1.3-µm, 4 25-Gbit/s, EADFB laser array module with large-output-power and lowdriving-voltage. transmitter
|
|
|
- Berenice May
- 9 years ago
- Views:
Transcription
1 1.3-µm, 4 25-Gbit/s, EADFB laser array module with large-output-power and lowdriving-voltage for energy-efficient 100GbE transmitter Takeshi Fujisawa, 1,* Shigeru Kanazawa, 1 Kiyoto Takahata, 1 Wataru Kobayashi, 1 Takashi Tadokoro, 1 Hiroyuki Ishii, 1 and Fumiyoshi Kano 1 1 NTT Photonics Laboratories, NTT Corporation, Morinosato Wakamiya, 3-1, Atsugi, Kanagawa, , Japan *[email protected] Abstract: A 1.3-µm, 4 25-Gbit/s, EADFB laser array module with large output power and low driving voltage is developed for 100GbE. A novel rear grating DFB laser is introduced to increase the output power of the laser while keeping the single mode lasing, which is desirable for a monolithic integration. Also, InGaAlAs-based electroabsorption modulators make very-low-driving-voltage operation possible due to their steep extinction curves. With the module, very clear 25-Gbit/s eye openings are obtained for four wavelengths with the driving voltage of only 0.5 V while securing the dynamic extinction ratio required by the system. These results indicate that the presented module is a promising candidate for energyefficient future 100GbE transmitter Optical Society of America OCIS codes: ( ) Semiconductor Laser; ( ) Integrated optics devices. References and links T. Fujisawa, M. Arai, N. Fujiwara, W. Kobayashi, T. Tadokoro, K. Tsuzuki, Y. Akage, R. Iga, T. Yamanaka, and F. Kano, 25-Gbit/s 1.3-µm InGaAlAs-based electroabsorption modulator integrated with a DFB laser for metroarea (40 km) 100-Gbit/s Ethernet system, Electron. Lett. 45, (2009). 3. S. Makino, K. Shinoda, T. Kitatani, H. Hayashi, T. Shiota, S. Tanaka, M. Aoki, N. Sasada, and K. Naoe, Highspeed EA-DFB laser for 40-G and 100-Gbps, IEICE Trans. Electron., E 92-C, (2009). 4. T. Saito, T. Yamatoya, Y. Morita, E. Ishimura, C. Watatani, T. Aoyagi, and T. Ishikawa, Clear eye opening 1.3µm-25/43Gbps EML with novel tensile-strained asymmetric QW absorption layer, in Proc. ECOC, P (2009) 5. H. Takahashi, T. Shimamura, T. Sugiyama, M. Kubota, and K. Nakamura, High-power 25-Gb/s electroabsorption modulator integrated with a laser diode, IEEE Photon. Technol. Lett. 21(10), (2009). 6. T. Fujisawa, K. Takahata, T. Tadokoro, W. Kobayashi, A. Ohki, N. Fujiwara, S. Kanazawa, T. Yamanaka, and F. Kano, Long-reach 100Gbit Ethernet light source based on 4 25-Gbit/s 1.3-µm InGaAlAs EADFB lasers, IEICE Trans. on Electron., E 94-C, (2011). 7. T. Fujisawa S. Kanazawa, H. Ishii, N. Nunoya, Y. Kawaguchi, A. Ohki, N. Fujiwara, K. Takahata, R. Iga, F. Kano, and H. Oohashi, 1.3-µm, 4 25-Gbit/s, monolithically integrated light source for metro area 100-Gbit/s Ethernet, IEEE Photon. Technol. Lett. 23, (2011). 8. S. Kanazawa T. Fujisawa, A. Ohki, H. Ishii, N. Nunoya, Y. Kawaguchi, N. Fujiwara, K. Takahata, R. Iga, F. Kano, and H. Oohashi, A compact EADFB laser array module for a future 100-Gbit/s Ethernet transceiver, IEEE J. Sel. Top. Quantum Electron. 17, (2011). 9. J. Shimizu, M. Aoki, T. Tsuchiya, M. Shirai, A. Taike, T. Ohtoshi, and S. Tsuji, Advantages of optical modulators with InGaAlAs/InGaAlAs MQW structure, Electron. Lett. 38(15), (2002). 10. H. Fukano, T. Yamanaka, M. Tamura, and T. Kondo, Very-low-driving voltage electroabsorption modulators operating at 40Gb/s, J. Lightwave Technol. 24(5), (2006). 1. Introduction The abrupt increase in the demand for huge data capacity for data communication systems requires higher and higher bit rates for local area networks (LANs). 100Gbit Ethernet (100GbE) was just standardized in 2010 [1] to cope with the demand, and related optical technologies have been intensively studied. On the transmitter side, four 25-Gbit/s (25G) light (C) 2012 OSA 2 January 2012 / Vol. 20, No. 1 / OPTICS EXPRESS 614
2 sources are required with their optical multiplexer (MUX) in the 1.3-µm band for singlemode-fiber (SMF) based 100GbE (100GBASE-LR4 and ER4), and a lot of work has been done on 25G light sources in discrete form for the first generation, the so-called centum formfactor pluggable (CFP) transceiver. Among them, electroabsorption modulators (EAM) integrated with DFB lasers (EADFB lasers) are promising candidates due to their clear waveform and large extinction ratio [2 6]. One of the problems with the CFP transceiver is its size, since all the components [four 25G light sources, the MUX, and others] are placed separately. For future 100GbE transceivers, size reduction is indispensable. A monolithically integrated transmitter chip, in which four 25G EADFB lasers and a 4 1 multi-mode interference (MMI) optical MUX are integrated on one chip, has recently been developed [7]. However, the module output power is not large enough, because a normal λ/4 wavelength shift structure was used for the DFB lasers and the 4 1 MMI MUX has 6-dB intrinsic coupling loss. Another issue for future 100GbE transceivers is power consumption. Since the package will be smaller than that for the CFP transceiver, the power consumption has to be reduced while ensuring that the performance of the module is maintained. Currently, the power consumed by 25G electrical laser/modulator drivers is relatively large. When a EADFB laser is used as the light source, the power consumption of the drivers is partly determined by the voltage swing required to operate the EAMs. So far, the reported driving voltages of 25G EAMs are over 2 V [2 7]. By lowering these values, there is a possibility of a dramatic reduction of the driver power consumption, or even driverless operation may be possible. In this work, we developed a 1.3-µm, 4 25G EADFB laser array module for the nextgeneration of 100GbE transceiver. A novel rear grating structure increases the output power while keeping the single mode lasing. By placing the active region without a grating at the front facet side and increasing the ratio in the cavity, the output power from the front facet is increased due to the amplification of the optical field in the cavity. Further, a newly designed EAM structure reduces the driving voltage while securing the dynamic extinction ratio (DER) required by the system. With the device, ultralow-driving-voltage operation (0.5 V) of the EADFB laser array is achieved for the first time and clear eye-openings are obtained after 10- km single-mode fiber (SMF) transmission. 2. Chip design Figure 1 shows a micrograph of our fabricated EADFB laser array chip. The layout, waveguide structures, and the fabrication process are basically the same as in [6] and [8]. A shallow-ridge waveguide buried with benzocyclobutene (BCB) is used for the EADFB laser section to obtain a large E/O bandwidth, while a deep-ridge waveguide is used for the MUX region due to its strong confinement of light. Metal-organic vapour-phase epitaxy (MOVPE) was used for crystal growth and a butt-joint technique was used to connect the DFB lasers, EAMs, monitor photodiodes (PDs), and MUX region. The layer structure of PDs is the same as that of DFB lasers. The front and rear facets of the chip were coated with AR films. The length of the EAMs and monitor PDs is 150 µm. The width and length of the MMI are 20 and 250 µm, respectively. The measured loss of the entire passive region, including the shallowand deep-ridge waveguide interface, is around 8 db. (C) 2012 OSA 2 January 2012 / Vol. 20, No. 1 / OPTICS EXPRESS 615
3 Fig. 1. Micrograph of the fabricated chip. Fig. 2. Longitudinal cross sections of DFB lasers with conventional λ/4 wavelength shifted grating (left) and rear grating (right). Fig. 3. Chip output power of one of the DFB laser included in EADFB laser array. Since 100GbE standards specify a minimum limit of average output power, P ave, for the transmitter and since future 100GbE transceivers will be very small (allowable electrical power consumption is small), increasing the optical output power of the transmitter is critically important to satisfy the specifications and reduce the electrical power consumption. Conventionally, to increase the output power of a DFB laser, a uniform grating and anti- and high-reflective (AR and HR) coatings for the front and rear facets are employed [2]. However, the AR/HR laser suffers from multi-mode lasing. Because the facet phase of a DFB laser is not controllable, there is always the probability of multi-mode lasing. For the monolithically integrated light source for 100GbE, this is not acceptable, since four lasers are integrated on one chip. If the lasing state of one of the lasers is multi-mode, the chip cannot be used and the yield becomes significantly low. It is well known that λ/4-wavelength-shift DFB lasers with (C) 2012 OSA 2 January 2012 / Vol. 20, No. 1 / OPTICS EXPRESS 616
4 AR/AR coatings [Fig. 2, left] are useful for stabilizing the lasing mode, and they were employed in [7] and [8]. However, the output power is relatively low because the optical field is strongly confined in the cavity and the output powers emitted from the front and rear facets are similar. Here, to increase the output power of the DFB laser while keeping the single mode lasing, we introduce a novel rear grating structure as shown in right part of Fig. 2. The structure is composed of two sections: one is a conventional λ/4 wavelength shifted grating placed at the rear facet side and the other is just an active region without a grating placed at the front facet side. Both facets are coated with AR films. By placing the active region in front of the conventional phase-shifted DFB laser, the lasing mode is amplified in the active region and the longitudinal optical distribution becomes asymmetric, resulting in large output power from the front facet. Figure 3 shows the chip output power of one of the DFB lasers included in EADFB laser array measured at room temperature. The lasing wavelength is µm. The length of the DFB laser, L, is 500 µm. The results for a conventional DFB laser (blue) and rear grating lasers with L active :L grating = 1:4 (green) and L active :L grating = 2:3 (red) are shown. Here, L grating and L active are the lengths of the grating and active regions. For larger values of L active, although the threshold current is increased, the large increase in differential quantum efficiency makes the output power very large. At the injection current of 100 ma, the output power of the rear grating laser with L active :L grating = 2:3 is 1.6 times larger than that of the conventional laser. As described in Introduction, the power consumption of transmitter part is partly determined by the electrical driver. To reduce it, it is effective to reduce the driving voltage of the EAMs. Here, we used InGaAlAs-based, tensile-strained quantum wells (QWs) to obtain a large extinction ratio (ER) and steep extinction curves [2,6 10]. Also, we made the total thickness of insulator region small to effectively bias the QW region with low voltage. Fig. 4. Module output power as a function of injection current. Fig. 5. Lasing spectrum. (C) 2012 OSA 2 January 2012 / Vol. 20, No. 1 / OPTICS EXPRESS 617
5 3. Module performance Fig. 6. Photo current of monitor PDs. The fabricated chip is packaged in a specially designed module [8]. Figure 4 shows the module output power as a function of the injection current to the DFB lasers. All measurements for the module were done at 40 C. From the shorter wavelength side, we label lanes 0 to 3 for each wavelength. The length of the DFB laser is 400 µm and the rear grating structure with L active :L grating = 1:3 was used. The output power at the injection current of 150 ma is over 2 mw for all the lanes. Figure 5 shows the lasing spectra of the rear grating structure at the injection current of 100 ma. Single-mode lasing with the side mode suppression ratio of over 50 db is obtained for all lanes, showing the usefulness of the rear grating structure for DFB lasers used in monolithically integrated devices. Figure 6 shows the photocurrent of monitor PDs as a function of the injection current to the DFB lasers. Very uniform and linear curves are obtained, showing that the PDs, having the same layer structure with the DFB lasers, are useful as power monitors. Figure 7 shows the static extinction curves. The injection currents to the DFB lasers are 100 ma. Static ERs larger than 20 db as well as steep extinction curves suitable for low-voltage operation are obtained for all lanes. Figure 8 shows the dynamic extinction ratio (DER) of the EAMs as a function of driving voltage (V pp ). The bias voltage to the modulator is set at a level where the cross point of the optical eye diagram becomes 50%. For all lanes, the DERs are larger than 4 db, which is the minimum value for 10-km 100GbE (100GBASE-LR4) even with driving voltage of 0.5 V. Fig. 7. Static extinction curves. (C) 2012 OSA 2 January 2012 / Vol. 20, No. 1 / OPTICS EXPRESS 618
6 Fig. 8. Dynamic extinction ratio as a function of driving voltage under 25G operation. With the device, we performed a 10-km transmission experiment on SMF using Gbit/s, non-return to zero (NRZ), pseudo-random bit stream (PRBS) signal. Figures 9 and 10 show the eye-diagrams for back-to-back (BTB) and after 10-km transmission with V pp = 0.5, 1, and 2 V for all the lanes. The bias voltages to the modulator for V pp = 0.5, 1, and 2 V are 1.08, 0.95, 0.93 V for lane0, 1.28, 1.14, and 1.06 V for lane1, 1.51, 1.43, and 1.26 V for lane2, and 1.74, 1.64, and 1.53 V for lane3. Corresponding DERs are 4.99, 8.11, and db for lane0, 5.05, 9.31, and db for lane1, 4.32, 6.97, and 9.79 db for lane2, and 4.4, 6.92, and 9.88 db for lane3. Clear eye openings are obtained for all driving voltages even after 10-km transmission. Fig G eye diagrams for all the lanes for BTB configuration for different values of V pp. (C) 2012 OSA 2 January 2012 / Vol. 20, No. 1 / OPTICS EXPRESS 619
7 4. Conclusion Fig G eye diagrams for all the lanes after 10-km transmission for different values of V pp. We developed a 1.3-µm, 4 25G EADFB laser array module for the next-generation of 100GbE transceiver. A rear grating structure is newly introduced to increase the output power of a DFB laser while keeping the single mode lasing. Also, the EAM structure is designed to reduce the driving voltage, leading to the possibility of a dramatic reduction of the electrical driver power consumption, and, possibly, driverless operation. With the device, we achieved 25G, ultralow-driving-voltage operation (0.5 V) for the first time with clear eye openings after 10-km SMF transmission. These results show the applicability and usefulness of the device for future compact and low-power-consumption 100GbE transmitters. (C) 2012 OSA 2 January 2012 / Vol. 20, No. 1 / OPTICS EXPRESS 620
Directly modulated CWDM/DWDM system using negative dispersion fiber for metro network application
Optics Communications 245 (2005) 171 176 www.elsevier.com/locate/optcom Directly modulated /DWDM system using negative dispersion fiber for metro network application H.S. Chung, Y.C. Chung * Korea Advanced
High-Performance Wavelength-Locked Diode Lasers
Copyright 29 Society of Photo-Optical Instrumentation Engineers. This paper was published in the proceedings of the SPIE Photonics West 29, Vol. 7198-38 (29), High-Power Diode Laser Technology and High-Performance
Photonics for the Coherent CFP2-ACO Unlocking 100G and 200G for the Metro
Photonics for the Coherent CFP2-ACO Unlocking 100G and 200G for the Metro Brandon Collings JDSU September, 2014 ECOC This communication contains forward looking product development plans based on our current
Implementation of Short Reach (SR) and Very Short Reach (VSR) data links using POET DOES (Digital Opto- electronic Switch)
Implementation of Short Reach (SR) and Very Short Reach (VSR) data links using POET DOES (Digital Opto- electronic Switch) Summary POET s implementation of monolithic opto- electronic devices enables the
Four Wave Mixing in Closely Spaced DWDM Optical Channels
544 VOL. 1, NO. 2, AUGUST 2006 Four Wave Mixing in Closely Spaced DWDM Optical Channels Moncef Tayahi *, Sivakumar Lanka, and Banmali Rawat Advanced Photonics Research lab, Department of Electrical Engineering
Robert G. Hunsperger. Integrated Optics. Theory and Technology. Fourth Edition. With 195 Figures and 17 Tables. Springer
Robert G. Hunsperger Integrated Optics Theory and Technology Fourth Edition With 195 Figures and 17 Tables Springer Contents 1. Introduction 1 1.1 Advantages of Integrated Optics 2 1.1.1 Comparison of
Optical Interconnect Technology for High-bandwidth Data Connection in Next-generation Servers
Optical Interconnect Technology for High-bandwidth Data Connection in Next-generation Servers Tsuyoshi Yamamoto Kazuhiro Tanaka Satoshi Ide Tsuyoshi Aoki In the near future, an improvement in the performance
Nine-channel wavelength tunable single mode laser array based on slots
Nine-channel wavelength tunable single mode laser array based on slots Wei-Hua Guo, 1,* Qiaoyin Lu, 2, Marta Nawrocka, 2, Azat Abdullaev, 2, James O Callaghan, 3, and John F. Donegan 2 1 Department of
GBIC CWDM 40km Part no: 70257-70264
GBIC CWDM 40km Part no: 7025770264 Description General The GBIC CWDM 40 transceiver is small form factor pluggable module with standard SC duplex connector for fiber communications. This module is designed
Duobinary Modulation For Optical Systems
Introduction Duobinary Modulation For Optical Systems Hari Shanar Inphi Corporation Optical systems by and large use NRZ modulation. While NRZ modulation is suitable for long haul systems in which the
Recent developments in high bandwidth optical interconnects. Brian Corbett. www.tyndall.ie
Recent developments in high bandwidth optical interconnects Brian Corbett Outline Introduction to photonics for interconnections Polymeric waveguides and the Firefly project Silicon on insulator (SOI)
Advanced Modulation Formats in Data Centre Communications Michael J. Wale Director Active Products Research
Advanced Modulation Formats in Data Centre Communications Michael J. Wale Director Active Products Research 2 nd Symposium on Optical Interconnects in Data Centres ECOC, Cannes, 23rd September 2014 1 2014
SFP+ LR 10G Ethernet 10km SFP+ Transceiver 10GBASE-LR / 10BBASE-LW
Product Features Compliant with IEEE Std 802.3-2005 10G Ethernet 10GBase-LR/LW Electrical interface specifications per SFF-8431 Management interface specifications per SFF-8431 and SFF-8472 SFP+ MSA package
Trends In Data Rate And Link Length In Evolving Optical Standards
Trends In Data Rate And Link Length In Evolving Optical Standards David Cunningham 22 nd September 2013 Outline Building and Data Centre link lengths Trends for standards-based electrical interfaces Data
Designing Fiber Optic Systems David Strachan
Designing Fiber Optic Systems David Strachan Everyone knows that fiber optics can carry a huge amount of data. There are more benefits to using fiber optics in broadcast applications than you might realize.
WDM-PON: A VIABLE ALTERNATIVE FOR NEXT GENERATION FTTP
WDM-PON: A VIABLE ALTERNATIVE FOR NEXT GENERATION FTTP AN ENABLENCE ARTICLE WRITTEN BY DR. MATT PEARSON, VP TECHNOLOGY PUBLISHED IN FTTH PRISIM MAGAZINE March, 2010 www.enablence.com Most of the Fiber-to-the-Home
Introduction to Optical Link Design
University of Cyprus Πανεπιστήµιο Κύπρου 1 Introduction to Optical Link Design Stavros Iezekiel Department of Electrical and Computer Engineering University of Cyprus HMY 445 Lecture 08 Fall Semester 2014
Volumes. Goal: Drive optical to high volumes and low costs
First Electrically Pumped Hybrid Silicon Laser Sept 18 th 2006 The information in this presentation is under embargo until 9/18/06 10:00 AM PST 1 Agenda Dr. Mario Paniccia Director, Photonics Technology
Single mode lasers based on slots suitable for photonic integration
Single mode lasers based on slots suitable for photonic integration Qiaoyin Lu, 1,* Weihua Guo, 2 Marta Nawrocka, 1 Azat Abdullaev, 1 Chris Daunt, 3 James O Callaghan, 3 Michael Lynch, 1 Vincent Weldon,
Making OSNR Measurements In a Modulated DWDM Signal Environment
Making OSNR Measurements In a Modulated DWDM Signal Environment Jack Dupre Jim Stimple Making OSNR measurements in a modulated DWDM signal environment May 2001 In a DWDM spectrum, it is desirable to measure
Large effective area non-zero dispersion shifted fiber in metro/provincial network environments
Large effective area non-zero dispersion shifted fiber in metro/provincial network environments John D. Downie* a, Frank Annunziata a, Adam Filios b, Tim Kennedy c, Donghyun Kim d, Seung Oh e a Corning
Simulation of Gaussian Pulses Propagation Through Single Mode Optical Fiber Using MATLAB . MATLAB
Iraqi Journal of Science, 213, Vol.4, No.3, pp.61-66 Simulation of Gaussian Pulses Propagation Through Single Mode Optical Fiber Using MATLAB Salah Al Deen Adnan Taha *, Mehdi M. Shellal, and Ahmed Chyad
The Fraunhofer Heinrich Hertz Institute
The Driving the Gigabit Society Chips aus Berlin Copyrights BVMed-Bilderpool, Einsteinufer 37, 10587 Berlin www.hhi.fraunhofer.de Time Bar Starting advanced research in fiber optic transmission 3D Technology
SO-QSFP28-LR4. QSFP, 100GBASE-LR, SM, DDM, 10km, LC SO-QSFP28-LR4 OVERVIEW PRODUCT FEATURES APPLICATIONS ORDERING INFORMATION DATASHEET 4.
SO-QSFP28-LR4 QSFP, 100GBASE-LR, SM, DDM, 10km, LC SO-QSFP28-LR4 OVERVIEW The SO-QSFP28-LR4 is a 100 Gbps transceiver module designed for optical communication applications compliant to 100GBASE-LR4 of
Simulation and Best Design of an Optical Single Channel in Optical Communication Network
International Arab Journal of e-technology, Vol., No., June 11 91 Simulation and Best Design of an Optical Single Channel in Optical Communication Network Salah Alabady Computer Engineering Department,
Construction of High-speed and High-reliability Optical Networks for Social Infrastructure
Hitachi Review Vol. 59 (Feb. 2010) 1 Construction of High-speed and High-reliability Optical Networks for Social Infrastructure Ryosuke Nishino Hideaki Tsushima, Dr. Eng. Eisuke Sato Shinsuke Tanaka OVERVIEW:
DIRECTIONAL FIBER OPTIC POWER MONITORS (TAPS/PHOTODIODES)
Features: DIRECTIONAL FIBER OPTIC POWER MONITORS (TAPS/PHOTODIODES) PATENT NUMBERS: CANADA 2,494,133, USA 7095931, 7295731 AND CHINA 1672073 Telcordia GR-468 qualified Available in versions for any wavelength
Limiting factors in fiber optic transmissions
Limiting factors in fiber optic transmissions Sergiusz Patela, Dr Sc Room I/48, Th. 13:00-16:20, Fri. 9:20-10:50 [email protected] eportal.pwr.wroc.pl Copying and processing permitted for noncommercial
10 Gb/s WDM-PON Using Downstream OFDM and Upstream OOK
10 Gb/s WDM-PON Using Downstream OFDM and Upstream OOK Jing Huang, Deming Liu & Cheng Zeng College of Optoelectronic Science and Engineering Huazhong University of Science and Technology, Wuhan 430074,
LONGLINE 40km XFP Optical Transceiver
LONGLINE 40km XFP Optical Transceiver Features XFP MSA Rev 4.5 Compliant Data rate from 9.95Gbps to 11.3Gbps No Reference Clock required Cooled 1550nm EML and PIN receiver link length up to 40km +1.8V,+3.3V,+5V
SO-CFP-ER-DWDM. CFP, 103/112 Gbps, DWDM tunable, SM, DDM, 20km SO-CFP-ER4-DWDM OVERVIEW PRODUCT FEATURES APPLICATIONS ORDERING INFORMATION
SO-CFP-ER4-DWDM CFP, 103/112 Gbps, DWDM tunable, SM, DDM, 20 km SO-CFP-ER4-DWDM OVERVIEW The SO-CFP-ER4-DWDM is a 100G transceiver module supporting 100GBASE-LR4 and OTU4 applications over singlemode (SM)
Technology Developments Towars Silicon Photonics Integration
Technology Developments Towars Silicon Photonics Integration Marco Romagnoli Advanced Technologies for Integrated Photonics, CNIT Venezia - November 23 th, 2012 Medium short reach interconnection Example:
Photonic components for signal routing in optical networks on chip
15 th International Conference on Transparent Optical Networks Cartagena, Spain, June 23-27, 213 Photonic components for signal routing in optical networks on chip Vincenzo Petruzzelli, Giovanna Calò Dipartimento
A More Efficient Way to De-shelve 137 Ba +
A More Efficient Way to De-shelve 137 Ba + Abstract: Andrea Katz Trinity University UW REU 2010 In order to increase the efficiency and reliability of de-shelving barium ions, an infrared laser beam was
Fiber Optics: Fiber Basics
Photonics Technical Note # 21 Fiber Optics Fiber Optics: Fiber Basics Optical fibers are circular dielectric wave-guides that can transport optical energy and information. They have a central core surrounded
Ultra High-Speed SONET Fiber-Optic Transmission System
Ultra High-Speed Fiber-Optic Transmission System Takashi Mori Hirokuni Tsuji Hiroyuki Nakano, D.E. Shigeo Shinada ABSTRACT: Recently, there have been numerous demands not only on voice but also data/image
Fiber Optics: Engineering from Global to Nanometer Dimensions
Fiber Optics: Engineering from Global to Nanometer Dimensions Prof. Craig Armiento Fall 2003 1 Optical Fiber Communications What is it? Transmission of information using light over an optical fiber Why
Integrated optics Er-Yb amplifier with potassium ion-exchanged glass waveguides
Integrated optics Er-Yb amplifier with potassium ion-exchanged glass waveguides P. Meshkinfam 1, P. Fournier', M.A. Fardad 2, M. P. Andrews 2, and S. I. Najafl' 1 Photonics Research Group, Ecole Polytechnique,
Product Specification 10Gb/s BIDI SFP+ Transceiver
PRODUCT FEATURES Up to 10.7Gbps Data Links Product Specification 10Gb/s BIDI SFP+ Transceiver Single Mode LC Receptacle Bi-directional Transceiver Up to 20km transmission on SMF Power dissipation
Laser-Optimized Fiber
FIBER FAQs Laser-Optimized Fiber Technical Resource: Tony Irujo Manager, Customer Technical Support FIBER FAQs Laser-Optimized Fiber As transmission speeds over optical fiber networks in the enterprise
Integrated Photonic. Electronic. Optics. Optoelettronics. Integrated Photonic - G. Breglio L1. Quantum Mechanics Materials Science Nano/Bio-photonic
Integrated Photonic Quantum Mechanics Materials Science Nano/Bio-photonic Optoelettronics Optics Electronic Applications of Optoelectronic Systems Solar cells OLED display LED Laser diodes Flexible OLED
Modeling and Performance Analysis of DWDM Based 100 Gbps Low Power Inter-satellite Optical Wireless Communication (LP-IsOWC) System
ISSN(Print): 2377-0538 ISSN(Online): 2377-0546 DOI: 10.15764/STSP.2015.01001 Volume 2, Number 1, January 2015 SOP TRANSACTIONS ON SIGNAL PROCESSING Modeling and Performance Analysis of DWDM Based 100 Gbps
Modulation Formats for High-Speed, Long-Haul Fiber Optic Communication Systems
Modulation Formats for High-Speed, Long-Haul Fiber Optic Communication Systems Anjali Singh, Ph.D. Inphi Corporation, 2393 Townsgate Rd #101, Westlake Village, CA 91361 1. Introduction The goal of an optical
Fiber Optic Training Guide By Sarkis Abrahamian
Fiber Optic Training Guide By Sarkis Abrahamian Copyright 2006 All rights reserved. No part of this publication may be reproduced without the express written permission of Evertz Microsystems Ltd. Introduction
8 Gbps CMOS interface for parallel fiber-optic interconnects
8 Gbps CMOS interface for parallel fiberoptic interconnects Barton Sano, Bindu Madhavan and A. F. J. Levi Department of Electrical Engineering University of Southern California Los Angeles, California
DTSB35(53)12L-CD20 RoHS Compliant 1.25G 1310/1550nm(1550/1310nm) 20KM Transceiver
产 品 规 格 书 Product Specification Sheet DTSB35(53)12L-CD20 RoHS Compliant 1.25G 1310/1550nm(1550/1310nm) 20KM Transceiver PRODUCT FEATURES Up to 1.25Gb/s data links FP laser transmitter for DTSB35(53)12L-CD20
How To Connect A 10Gbps Sfp+ Bi-Directional Transceiver To A Single Mode Fiber With A Single Power Cell (Sfp+) To A Power Cell With A Power Source (Sf) (Sfl) (
Features 10Gbps SFP+ Bi-Directional Transceiver, 20km Reach 1270/1330nm TX / 1330/1270 nm RX Supports 9.95Gb/s to 10.3Gb/s data rates Simplex LC Connector Bi-Directional SFP+ Optical Transceiver Single
The Operation and Power Budget of Amplified Optical Networks for Aerospace Applications. FOHEC Conference May 2010
The Operation and Power Budget of Amplified Optical Networks for Aerospace Applications FOHEC Conference May 2010 BAE Systems / University of Strathclyde Henry White Walter Johnstone Craig Michie BAE Systems
CISCO DWDM XENPAK. Main features of the Cisco DWDM XENPAK include:
DATA SHEET CISCO DWDM XENPAK OVERVIEW The Cisco Dense Wavelength-Division Multiplexing (DWDM) XENPAK pluggable allows enterprise companies and service providers to provide scalable and easy-to-deploy 10
Cisco Small Form-Factor Pluggable Modules for Gigabit Ethernet Applications
Data Sheet Cisco Small Form-Factor Pluggable Modules for Gigabit Ethernet Applications The industry-standard Cisco Small Form-Factor Pluggable (SFP) Gigabit Interface Converter is a hot-swappable input/output
Wavelength stabilized high-power diode laser modules
Wavelength stabilized high-power diode laser modules Bernd Köhler *, Thomas Brand, Matthias Haag, Jens Biesenbach DILAS Diodenlaser GmbH, Galileo-Galilei-Str. 10, 55129 Mainz-Hechtsheim, Germany ABSTRACT
LONGLINE 10Gbps 10km SFP+ Optical Transceiver
LONGLINE 10Gbps 10km SFP+ Optical Transceiver Features Optical interface compliant to IEEE 802.3ae 10GBASE-LR Electrical interface compliant to SFF-8431 Hot Pluggable 1310nm DFB transmitter, PIN photo-detector
October 1, 2015. (Press release) Nippon Telegraph and Telephone Corporation
(Press release) October 1, 2015 Nippon Telegraph and Telephone Corporation High-density simultaneous compensation of distortion in wavelength-multiplexed signals using a time-reversal operation: World
8.5Gb/s SFP+ Fibre Channel Optical Transceiver
8.5Gb/s SFP+ Fibre Channel Optical Transceiver Features Up to 8.5Gb/s bi-directional data links Hot Pluggable SFP+ footprint Built-in digital diagnostic functions 1310nm FP laser transmitter Duplex LC
Sunny 1, Rinku Garg 2 Department of Electronics and Communication Engg. GJUS&T Hissar, India
Performance Analysis of Optical CDMA System Using W/T Codes Sunny 1, Rinku Garg 2 Department of Electronics and Communication Engg. GJUS&T Hissar, India Abstract This paper represents the performance of
Optical Fibers Fiber Optic Cables Indoor/Outdoor
presents Optical Fibers Fiber Optic Cables Indoor/Outdoor Content Optical fiber function, types optical effects applications production of optical fibre Cable - general types Indoor Indoor / outdoor Outdoor
High Power and Low Coherence Fibre-optic Source for Incoherent Photonic Signal Processing
High Power and Low Coherence Fibre-optic Source for Incoherent Photonic Signal Processing Y u a n L i a n d R o b e r t A. M i n a s i a n School of Electrical and Information Engineering and APCRC University
X2 LR Optical Transponder, 10Km Reach
X2 LR Optical Transponder, 10Km Reach Features Compatible with X2 MSA Rev2.0b Support of IEEE 802.3ae 10GBASE-LR at 10.3125Gbps Transmission Distance up to 10km(SMF) SC Receptacle 1310nm DFB Laser SC Duplex
IPv6 Broadband Access Network Systems
IPv6 Broadband Access Network Systems IPv6 Broadband Access Network Systems 60 Junji Yamada Koji Wakayama Eisuke Sato OVERVIEW: To meet the demand for broadband access and enable a smooth transition from
Explanation of Reflection Features in Optical Fiber as Sometimes Observed in OTDR Measurement Traces
Explanation of Reflection Features in Optical Fiber as Sometimes Observed in OTDR Measurement Traces WP1281 Issued: November 2015 Supersedes: 2012 Author: Dr. Russell Ellis ISO 9001 Registered Background
Suppression of Four Wave Mixing in 8 Channel DWDM System Using Hybrid Modulation Technique
International Journal of Electronic and Electrical Engineering. ISSN 0974-2174, Volume 7, Number 2 (2014), pp. 97-108 International Research Publication House http://www.irphouse.com Suppression of Four
A Simple Fiber Bragg Grating-Based Sensor Network Architecture with Self-Protecting and Monitoring Functions
Sensors 2011, 11, 1375-1382; doi:10.3390/s110201375 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Article A Simple Fiber Bragg Grating-Based Sensor Network Architecture with Self-Protecting
PUMPED Nd:YAG LASER. Last Revision: August 21, 2007
PUMPED Nd:YAG LASER Last Revision: August 21, 2007 QUESTION TO BE INVESTIGATED: How can an efficient atomic transition laser be constructed and characterized? INTRODUCTION: This lab exercise will allow
Fiber optic communication
Fiber optic communication Fiber optic communication Outline Introduction Properties of single- and multi-mode fiber Optical fiber manufacture Optical network concepts Robert R. McLeod, University of Colorado
With the advent of Gigabit Ethernet
INTERNATIONAL JOURNAL OF NETWORK MANAGEMENT Int. J. Network Mgmt 2001; 11:139 146 (DOI: 10.1002/nem.396) The importance of modal bandwidth in Gigabit Ethernet systems By David N. Koon Ł This article deals
2.488Gbps Compact Bi-Di SFP Transceiver, 20km Reach 1490nm TX / 1310 nm RX
2.488Gbps Compact Bi-Di SFP Transceiver, 20km Reach 1490nm TX / 1310 nm RX Features Support 2.488Gbps data links 1490nm DFB laser and PIN photodetector for 20km transmission 2xBi-directional transceivers
A high resolution optical vector network analyzer based on a wideband and wavelengthtunable optical single-sideband modulator
A high resolution optical vector network analyzer based on a wideband and wavelengthtunable optical single-sideband modulator Zhenzhou Tang, 1 Shilong Pan, 1,* and Jianping Yao 1,2 1 College of Electronic
100 GBE AND BEYOND. Greg Hankins <[email protected]> NANOG52. Diagram courtesy of the CFP MSA. NANOG52 2011/06/14
100 GBE AND BEYOND Greg Hankins NANOG52 Diagram courtesy of the CFP MSA. NANOG52 2011/06/14 Agenda and What s Covered in This Presentation Ethernet interface technology Overview
Photonic Integration in Indium Phosphide for Metro and Data Center Interconnects
Photonic Integration in Indium Phosphide for Metro and Data Center Interconnects Robert Blum September 30, 2015 ECOC 2015 Market Focus 1 Rapid Growth In Global Network Traffic Is Helping Fuel A Significant
MONOLITHIC integration of optoelectronic components
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 11, NO. 2, MARCH/APRIL 2005 343 Monolithically Integrated Active Components: A Quantum-Well Intermixing Approach Erik J. Skogen, Member, IEEE,
Wavelength Division Multiplexing
WDM Wavelength Division Multiplexing -CWDM vs DWDM- Fargo, ND 1 Agenda 1. Overview 2. Fiber Cable WDM Characteristics 3. CWDM Course WDM 4. DWDM Dense WDM 5. Applications Best Fit- Future? 6. Summary Fargo,
IN LEITERPLATTEN INTEGRIERTE OPTISCHE VERBINDUNGSTECHNIK AUF DÜNNGLASBASIS
IN LEITERPLATTEN INTEGRIERTE OPTISCHE VERBINDUNGSTECHNIK AUF DÜNNGLASBASIS Dr. Henning Schröder [email protected], phone: +49 30 46403 277 Outlook n Motivation n Manufacturing n Waveguide
Multiple Layer Traffic Engineering in NTT Network Service
Multi-layer traffic engineering in photonic-gmpls-router networks Naoaki Yamanaka, Masaru Katayama, Kohei Shiomoto, Eiji Oki and Nobuaki Matsuura * NTT Network Innovation Laboratories * NTT Network Service
Incoherent beam combining using stimulated Brillouin scattering in multimode fibers
Incoherent beam combining using stimulated Brillouin scattering in multimode fibers Timothy H. Russell and Won B. Roh Air Force Institute of Technology, Wright-Patterson AFB, Ohio 45433 [email protected];
Dispersion penalty test 1550 Serial
Dispersion penalty test 1550 Serial Peter Öhlen & Krister Fröjdh Optillion Irvine, January 2001 Dispersion penalty test, 1550 serial Page 1 SMF Transmission at 1550 nm Different from multi-mode transmission
155Mbps DFB SFP Optical Transceiver, 120km Reach
155Mbps DFB SFP Optical Transceiver, 120km Reach Features Data-rate of 155Mbps operation DFB 1550nm wavelengths laser and PIN photo detector for 120km transmission Compliant with SFP MSA and SFF-8472 with
TransPacket white paper. CWDM and DWDM networking. Increasing fibre-optical network utilization and saving on switches/routers 28.06.
TransPacket white paper CWDM and DWDM networking 28.06.2011 Increasing fibre-optical network utilization and saving on switches/routers Executive summary From being primarily a technology for transport
High Speed Coherent Optical Fiber Communication
High Speed Coherent Optical Fiber Communication B.Bala Subbanna,M.E,(Ph.D) Associate Professor, Skd Eng College,Gooty. [email protected] Dr.Stephen Arputha Raj MIE,M.E,M.S,Ph.D,Dean, Amet University.
10GBASE -LRM, 220m Reach GX2-31192-LRMC
Features Compatible with X2 MSA Rev2.0b 10GBASE -LRM, 220m Reach GX2-31192-LRMC Support of IEEE 802.3ae 10GBASE-LR at 10.3125Gbps Transmission Distance up to 220m(MMF) SC Receptacle 1310nm DFB Laser SC
DIGITAL TRANSMISSION AND CODING TECHNIQUES
CHAPTER 12 DIGITAL TRANSMISSION AND CODING TECHNIQUES 12.1 INTRODUCTION Communications systems transmit signals by means of a number of coding techniques-electrical or optical. In this chapter, we review
A Gigabit Transceiver for Data Transmission in Future HEP Experiments and An overview of optoelectronics in HEP
A Gigabit Transceiver for Data Transmission in Future HEP Experiments and An overview of optoelectronics in HEP Ken Wyllie, CERN 1 Outline Optoelectronics What? Why? How? Experience in HEP (LHC) & future
Bandwidth analysis of multimode fiber passive optical networks (PONs)
Optica Applicata, Vol. XXXIX, No. 2, 2009 Bandwidth analysis of multimode fiber passive optical networks (PONs) GRZEGORZ STEPNIAK *, LUKASZ MAKSYMIUK, JERZY SIUZDAK Institute of Telecommunications, Warsaw
University of California at Santa Cruz Electrical Engineering Department EE-145L: Properties of Materials Laboratory
University of California at Santa Cruz Electrical Engineering Department EE-145L: Properties of Materials Laboratory Lab 8: Optical Absorption Spring 2002 Yan Zhang and Ali Shakouri, 05/22/2002 (Based
High-Frequency Engineering / Photonics
Technische Universität Berlin High-Frequency Engineering / Photonics K. Petermann [email protected] Main campus High-Frequency Engineering. Electrical Engineering. Technical Acoustics High Voltage
Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B
CSE 3461 / 5461: Computer Networking & Internet Technologies Data Transmission Presentation B Kannan Srinivasan 08/30/2012 Data Communications Model Figure 1.2 Studying Assignment: 3.1-3.4, 4.1 Presentation
SFP+ DWDM Dual LC 10G SMF 40km Transceiver. Features. Applications APPLIED OPTOELECTRONICS, INC. A7ELXDxxEDMA0609
Features Applications 10 Gigabit Ethernet (10.3125Gbps) 10 Gigabit Fiber Channel (10.51875Gbps) SFP+ Type DWDM Dual LC Transceiver EML Laser PIN Photo Detector 40Km transmission with SMF 3.3V dual power
4.25Gbps SFP Optical Transceiver, 30km Reach
4.25Gbps SFP Optical Transceiver, 30km Reach Features Single 3.3 V supply Supports 1.0625/2.125/4.25Gb/s Fiber Channel Operation Gigabit Ethernet compatible 1310nm DFB Laser SFP MSA SFF-8074i compliant
10Gbps XFP Bi-Directional Transceiver, 10km Reach 1270/1330nm TX / 1330/1270 nm RX
Features 10Gbps XFP Bi-Directional Transceiver, 10km Reach 1270/1330nm TX / 1330/1270 nm RX Supports 9.95Gb/s to 10.5Gb/s bit rates Hot-pluggable XFP footprint Maximum link length of 10km with SMF 1270/1330nm
Intel Ethernet SFP+ Optics
Product Brief Intel Ethernet SFP+ Optics Network Connectivity Intel Ethernet SFP+ Optics SR and LR Optics for the Intel Ethernet Server Adapter X520 Family Hot-pluggable SFP+ footprint Supports rate selectable
VOLUME BRAGG GRATINGS TM A NEW PLATFORM TECHNOLOGY FOR WDM APPLICATIONS. Boris L. Volodin, Sergei V. Dolgy, Elena D. Melnik and Vladimir S.
VOLUME BRAGG GRATINGS TM A NEW PLATFORM TECHNOLOGY FOR WDM APPLICATIONS Boris L. Volodin, Sergei V. Dolgy, Elena D. Melnik and Vladimir S. Ban, PD-LD Inc. Pennington, NJ 08534 Introduction The development
LONGLINE 2km XFP Optical Transceiver
LONGLINE 2km XFP Optical Transceiver Features Supports 9.95Gb/s to 11.1Gb/s bit rates Hot-pluggable XFP footprint Maximum link length of 2km with SMF 1310nm FP laser XFP MSA package with duplex LC connector
Prospects for Solar Pumped Semiconductor Lasers Geoffrey A. Landis
Paper SPIE 2121-09, Laser Power Beaming, SPIE Proceedings Volume 2121, pp. 58-65 (1994). Presented at SPIE Optics, Electro-optics & Laser Conference, Los Angeles CA, January 27-28 1994 Prospects for Solar
Avalanche Photodiodes: A User's Guide
!"#$%& Abstract Avalanche Photodiodes: A User's Guide Avalanche photodiode detectors have and will continue to be used in many diverse applications such as laser range finders and photon correlation studies.
The 50G Silicon Photonics Link
The 50G Silicon Photonics Link The world s first silicon-based optical data connection with integrated lasers White Paper Intel Labs July 2010 Executive Summary As information technology continues to advance,
High-Reliability Diode Lasers for Gesture Recognition. Applying Telecommunications Reliability Design to Consumer Electronics
High-Reliability Diode Lasers for Gesture Recognition Applying Telecommunications Reliability Design to Consumer Electronics www.lumentum.com Application Note A wide range of consumer-electronics applications
A continuously tunable multi-tap complexcoefficient microwave photonic filter based on a tilted fiber Bragg grating
A continuously tunable multi-tap complexcoefficient microwave photonic filter based on a tilted fiber Bragg grating Hiva Shahoei and Jianping Yao * Microwave Photonics Research Laboratory, School of Electrical
A Laser Scanner Chip Set for Accurate Perception Systems
A Laser Scanner Chip Set for Accurate Perception Systems 313 A Laser Scanner Chip Set for Accurate Perception Systems S. Kurtti, J.-P. Jansson, J. Kostamovaara, University of Oulu Abstract This paper presents
Specifying Plasma Deposited Hard Coated Optical Thin Film Filters. Alluxa Engineering Staff
Specifying Plasma Deposited Hard Coated Optical Thin Film Filters. Alluxa Engineering Staff December 2012 Specifying Advanced Plasma Deposited Hard Coated Optical Bandpass and Dichroic Filters. Introduction
40-Gb/s Dense Wavelength Division Multiplexing Transmission System
40-Gb/s Dense Wavelength Division Multiplexing Transmission System Kazuo Wani Takeshi Ono (Manuscript received March 25, 2009) Fujitsu Telecom Networks develops supplies optical transmission systems for
Analysis and Improvement of Mach Zehnder Modulator Linearity Performance for Chirped and Tunable Optical Carriers
886 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 20, NO. 5, MAY 2002 Analysis and Improvement of Mach Zehnder Modulator Linearity Performance for Chirped and Tunable Optical Carriers S. Dubovitsky, Member, IEEE,
