials B. C. Dodrill B. J. Kelley Lake Shore Cryotronics, Inc. 575 McCorkle Blvd. Westerville, OH, 43082 Please address correspondence to [email protected]
Magnets and their specifications
MEDER electronic ABOUT MAGNETS Magnets and their specifications Magnets are available in multiple specifications on the market. Almost all dimensions and geometries can be realised. To activate the reed
The mechanical properties of metal affected by heat treatment are:
Training Objective After watching this video and reviewing the printed material, the student/trainee will learn the basic concepts of the heat treating processes as they pertain to carbon and alloy steels.
Nd-Fe-B Magnets, Properties and Applications
Nd-Fe-B Magnets, Properties and Applications Michael Weickhmann, Vacuumschmelze GmbH & Co. KG, Hanau, Germany Abstract Permanent magnets based on Rare Earth components have become more and more important
ME 612 Metal Forming and Theory of Plasticity. 1. Introduction
Metal Forming and Theory of Plasticity Yrd.Doç. e mail: [email protected] Makine Mühendisliği Bölümü Gebze Yüksek Teknoloji Enstitüsü In general, it is possible to evaluate metal forming operations
THE EFFECT OF THE HDDR PROCESS ON THE PRODUCTION OF Pr-Fe-Co-B-Nb SINTERED MAGNETS
THE EFFECT OF THE HDDR PROCESS ON THE PRODUCTION OF Pr-Fe-Co-B-Nb SINTERED MAGNETS E. A. Ferreira, J. C. S. Casini, E. A. Périgo, R. N. Faria, H. Takiishi Av. Prof. Lineu Prestes, 2242 - CEP 05508-000,
Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied
Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Stress and strain fracture or engineering point of view: allows to predict the
North American Stainless
North American Stainless Long Products Stainless Steel Grade Sheet 2205 UNS S2205 EN 1.4462 2304 UNS S2304 EN 1.4362 INTRODUCTION Types 2205 and 2304 are duplex stainless steel grades with a microstructure,
Lecture 19: Eutectoid Transformation in Steels: a typical case of Cellular
Lecture 19: Eutectoid Transformation in Steels: a typical case of Cellular Precipitation Today s topics Understanding of Cellular transformation (or precipitation): when applied to phase transformation
Permanent Magnetic Couplings and Brakes for Drive Technology
Tridelta Magnetsysteme A Tridelta Group Company Permanent Magnetic Couplings and Brakes for Drive Technology Raw Materials Magnets Systems and Components Magnet N1 Soft iron N2 Resin Introduction and principals
MEDER electronic group
Magnets & Magnetic part II 12/03/2009 Table of contents Types of magnets Where does the energy come from? What are the effects of stacking magnets in series and in parallel? When does the strength of a
EDEXCEL INTERNATIONAL GCSE CHEMISTRY EDEXCEL CERTIFICATE IN CHEMISTRY ANSWERS SECTION C
EDEXCEL INTERNATIONAL GCSE CHEMISTRY EDEXCEL CERTIFICATE IN CHEMISTRY ANSWERS SECTION C Chapter 16 1. Burn sulfur in air to give sulfur dioxide. S(s) + O 2 (g) ----> SO 2 (g) Pass this with more air over
Welding of Plastics. Amit Mukund Joshi. (B.E Mechanical, A.M.I.Prod.E)
Welding of Plastics Amit Mukund Joshi (B.E Mechanical, A.M.I.Prod.E) Introduction Mechanical fasteners, adhesives, and welding processes can all be employed to form joints between engineering plastics.
CENTRIFUGAL CASTING. Email: [email protected] [email protected]
CENTRIFUGAL CASTING Amit M Joshi (B.Engg. Mechanical, A.M.I.Prod.E, A.I.E) Dept. of Metallurgical Engg. & Material Science, Indian Institute of Technology Bombay, India. Email: [email protected] [email protected]
North American Stainless
North American Stainless Flat Products Stainless Steel Grade Sheet 310S (S31008)/ EN 1.4845 Introduction: SS310 is a highly alloyed austenitic stainless steel designed for elevated-temperature service.
TESTING WHETHER THE TEMPERATURE OF A MAGNET WILL AFFECT HOW FAR ITS MAGNETIC FIELD IS
TESTING WHETHER THE TEMPERATURE OF A MAGNET WILL AFFECT HOW FAR ITS MAGNETIC FIELD IS Kenan Balkas Cary Academy ABSTRACT The purpose of this experiment is about testing to see what the strengths will be
Handling Corrosive or Abrasive Liquids
Handling Corrosive or Abrasive Liquids Defining abrasion and corrosion An abrasive liquid is one that has particles in it. Some, like inks, have very fine particles, while others, like some paints, contain
Drill Pipe Hard-facing
Drill Pipe Hard-facing GLOBAL PROTECTION AGAINST WEAR AND TEAR Oxyacetylene Rods Flux- and Metal Cored Wires Electrodes PTA - Welding Oxyacetylene Welding and Spray Powders Flame Spraying FLSP Arc Spraying
Copper Alloys for Injection, Thermoform and Blow Molds
Copper Alloys for Injection, Thermoform and Blow Molds by Robert Kusner Manager of Technical Services June 2015 Today s Agenda History of copper mold alloys Why use copper? Which copper alloy should I
Aluminum Alloys. casting or a semisolid casting
Functionality & Service Requirements When determining how a component will function, the first question to ask is: what purpose will the component serve? Choosing the alloy, casting process and thermal
MSE 528 - PRECIPITATION HARDENING IN 7075 ALUMINUM ALLOY
MSE 528 - PRECIPITATION HARDENING IN 7075 ALUMINUM ALLOY Objective To study the time and temperature variations in the hardness and electrical conductivity of Al-Zn-Mg-Cu high strength alloy on isothermal
SAND CAST CHILL CAST LM4 - TF
1 This alloy conforms with British Standards 1490 and is similar to the obsolete specifications BS.L79 and D.T.D 424A. Castings may be in the cast (M) of fully heat treated (TF) conditions. CHEMICAL COMPOSITION
Metal Injection Molded Parts
Metal Injection Molded Parts Metal Injection Molding (MIM) is a powder metallurgy process. he difference between MIM and conventional powder metallurgy is that in MIM, metal powder along with binders is
Weld Cracking. An Excerpt from The Fabricators' and Erectors' Guide to Welded Steel Construction. The James F. Lincoln Arc Welding Foundation
Weld Cracking An Excerpt from The Fabricators' and Erectors' Guide to Welded Steel Construction The James F. Lincoln Arc Welding Foundation Weld Cracking Several types of discontinuities may occur in welds
Aluminium as Construction Material in Ammonia Refrigeration Cycles
Aluminium as Construction Material in Ammonia Refrigeration Cycles Experiences With Aluminium Compared to other metals, aluminium has only a brief history as an engineering material. While, about 150 years
Crystal Structure of Aluminum, Zinc, and their Alloys By: Omar Fajardo Sebastian Henao Devin Baines ENGR45, F2014, SRJC
Crystal Structure of Aluminum, Zinc, and their Alloys By: Omar Fajardo Sebastian Henao Devin Baines ENGR45, F2014, SRJC Purpose The purpose of this experiment was to examine and observe the microstructure
Injection molding equipment
Injection Molding Process Injection molding equipment Classification of injection molding machines 1. The injection molding machine processing ability style clamping force(kn) theoretical injection volume(cm3)
Problems in Welding of High Strength Aluminium Alloys
Singapore Welding Society Newsletter, September 1999 Problems in Welding of High Strength Aluminium Alloys Wei Zhou Nanyang Technological University, Singapore E-mail: [email protected] Pure aluminium has
Lecture slides on rolling By: Dr H N Dhakal Lecturer in Mechanical and Marine Engineering, School of Engineering, University of Plymouth
Lecture slides on rolling By: Dr H N Dhakal Lecturer in Mechanical and Marine Engineering, School of Engineering, University of Plymouth Bulk deformation forming (rolling) Rolling is the process of reducing
Ion Beam Sputtering: Practical Applications to Electron Microscopy
Ion Beam Sputtering: Practical Applications to Electron Microscopy Applications Laboratory Report Introduction Electron microscope specimens, both scanning (SEM) and transmission (TEM), often require a
GENERAL PROPERTIES //////////////////////////////////////////////////////
ALLOY 625 DATA SHEET //// Alloy 625 (UNS designation N06625) is a nickel-chromium-molybdenum alloy possessing excellent resistance to oxidation and corrosion over a broad range of corrosive conditions,
italtec PRINTED CIRCUITS EQUIPMENT PRINTED CIRCUITS EQUIPMENT Insulator machines Echting machines Special equipment and machines
PRINTED CIRCUITS EQUIPMENT PRINTED CIRCUITS EQUIPMENT Insulator machines Echting machines Special equipment and machines On customer request it is possible to supply: Benches for PCB Oven for PCB Chemicals
EML 2322L MAE Design and Manufacturing Laboratory. Welding
EML 2322L MAE Design and Manufacturing Laboratory Welding Intro to Welding A weld is made when separate pieces of material to be joined combine and form one piece when heated to a temperature high enough
Tableting Punch Performance Can Be Improved With Precision Coatings
Tableting Punch Performance Can Be Improved With Precision Coatings by Arnold H. Deutchman, Ph. D. Director of Research and Development (614) 873-4529 X 114 [email protected] Mr. Dale C. Natoli
Die casting Figure M2.3.1
Die casting Die casting is a moulding process in which the molten metal is injected under high pressure and velocity into a split mould die. It is also called pressure die casting. The split mould used
Iron-Carbon Phase Diagram (a review) see Callister Chapter 9
Iron-Carbon Phase Diagram (a review) see Callister Chapter 9 University of Tennessee, Dept. of Materials Science and Engineering 1 The Iron Iron Carbide (Fe Fe 3 C) Phase Diagram In their simplest form,
Cutting Tool Materials
Training Objectives After watching the video and reviewing this printed material, the viewer will gain knowledge and understanding of cutting tool metallurgy and specific tool applications for various
Vacuum Evaporation Recap
Sputtering Vacuum Evaporation Recap Use high temperatures at high vacuum to evaporate (eject) atoms or molecules off a material surface. Use ballistic flow to transport them to a substrate and deposit.
Section 4: NiResist Iron
Section 4: NiResist Iron Section 4 Ni-Resist Description of Grades...4-2 201 (Type 1) Ni-Resist...4-3 202 (Type 2) Ni-Resist...4-6 Stock Listings...4-8 4-1 Ni-Resist Description of Grades Ni-Resist Dura-Bar
Solidification, Crystallization & Glass Transition
Solidification, Crystallization & Glass Transition Cooling the Melt solidification Crystallization versus Formation of Glass Parameters related to the formaton of glass Effect of cooling rate Glass transition
Engine Bearing Materials
Engine Bearing Materials Dr. Dmitri Kopeliovich (Research & Development Manager) The durable operation of an engine bearing is achieved if its materials combine high strength (load capacity, wear resistance,
COMMISSION DIRECTIVE 2013/28/EU
L 135/14 Official Journal of the European Union 22.5.2013 COMMISSION DIRECTIVE 2013/28/EU of 17 May 2013 amending Annex II to Directive 2000/53/EC of the European Parliament and of the Council on end-of-life
HANDBOOK OF MODERN FERROMAGNETIC MATERIALS
HANDBOOK OF MODERN FERROMAGNETIC MATERIALS Alex Goldman, B.S., A.M., Ph.D. Ferrite Technology Worldwide w Kluwer Academic Publishers Boston/Dordrecht/London TABLE OF CONTENTS Foreword by Takeshi Takei
Start the Design Study!
A Design Study in Centrifugal Steel Castings Hydraulic Accumulator Cylinder for Navy Submarines Design Study Outline Introduction Design for Performance Duplex Steel Approach Alloy Selection Design for
Chapter 5: Diffusion. 5.1 Steady-State Diffusion
: Diffusion Diffusion: the movement of particles in a solid from an area of high concentration to an area of low concentration, resulting in the uniform distribution of the substance Diffusion is process
Plastic Injection Molding
Training Objective After watching this video and reviewing the printed material, the student/trainee will understand the principles and physical operations of the plastic injection molding process. An
Influence of Belt Furnace on Glass-to-Metal Seal Process
Influence of Belt Furnace on Glass-to-Metal Seal Process Introduction The glass, under suitable conditions, will bond well to a wide variety of metals and alloys which has led to the development of many
CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS
7-1 CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS Basic Concepts of Dislocations Characteristics of Dislocations 7.1 The dislocation density is just the total dislocation length
Powder Injection Moulding (PIM) of Dissimilar Materials and Complex Internal Features
Powder Injection Moulding (PIM) of Dissimilar Materials and Complex Internal Features Li Tao, Scientist II Metal&Ceramic Team, Forming Technology Group, (SIMTech) Tel: 67938968 Email: [email protected]
Unit 6: EXTRUSION. Difficult to form metals like stainless steels, nickel based alloys and high temperature metals can also be extruded.
1 Unit 6: EXTRUSION Introduction: Extrusion is a metal working process in which cross section of metal is reduced by forcing the metal through a die orifice under high pressure. It is used to produce cylindrical
PIEZOELECTRIC FILMS TECHNICAL INFORMATION
PIEZOELECTRIC FILMS TECHNICAL INFORMATION 1 Table of Contents 1. PIEZOELECTRIC AND PYROELECTRIC EFFECTS 3 2. PIEZOELECTRIC FILMS 3 3. CHARACTERISTICS PROPERTIES OF PIEZOELECTRIC FILMS 3 4. PROPERTIES OF
CHAPTER 5: MAGNETIC PROPERTIES
CHAPTER 5: MAGNETIC PROPERTIES and Magnetic Materials ISSUES TO ADDRESS... Why do we study magnetic properties? What is magnetism? How do we measure magnetic properties? What are the atomic reasons for
Understanding the Wire EDM Process
5 Understanding the Wire EDM Process 69 Accuracy and Tolerances Wire EDM is extremely accurate. Many machines move in increments of 40 millionths of an inch (.00004") (.001 mm), some in 10 millionths of
ASTM A860/A860M-09 Standard Specification for Wrought High Strength. Ferritic Steel Butt Welding Fittings. 1. Scope :- 2. Reference Documents :-
Standard Specification for Wrought High Strength Ferritic Steel Butt Welding Fittings 1. Scope :- 1.1 This specification covers wrought high strength ferritic steel butt-welding fitting of seamless and
LASER CUTTING OF STAINLESS STEEL
LASER CUTTING OF STAINLESS STEEL Laser inert gas cutting is the most applicable process type used for cutting of stainless steel. Laser oxygen cutting is also applied in cases where the cut face oxidation
Standex-Meder Electronics. Custom Engineered Solutions for Tomorrow
Standex-Meder Electronics Custom Engineered Solutions for Tomorrow Reed Switch Technology Product Training Copyright 2013 Standex-Meder Electronics. All rights reserved. Introduction Purpose Discover Standex-Meder
THE CAPABILITIES OF ZINC DIE CASTING
THE CAPABILITIES OF ZINC DIE CASTING Presented by: Ryan Winter (Manager Customer Engineering Services) Eastern Alloys, Inc. Eastern Alloys, Inc. Introduction to ZINC Introduction to Zinc Zinc is the 4th
Laser beam sintering of coatings and structures
Laser beam sintering of coatings and structures Anne- Maria Reinecke, Peter Regenfuß, Maren Nieher, Sascha Klötzer, Robby Ebert, Horst Exner Laserinstitut Mittelsachsen e.v. an der Hochschule Mittweida,
X15TN TM. A high hardness, corrosion and fatigue resistance martensitic grade CONTINUOUS INNOVATION RESEARCH SERVICE.
TM A high hardness, corrosion and fatigue resistance martensitic grade CONTINUOUS METALLURGICAL SPECIAL STEELS INNOVATION RESEARCH SERVICE DEVELOPMENT Enhancing your performance THE INDUSTRIAL ENVIRONMENT
Atomic Structure. Atoms consist of: Nucleus: Electrons Atom is electrically balanced equal electrons and protons. Protons Neutrons
Basics of Corrosion Performance Metals Sacrificial anode manufacturer Specialize in aluminum alloy anodes All products made in the USA (Berks county, PA) ISO9001/2001 Certified Quality System Also traditional
Permanent Magnet Economics. Robert Wolf Alliance LLC
Permanent Magnet Economics Robert Wolf Alliance LLC The Magnet Family Permanent Magnets Cast Sintered Bonded Other Alnico Alnico Calendared Compression Magnet Steel Ferrite Ferrite Ferrite PtCo SmCo SmCo
Introduction to JIGS AND FIXTURES
Introduction to JIGS AND FIXTURES Introduction The successful running of any mass production depends upon the interchangeability to facilitate easy assembly and reduction of unit cost. Mass production
Guide to Magnet Design
Guide to Magnet Design Abstract The Magnet Design Guide is an introduction to magnet design. To go through all steps in this guide takes approximately 15 minutes. Basics Magnets are of importance in our
In the previous presentation, we discussed how x-rays were discovered and how they are generated at the atomic level. Today we will begin the
In the previous presentation, we discussed how x-rays were discovered and how they are generated at the atomic level. Today we will begin the discussion on the major components of the x-ray machine. Today
GLOBAL MANUFACTURING. ARAUJO, Anna Carla AUG, 2015 Mechanical Engineering Department POLI/COPPE/UFRJ
GLOBAL MANUFACTURING ARAUJO, Anna Carla AUG, 2015 Mechanical Engineering Department POLI/COPPE/UFRJ Workpiece Presentation Powder Metallurgy and Additive Manufacturing [#7] Powder Metallurgy PM parts can
Grade Selection... Coated Grades / CVD... Coated Grades / PVD... Cermet... PCBN (T-CBN)... PCD (T-DIA)... Ceramics...
Products Grade Selection... Coated / CVD... Coated / PVD... Cermet... PCBN (T-CBN)... PCD (T-DIA)... Ceramics... Uncoated Cemented Carbides... Ultra fine Grain Cemented Carbides... -2-4 -6-8 -0-2 - -4-5
Chapter Outline: Phase Transformations in Metals
Chapter Outline: Phase Transformations in Metals Heat Treatment (time and temperature) Microstructure Mechanical Properties Kinetics of phase transformations Multiphase Transformations Phase transformations
PRODUCT PROFILE. ELECTROLOY in partnership with FCT Asia Pte Limited. in manufacturing. Nihon Superior Lead Free Solder Bar.
PRODUCT PROFILE ELECTROLOY in partnership with FCT Asia Pte Limited in manufacturing Nihon Superior Lead Free Solder Bar SN100C Product Name Product Code LEAD FREE BAR LEAD FREE BAR ( TOP UP ALLOY ) SN100C
This topic explores the key concepts of magnetism as they relate to: the phenomenon of magnetism magnetic forces and fields a theory of magnetism.
Magnetism Introduction This topic explores the key concepts of magnetism as they relate to: the phenomenon of magnetism magnetic forces and fields a theory of magnetism. Key concepts of magnetism The activities
How To Write A Recipe Card
Forging stock standards guideline Issue n 10 FORGING STOCK 30 Microstructure 34 Grain size Air melted (except if δ ferrite or problem 1 per batch) 50 Cleanness/ Inclusion See EN 2157-2. 51 Macrostructure
Integrated Computational Materials Engineering (ICME) for Steel Industry
Integrated Computational Materials Engineering (ICME) for Steel Industry Dr G Balachandran Head ( R&D) Kalyani Carpenter Special Steels Ltd., Pune 411 036. Indo-US Workshop on ICME for Integrated Realization
Sinterstation. Pro Direct Metal SLM System
Sinterstation Pro Direct Metal SLM System Jim Dier SLS and SLM Systems, Upper Midwest 3D Systems, Inc. 18 July 2008 Introduction Product overview Systems Sinterstation Pro DM100 SLM System Sinterstation
Magnetic Deburring & Polishing Machine
Magnetic Deburring & Polishing Machine Operation Manual Models: EHD-750CL, 766, 735, 728, 716, 715 1 Index 1. Before Starting to Use the spinner 2. Functions 3. Features 4. Applications 5. Principle of
Laser sintering of greens compacts of MoSi 2
Laser sintering of greens compacts of MoSi 2 G. de Vasconcelos 1, R. Cesar Maia 2, C.A.A.Cairo 3, R. Riva 2, N.A.S.Rodrigues 2, F.C.L.Mello 3 Instituto de Estudos Avançados 1, Instituto Tecnológico de
Force on a square loop of current in a uniform B-field.
Force on a square loop of current in a uniform B-field. F top = 0 θ = 0; sinθ = 0; so F B = 0 F bottom = 0 F left = I a B (out of page) F right = I a B (into page) Assume loop is on a frictionless axis
Chapter 5 POWDER-BASED RAPID PROTOTYPING SYSTEMS
Chapter 5 POWDER-BASED RAPID PROTOTYPING SYSTEMS 5.1 3D SYSTEMS SELECTIVE LASER SINTERING (SLS) 5.1.1 Company 3D Systems Corporation was founded by Charles W. Hull and Raymond S. Freed in 1986. The founding
CHROMIUM STEEL POWDERS FOR COMPONENTS. JEANETTE LEWENHAGEN Höganäs AB, Sweden
CHROMIUM STEEL POWDERS FOR COMPONENTS JEANETTE LEWENHAGEN Höganäs AB, Sweden KEYWORDS Pre-alloyed steel powder, chromium, PM ABSTRACT Chromium as an alloying element is of great interest due to its low
Objectives/Introduction Extraction of zinc Physical properties of zinc Zinc casting alloys Wrought zinc alloys Engineering design with zinc alloys
Lecture 7 Zinc and its alloys Subjects of interest Objectives/Introduction Extraction of zinc Physical properties of zinc Zinc casting alloys Wrought zinc alloys Engineering design with zinc alloys Objectives
Solid shape molding is not desired in injection molding due to following reasons.
PLASTICS PART DESIGN and MOULDABILITY Injection molding is popular manufacturing method because of its high-speed production capability. Performance of plastics part is limited by its properties which
Lead & Magnet Wire Connection Methods Using the Tin Fusing Method Joyal A Division of AWE, Inc.
Lead & Magnet Wire Connection Methods Using the Tin Fusing Method Joyal A Division of AWE, Inc. Abstract The technology for connecting lead and magnet wires for electric motors and electro mechanical devices
Think precision, Think HSS REAMING
Think precision, Think HSS REAMING SUMMARY REAMING TOOLS 2 Zoom on a reamer 3 Which HSS for maximum efficiency? 4 Coatings for the best performance 5 Vocabulary 6 Choose the right design 7 Types of bevel
CHAPTER 6 WEAR TESTING MEASUREMENT
84 CHAPTER 6 WEAR TESTING MEASUREMENT Wear is a process of removal of material from one or both of two solid surfaces in solid state contact. As the wear is a surface removal phenomenon and occurs mostly
Soldering of EconoPACK TM, EconoPIM TM, EconoBRIDGE TM, EconoPACK +, EconoDUAL, EasyPACK and EasyPIM TM - Modules
Seite 1 Soldering of EconoPACK TM, EconoPIM TM, EconoBRIDGE TM, EconoPACK +, EconoDUAL, EasyPACK and EasyPIM TM - Modules Soldering with alloys containing lead (SnPb) is the standard connection technology
CAST IRON THE BASICS. Heatline - Cast Iron Radiators SMOOTH FLAT FILE TO REMOVE ANY SWARF. ONE TIME. ASSEMBLY. JOINTS SHOULD BE TIGHTENED.
CAST IRON THE BASICS 1. DO NOT LIFT ON YOUR OWN. 2. ONLY LIFT THE RADIATOR VERTICALLY. 3. DO NOT LIFT MORE THAN 8/10 SECTIONS AT ANY ONE TIME. 4. POSITION THE RADIATOR BEFORE FINAL ASSEMBLY. 5. THIS PRODUCT
Coating Technology: Evaporation Vs Sputtering
Satisloh Italy S.r.l. Coating Technology: Evaporation Vs Sputtering Gianni Monaco, PhD R&D project manager, Satisloh Italy 04.04.2016 V1 The aim of this document is to provide basic technical information
TIE-32: Thermal loads on optical glass
PAGE 1/7 1 Introduction In some applications optical glasses have to endure thermal loads: Finishing procedures for optical elements like lenses, prisms, beam splitters and so on involve thermal processes
Chapter Outline. Diffusion - how do atoms move through solids?
Chapter Outline iffusion - how do atoms move through solids? iffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities The mathematics of diffusion Steady-state diffusion (Fick s first law)
Handbook on the Ultrasonic Examination. Austenitic Welds
Handbook on the Ultrasonic Examination Austenitic Welds The International Institute of Welding Edition Handbook On the Ultrasonic Examination of Austenitic Welds Compiled by COMMISSION V Testing, Measurement,
Two bar magnets are brought near each other as shown. The magnets... A) attract B) repel C) exert no net force on each other.
Magnetic Fields and Forces Learning goals: Students will be able to Predict the direction of the magnet field for different locations around a bar magnet and an electromagnet. Relate magnetic field strength
