USING SIMULATED WIND DATA FROM A MESOSCALE MODEL IN MCP. M. Taylor J. Freedman K. Waight M. Brower
|
|
|
- Lily Davis
- 10 years ago
- Views:
Transcription
1 USING SIMULATED WIND DATA FROM A MESOSCALE MODEL IN MCP M. Taylor J. Freedman K. Waight M. Brower
2 Page 2 ABSTRACT Since field measurement campaigns for proposed wind projects typically last no more than a few years, the observed meteorological data collected on site often deviate from the long term climatology. To reduce the uncertainty associated with climate variability, a statistical relationship is typically established between a monitoring site and one or more reference stations using a technique known as Measure Correlate Predict (MCP). Proper use of MCP requires reference stations with long data records collected at the same location and height, with the same equipment, and in relatively unchanging surroundings. Identifying reference stations meeting these stringent criteria is becoming increasingly difficult, especially considering that the National Weather Service (NWS) is replacing cup anemometers with ice free ultrasonic anemometers at its Automated Surface Observing System (ASOS) stations. One approach that offers promise of mitigating these problems is to drive a mesoscale model with a consistent set of observational data. Though the concept is similar to reanalysis, the combination of higher model resolution and care in the selection of stations used in the simulations should improve on those data. Towards this end, we have created windtrends, a modeled dataset covering North America at 2 km resolution from 1997 to the present, and have conducted a thorough evaluation of its suitability for MCP and other applications. This study summarizes our findings. INTRODUCTION Predicting the future requires insight into the past. Until recently, most resource assessments for wind energy projects have relied on standard meteorological towers to establish historical climate conditions. But with intermittent changes in surroundings, locations, and equipment, the continuity and representativeness of these reference data is a growing concern. Other commonly used reference sources include rawinsonde (instrumented balloon) and reanalysis data, but these sources also have potentially significant shortcomings as well. The relatively few rawinsonde stations often exhibit poor correlations with wind project sites, whereas reanalysis data are vulnerable to inconsistencies caused by changes in the observational data used to drive the models. One approach that may overcome these problems is to drive a mesoscale model with a consistent set of observational data. We have created such a data series, known as windtrends. This report details our validation of windtrends against ASOS, rawinsonde, NCEP/NCAR Global Reanalysis (NNGR) [1] and North American Regional Reanalysis (NARR) [2] with respect to its consistency over time and its viability as a long term reference for wind resource assessment. BACKGROUND AND METHODS Interannual Variability and Measure Correlate Predict (MCP) Most wind resource assessment programs span roughly one to two years. When examining the annual mean wind speeds from reference sites with long periods of record, we find that they vary considerably from year to year. Figure 1 shows a time series of the annual mean wind speeds at the Chicago Midway (KMDW) Automated Surface Observing System (ASOS) [3] station between 1998 and 27. The annual mean speed was within 1% of the ten year average in only four of the ten years and deviated by as much as 4.%. Given such variability, it is prudent to adjust observed data at a short term resource assessment site to long term conditions.
3 Page 3 Wind Speed (m/s) Figure 1. Annual Mean Wind Speeds at Chicago Midway ASOS Station The MCP method of estimating long term wind speeds correlates short term data from a site with concurrent data from a long term reference station (Figure 2). A regression or other relationship between the two stations is derived, and the long term mean speed or speed distribution at the reference station is applied to estimate the long term speed or speed distribution at the site. The accuracy of the long term projections is directly tied to the consistency of the reference data and the quality of the correlation between the target mast and reference site. Problems such as a limited period of reference data, poor correlation with on site measurements, and changing observational methods and platforms can cause significant errors in energy production estimates. Wind Speed (m/s) Year Speed Deviation (m/s) From Normal % % % % % % % % % % Mean 4.47 Year Annual Mean Overall Mean 2 1 Monitoring Mast Reference Site Jan 98 Jan 99 Jan Jan 1 Jan 2 Jan 3 Jan 4 Jan 5 Jan 6 Jan 7 Jan 8 Month Figure 2. Comparison of Typical Monitoring Mast and Reference Site Periods of Record Common Reference Data Sources Surface Stations The most widely used source of reference data is surface weather stations. They offer several advantages. Surface stations are relatively numerous and collect frequent (usually hourly) observations.
4 Page 4 Additionally, in some countries, such as the United States, site histories, data collection protocols, and equipment maintenance records are well documented. Unfortunately, weather stations are often located far from wind project sites or in different wind regimes, and therefore can exhibit unsatisfactory correlations with onsite measurements. The wind monitoring heights at surface reference stations are also usually low (1 m is the ASOS and international standard); the result is that the measurements are very sensitive to changes in the surroundings, such as tree growth or building construction. Finally, as has been the case with the ASOS network, instrumentation and data collection protocols change occasionally, often introducing shifts in the observed wind speeds that may jeopardize the site s viability as a long term reference. One such change occurred in the United States when the ASOS standard was implemented at weather stations starting in the mid 199s and rendered prior measurements useless for MCP. Very recently, ASOS cup anemometers were replaced with ultrasonic ice free wind (IFW) sensors. Test data indicate a small but measurable difference in wind speeds recorded by IFW, which adds uncertainty to the MCP process. [4] Rawinsonde Stations Rawinsonde data are acquired using instrumented balloons to sample the vertical profile of the atmosphere. [5] Compared to surface stations, this measurement technique has changed relatively little in the past two or three decades, resulting in a long data record that is typically quite consistent and reliable as well as for heights well above ground free of impacts from changing surface conditions. However, rawinsonde stations are far less numerous than surface stations, and they generally collect soundings only once every 12 hours. 1 In addition, the lowest useful height of measurement (defined by standard pressure levels) is often above the planetary boundary layer. For these reasons, rawinsonde data often do not correlate as well as surface weather data with measurements taken at wind project sites. Reanalysis Data The term reanalysis data refers to a gridded data base of weather observations that have been assimilated at a later time into a global or regional weather model. NNGR and NARR, two publicly available reanalysis data sets, are the focus of our discussion; others include a global data set developed by the European Centre for Medium Range Weather Forecasts [6]. Observational data sources assimilated into the reanalysis models include surface, rawinsonde, satellite and aircraft. The main advantage of reanalysis data is that they provide a convenient source of weather data extending back several decades (to 1948, in the case of NNGR). However, the quantity and sources of weather observations used to drive the reanalysis model have varied greatly over the past several decades, leading to false trends and variations in some regions. [7] In addition, due to the coarse model resolution (21 km for NNGR), there is often a poor correlation with wind monitoring sites. windtrends: Controlled Regional Reanalysis windtrends is a controlled regional reanalysis dataset developed by AWS Truewind. Though conceptually similar to reanalysis, the process differs in two key ways: the grid resolution is finer and the source of observational data rawinsonde only has been kept fixed throughout the simulation period. These modifications should allow for a more consistent data set that correlates better with onsite observations than standard reanalysis data. 1 According to the NWS rawinsonde fact sheet posted at there are 69 operational rawinsonde stations in the conterminous United States. Observations are usually collected twice daily.
5 Page 5 The windtrends data were produced from Mesoscale Atmospheric Simulation System (MASS) [8] model simulations on a grid covering the conterminous United States and southern Canada starting in January The simulations were made on a 6 km outer grid and a 2 km nested grid, with NNGR data supplying the initial and lateral boundary conditions. Rawinsonde data from the Integrated Global Rawinsonde Archive (IGRA) were also used in the objective analyses of the initial fields. For each month, two series of runs were made, beginning with a cold start 12 hours before the first of the month and 12 hours before either the 15 th or 16 th of the month, followed by two weeks of simulations with rawinsonde observations assimilated at and 12 UTC. This simulation strategy was designed to minimize the influence of the initial conditions from NNGR. Validation Trend Verification The selection of validation stations for this part of the analysis began with a list of 371 high quality stations used by the Goddard Institute of Space Studies in their analysis of long term surface temperature trends. [9] Stations outside the conterminous United States were eliminated. Next, the availability of surface data for each station was verified. Stations were retained if they had 95% availability for each of 1 years ( ), resulting in a list of about 185 stations. Plotting those stations on a map, there were some areas with sparse station coverage: New York, Vermont, the Upper Peninsula of Michigan, coastal North and South Carolina, coastal Louisiana, and central and southern California. Fifteen stations in those areas with almost 95% coverage were selected and added to the list, resulting in 198 stations, of which 3 were rawinsonde stations. Using these sites, we compared the long term wind speed trends and anomalies from the NNGR, NARR, and windtrends with concurrent observed data at each of the selected stations on hourly, monthly, and annual temporal periods. MCP Verification In earlier work, Taylor et al. [1] developed a method whereby the accuracy of MCP was tested for wind resource assessment sites having periods of record spanning at least four years. The onsite (target) data were divided into a sequence of shorter periods typical of what would be available for MCP. A regression with a reference data set was performed for each sub period and the mean speed for the entire period was predicted. The error margin of the procedure was derived from the biases between the predicted and actual mean speeds for all the sub periods. For this assessment, we selected the entire ASOS network as target sites and repeated the same MCP analysis using, as reference, the nearest ASOS site and nearest windtrends grid point with the strongest correlations. The ASOS network yielded 629 sites that, until the installation of the IFW sensors, operated using the same wind measurement system for several years. We focused on the results with a 12 month sub period. We also identified ten wind resource assessment sites that have high data recovery and fit the established criteria, and repeated the same analysis using direct observations (ASOS and rawinsonde) and modeled windtrends and NNGR data as references. For an additional 12 sites with less than four years of data, we compared only the coefficient of determination or square of the correlation coefficient (r 2 ) values of the regressions. For ASOS reference sites that were converted to IFW sensors, we used a preliminary correction to the data developed by AWS Truewind from side by side test data provided by the NWS.
6 Page 6 RESULTS Trend Verification Figure 3 contains a time series comparing the annual mean wind speed anomalies (deviations from the average) for NNGR, NARR, and windtrends with the observed anomalies. windtrends and NNGR data both correlate well with the observations. However, the NNGR data exhibit a downward trend that deviates from windtrends and the observed data. The NARR data show a noticeable discontinuity starting in 22, which may be related to a change in procedures for assimilating rawinsonde data Wind Speed Anomaly (m/s) ASOS windtrends NNGR NARR Year Figure 3. Comparison of Annual Mean Wind Speed Anomalies for 198 Surface Based Monitoring Stations Time series of the annual mean wind speeds from windtrends interpolated to several mast locations and compared with nearby ASOS or rawinsonde data suggest good agreement. Two examples of these comparisons are contained in Figure Wind Speed (m/s) windtrends 1I windtrends 5I Elkins, WV Dulles, VA Blacksburg, VA Pittsburgh, PA Year Wind Speed (m/s) Year windtrends 1I windtrends 5I Ellensburg, WA Yakima, WA Figure 4. Annual Mean Wind Speeds from windtrends and Nearby Reference Stations for an Eastern Ridgetop (left) and Central Washington (right) Figure 5 contains a time series comparing the monthly mean wind speed anomalies from NNGR and windtrends with the observed anomalies at the 198 surface and rawinsonde stations. windtrends correlates very well with the observed data; the NNGR anomalies also correlate well, but are systematically larger, likely because they were calculated at 25 m height above ground. Of importance is that a close examination of both datasets reveals periods in the NNGR dataset that deviate
7 Page 7 substantially from the observed values. Those discrepancies do not appear in windtrends, or are much smaller..8.6 Wind Speed Anomaly (m/s) ASOS NNGR.8 Jan 97 Jan 98 Jan 99 Jan Jan 1 Jan 2 Jan 3 Jan 4 Jan 5 Jan 6 Month.8.6 Wind Speed Anomaly (m/s) ASOS windtrends.8 Jan 97 Jan 98 Jan 99 Jan Jan 1 Jan 2 Jan 3 Jan 4 Jan 5 Jan 6 Month Figure 5. Comparison of Monthly Mean Wind Speed Anomalies for 198 Surface Based Monitoring Stations MCP Verification For the 629 ASOS sites, the ASOS to ASOS regressions had a stronger correlation in about 8% of cases; the average r 2 value was.71 between ASOS sites, while it was.65 between the ASOS target site and the best windtrends grid point. Figure 6 shows the geographic distribution of the differences in r 2 between the ASOS to ASOS and ASOS to windtrends correlations. Green contours on this map indicate the windtrends grid point has the superior r 2, whereas red indicates the ASOS station does. windtrends generally does better in the complex terrain of the Appalachian and Rocky Mountains. Conversely, in coastal regions and the southeastern United States, ASOS data provide the stronger correlation. Throughout much of the Great Plains, the two are roughly equivalent.
8 Page 8 ASOS-to-wT r 2 > ASOS-to-ASOS r 2 ASOS-to-ASOS r 2 > ASOS-to-wT r 2 Mean wt r 2 :.65 Mean ASOS r 2 :.71 Higher r 2 wt: 122 Sites Mean ASOS r 2 : 56 Sites Equal: 1 Site Figure 6. Geographic Distribution of Relative ASOS to ASOS and ASOS to windtrends Correlation In contrast to the ASOS target sites, the wind resource assessment sites generally have stronger correlations with the windtrends data than with the ASOS reference data. Figure 7 contains a scatterplot of the r 2 values for 22 target sites and their correlations with ASOS and windtrends reference data. In 16 cases, the windtrends correlation is higher. This pattern may reflect the fact that most wind project sites are better exposed to synoptic scale winds, which are captured well by the windtrends simulations, whereas ASOS stations are often in sheltered locations, such as valleys. ASOS r squared windtrends r squared Figure 7. Scatterplot of Mast to ASOS and Mast to windtrends r 2 values for 22 Sites As shown in Figure 8, the distributions of MCP standard errors for ASOS and windtrends are virtually identical. For ASOS to windtrends regressions, the mean standard error is.96 m/s; for ASOS to ASOS regressions, it is.95 m/s.
9 Page 9 35% 3% wt Avg Dist: 13.2 km ASOS Avg Dist: 75.2 km wt Std Err:.96 ASOS Std Err:.95 Percent of Occurrence 25% 2% 15% 1% Lower Std Err wt: 315 Sites ASOS: 314 Sites 5% ASOS to windtrends ASOS to ASOS % Standard Error (m/s) Figure 8. Frequency Distributions of ASOS to ASOS and ASOS to windtrends Standard Errors For the ten wind resource assessment masts with periods of record of at least four years, windtrends performed slightly better than ASOS and significantly better than NNGR for MCP. The respective average r 2 values were.75 (mast to windtrends),.72 (mast to ASOS), and.55 (mast to NNGR), while the standard errors were.12 (windtrends),.13 (ASOS), and.16 (NNGR). The results are summarized in Figure 9..4 Standard Error (m/s) windtrends ASOS NNGR Mean r 2 windtrends:.75 ASOS:.72 NNGR: Mean Mast Number Figure 9. Standard Errors of MCP Analyses for 1 Monitoring Mast Using windtrends, ASOS, and NNGR Data as References In most individual cases, the windtrends standard errors are comparable to or lower than those derived using the ASOS or NNGR reference data. The only location where windtrends performs substantially worse than ASOS is at Mast 6, which is located in a California mountain pass where the wind climate is highly localized and therefore not resolved by the 2 km windtrends simulations.
10 Page 1 SUMMARY AND CONCLUSIONS AWS Truewind developed windtrends in hopes of providing a consistent set of reference data for performing MCP studies that are well correlated to wind project sites in the conterminous United States and southern Canada. The validation work reported here shows that windtrends is generally superior to global reanalysis (NNGR) and comparable to ASOS stations for this purpose. Whether ASOS or windtrends should be used in a particular MCP analysis can be decided on a case bycase basis. Where the correlations are similar and there are no evident consistency problems in the ASOS data, either data set (or both) can be used. Where one exhibits a much stronger correlation than the other, that data set is likely to be the better choice. The consistency problems we have observed in both NNGR and its regional counterpart, NARR, suggest that they are not suitable in most situations for MCP. ONGOING AND FUTURE WORK Validation work continues. One goal is to identify and assess additional wind resource assessment masts with sufficiently long periods of record to provide a more extensive test of windtrends in MCP. The present sample of 1 such masts is fairly small. Another goal is to gauge the impact of the IFW correction on the accuracy of MCP using ASOS stations. We are also working to improve the windtrends data set. Since the current 2 km resolution is insufficient to resolve highly localized wind climates such as mountain passes, we are planning to increase the grid resolution to 5 km. This should increase the quality of the correlations and decrease the standard errors in the long term predictions. The windtrends approach is also being extended to the rest of Canada, India, and other countries. References: [1] Kistler, R. et al., 21: The NCEP/NCAR 5 Year Reanalysis: Monthly Means CD ROM and Documentation. Bulletin of the American Meteorological Society, 82, No. 2, [2] Mesinger, F. et al., 26: North American Regional Reanalysis. Bulletin of the American Meteorological Society, 87, No. 3, [3] NOAA, 1998: ASOS user s guide. National Oceanographic and Atmospheric Administration, 61 pp. [Available online at [4] Lewis, R. and J. Dover, 24: Field and Operational Tests of a Sonic Anemometer for the Automated Surface Observing System, Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Ocean, and Land Surface, American Meteorological. Society, Seattle, WA. [5] Imke Durre, Russell S. Vose and David B. Wuertz. 26: Overview of the Integrated Global Radiosonde Archive. Journal of Climate: Vol. 19, No. 1, pp Brower, M. C., 26: The Use of Reanalysis Data for Climate Adjustments. AWS Truewind Research Note #1. [6] Uppala, et al., 26: The ERA 4 re analysis. Quarterly Journal of the Royal Meteorological Society., 131, [7] Brower, M. C., 26: The Use of Reanalysis Data for Climate Adjustments. AWS Truewind Research Note #1. [8] Manobianco, J., J. W. Zack and G.E. Taylor, 1996: Workstation based Real time Mesoscale Modeling Designed for Weather Support to Operations at the Kennedy Space Center and Cape Canaveral Air Station. Bulletin of the American Meteorological Society, 77, No. 4, [9] Hansen, J., R. Ruedy, J. Glascoe, and M. Sato, 1999: GISS analysis of surface temperature change. Journal of Geophysical Research. 14, [1] Taylor, Mark, et al., 24: An Analysis of Wind Resource Uncertainty in Energy Production Estimates, Proceedings of the European Wind Energy Conference.
Adjustment of Anemometer Readings for Energy Production Estimates WINDPOWER June 2008 Houston, Texas
Adjustment of Anemometer Readings for Energy Production Estimates WINDPOWER June 2008 Houston, Texas Matthew Filippelli, Julien Bouget, Michael Brower, and Dan Bernadett AWS Truewind, LLC 463 New Karner
Wind resources map of Spain at mesoscale. Methodology and validation
Wind resources map of Spain at mesoscale. Methodology and validation Martín Gastón Edurne Pascal Laura Frías Ignacio Martí Uxue Irigoyen Elena Cantero Sergio Lozano Yolanda Loureiro e-mail:[email protected]
Project Title: Quantifying Uncertainties of High-Resolution WRF Modeling on Downslope Wind Forecasts in the Las Vegas Valley
University: Florida Institute of Technology Name of University Researcher Preparing Report: Sen Chiao NWS Office: Las Vegas Name of NWS Researcher Preparing Report: Stanley Czyzyk Type of Project (Partners
Virtual Met Mast verification report:
Virtual Met Mast verification report: June 2013 1 Authors: Alasdair Skea Karen Walter Dr Clive Wilson Leo Hume-Wright 2 Table of contents Executive summary... 4 1. Introduction... 6 2. Verification process...
Validation n 2 of the Wind Data Generator (WDG) software performance. Comparison with measured mast data - Flat site in Northern France
Validation n 2 of the Wind Data Generator (WDG) software performance Comparison with measured mast data - Flat site in Northern France Mr. Tristan Fabre* La Compagnie du Vent, GDF-SUEZ, Montpellier, 34967,
Developing sub-domain verification methods based on Geographic Information System (GIS) tools
APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED U.S. Army Research, Development and Engineering Command Developing sub-domain verification methods based on Geographic Information System (GIS) tools
David P. Ruth* Meteorological Development Laboratory Office of Science and Technology National Weather Service, NOAA Silver Spring, Maryland
9.9 TRANSLATING ADVANCES IN NUMERICAL WEATHER PREDICTION INTO OFFICIAL NWS FORECASTS David P. Ruth* Meteorological Development Laboratory Office of Science and Technology National Weather Service, NOAA
EVALUATING SOLAR ENERGY PLANTS TO SUPPORT INVESTMENT DECISIONS
EVALUATING SOLAR ENERGY PLANTS TO SUPPORT INVESTMENT DECISIONS Author Marie Schnitzer Director of Solar Services Published for AWS Truewind October 2009 Republished for AWS Truepower: AWS Truepower, LLC
Solar Input Data for PV Energy Modeling
June 2012 Solar Input Data for PV Energy Modeling Marie Schnitzer, Christopher Thuman, Peter Johnson Albany New York, USA Barcelona Spain Bangalore India Company Snapshot Established in 1983; nearly 30
Near Real Time Blended Surface Winds
Near Real Time Blended Surface Winds I. Summary To enhance the spatial and temporal resolutions of surface wind, the remotely sensed retrievals are blended to the operational ECMWF wind analyses over the
Visualizing of Berkeley Earth, NASA GISS, and Hadley CRU averaging techniques
Visualizing of Berkeley Earth, NASA GISS, and Hadley CRU averaging techniques Robert Rohde Lead Scientist, Berkeley Earth Surface Temperature 1/15/2013 Abstract This document will provide a simple illustration
User Perspectives on Project Feasibility Data
User Perspectives on Project Feasibility Data Marcel Šúri Tomáš Cebecauer GeoModel Solar s.r.o., Bratislava, Slovakia [email protected] http://geomodelsolar.eu http://solargis.info Solar Resources
Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations
Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations S. C. Xie, R. T. Cederwall, and J. J. Yio Lawrence Livermore National Laboratory Livermore, California M. H. Zhang
REDUCING UNCERTAINTY IN SOLAR ENERGY ESTIMATES
REDUCING UNCERTAINTY IN SOLAR ENERGY ESTIMATES Mitigating Energy Risk through On-Site Monitoring Marie Schnitzer, Vice President of Consulting Services Christopher Thuman, Senior Meteorologist Peter Johnson,
Very High Resolution Arctic System Reanalysis for 2000-2011
Very High Resolution Arctic System Reanalysis for 2000-2011 David H. Bromwich, Lesheng Bai,, Keith Hines, and Sheng-Hung Wang Polar Meteorology Group, Byrd Polar Research Center The Ohio State University
Application of Numerical Weather Prediction Models for Drought Monitoring. Gregor Gregorič Jožef Roškar Environmental Agency of Slovenia
Application of Numerical Weather Prediction Models for Drought Monitoring Gregor Gregorič Jožef Roškar Environmental Agency of Slovenia Contents 1. Introduction 2. Numerical Weather Prediction Models -
Development of a. Solar Generation Forecast System
ALBANY BARCELONA BANGALORE 16 December 2011 Development of a Multiple Look ahead Time Scale Solar Generation Forecast System John Zack Glenn Van Knowe Marie Schnitzer Jeff Freedman AWS Truepower, LLC Albany,
Climate and Weather. This document explains where we obtain weather and climate data and how we incorporate it into metrics:
OVERVIEW Climate and Weather The climate of the area where your property is located and the annual fluctuations you experience in weather conditions can affect how much energy you need to operate your
The information in this report is provided in good faith and is believed to be correct, but the Met. Office can accept no responsibility for any
Virtual Met Mast Version 1 Methodology and Verification January 2010 The information in this report is provided in good faith and is believed to be correct, but the Met. Office can accept no responsibility
National Oceanography Centre. Research & Consultancy Report No. 26
National Oceanography Centre Research & Consultancy Report No. 26 Re-analysis of the December 1981 storm surge event in the Bristol Channel using the current operational tide-surge model suite J Williams,
How To Find Out If The Winds From The Oak Ridge Site Are Calm
EVALUATING THE WIND DATA FROM THE AUTOMATED SURFACE OBSERVING SYSTEM IN OAK RIDGE, TENNESSEE - IS KOQT THE CALMEST SITE IN THE US? Thomas E. Bellinger, CCM Y-12 National Security Complex Oak Ridge, Tennessee
Comparative Evaluation of High Resolution Numerical Weather Prediction Models COSMO-WRF
3 Working Group on Verification and Case Studies 56 Comparative Evaluation of High Resolution Numerical Weather Prediction Models COSMO-WRF Bogdan Alexandru MACO, Mihaela BOGDAN, Amalia IRIZA, Cosmin Dănuţ
Mixing Heights & Smoke Dispersion. Casey Sullivan Meteorologist/Forecaster National Weather Service Chicago
Mixing Heights & Smoke Dispersion Casey Sullivan Meteorologist/Forecaster National Weather Service Chicago Brief Introduction Fire Weather Program Manager Liaison between the NWS Chicago office and local
Estimating Firn Emissivity, from 1994 to1998, at the Ski Hi Automatic Weather Station on the West Antarctic Ice Sheet Using Passive Microwave Data
Estimating Firn Emissivity, from 1994 to1998, at the Ski Hi Automatic Weather Station on the West Antarctic Ice Sheet Using Passive Microwave Data Mentor: Dr. Malcolm LeCompte Elizabeth City State University
Huai-Min Zhang & NOAAGlobalTemp Team
Improving Global Observations for Climate Change Monitoring using Global Surface Temperature (& beyond) Huai-Min Zhang & NOAAGlobalTemp Team NOAA National Centers for Environmental Information (NCEI) [formerly:
Heavy Rainfall from Hurricane Connie August 1955 By Michael Kozar and Richard Grumm National Weather Service, State College, PA 16803
Heavy Rainfall from Hurricane Connie August 1955 By Michael Kozar and Richard Grumm National Weather Service, State College, PA 16803 1. Introduction Hurricane Connie became the first hurricane of the
IBM Big Green Innovations Environmental R&D and Services
IBM Big Green Innovations Environmental R&D and Services Smart Weather Modelling Local Area Precision Forecasting for Weather-Sensitive Business Operations (e.g. Smart Grids) Lloyd A. Treinish Project
Development of an Integrated Data Product for Hawaii Climate
Development of an Integrated Data Product for Hawaii Climate Jan Hafner, Shang-Ping Xie (PI)(IPRC/SOEST U. of Hawaii) Yi-Leng Chen (Co-I) (Meteorology Dept. Univ. of Hawaii) contribution Georgette Holmes
163 ANALYSIS OF THE URBAN HEAT ISLAND EFFECT COMPARISON OF GROUND-BASED AND REMOTELY SENSED TEMPERATURE OBSERVATIONS
ANALYSIS OF THE URBAN HEAT ISLAND EFFECT COMPARISON OF GROUND-BASED AND REMOTELY SENSED TEMPERATURE OBSERVATIONS Rita Pongrácz *, Judit Bartholy, Enikő Lelovics, Zsuzsanna Dezső Eötvös Loránd University,
Sandia National Laboratories New Mexico Wind Resource Assessment Lee Ranch
Sandia National Laboratories New Mexico Wind Resource Assessment Lee Ranch Data Summary and Transmittal for September December 2002 & Annual Analysis for January December 2002 Prepared for: Sandia National
The impact of window size on AMV
The impact of window size on AMV E. H. Sohn 1 and R. Borde 2 KMA 1 and EUMETSAT 2 Abstract Target size determination is subjective not only for tracking the vector but also AMV results. Smaller target
Forecaster comments to the ORTECH Report
Forecaster comments to the ORTECH Report The Alberta Forecasting Pilot Project was truly a pioneering and landmark effort in the assessment of wind power production forecast performance in North America.
J3.3 AN END-TO-END QUALITY ASSURANCE SYSTEM FOR THE MODERNIZED COOP NETWORK
J3.3 AN END-TO-END QUALITY ASSURANCE SYSTEM FOR THE MODERNIZED COOP NETWORK Christopher A. Fiebrich*, Renee A. McPherson, Clayton C. Fain, Jenifer R. Henslee, and Phillip D. Hurlbut Oklahoma Climatological
A.1 Sensor Calibration Considerations
Wind Speed and Direction Appendix A. Quality Assurance A major pre-requisite for establishing quality control standards for wind measurements is a strong quality assurance program. Remember the mantra
Cloud Model Verification at the Air Force Weather Agency
2d Weather Group Cloud Model Verification at the Air Force Weather Agency Matthew Sittel UCAR Visiting Scientist Air Force Weather Agency Offutt AFB, NE Template: 28 Feb 06 Overview Cloud Models Ground
Use of numerical weather forecast predictions in soil moisture modelling
Use of numerical weather forecast predictions in soil moisture modelling Ari Venäläinen Finnish Meteorological Institute Meteorological research [email protected] OBJECTIVE The weather forecast models
Long term cloud cover trends over the U.S. from ground based data and satellite products
Long term cloud cover trends over the U.S. from ground based data and satellite products Hye Lim Yoo 12 Melissa Free 1, Bomin Sun 34 1 NOAA Air Resources Laboratory, College Park, MD, USA 2 Cooperative
How To Forecast Solar Power
Forecasting Solar Power with Adaptive Models A Pilot Study Dr. James W. Hall 1. Introduction Expanding the use of renewable energy sources, primarily wind and solar, has become a US national priority.
Titelmasterformat durch Klicken. bearbeiten
Evaluation of a Fully Coupled Atmospheric Hydrological Modeling System for the Sissili Watershed in the West African Sudanian Savannah Titelmasterformat durch Klicken June, 11, 2014 1 st European Fully
6.9 A NEW APPROACH TO FIRE WEATHER FORECASTING AT THE TULSA WFO. Sarah J. Taylor* and Eric D. Howieson NOAA/National Weather Service Tulsa, Oklahoma
6.9 A NEW APPROACH TO FIRE WEATHER FORECASTING AT THE TULSA WFO Sarah J. Taylor* and Eric D. Howieson NOAA/National Weather Service Tulsa, Oklahoma 1. INTRODUCTION The modernization of the National Weather
MI oceanographic data
Marine Institute Oceanographic Data SMARTSkills 2013 Postgraduate Workshop Galway, Oct 2013 Kieran Lyons ([email protected]) MI oceanographic data Measured Operational metocean time series (weather
German Test Station for Remote Wind Sensing Devices
German Test Station for Remote Wind Sensing Devices A. Albers, A.W. Janssen, J. Mander Deutsche WindGuard Consulting GmbH, Oldenburger Straße, D-31 Varel, Germany E-mail: [email protected], Tel: (++9)
Synoptic assessment of AMV errors
NWP SAF Satellite Application Facility for Numerical Weather Prediction Visiting Scientist mission report Document NWPSAF-MO-VS-038 Version 1.0 4 June 2009 Synoptic assessment of AMV errors Renato Galante
Mesoscale re-analysis of historical meteorological data over Europe Anna Jansson and Christer Persson, SMHI ERAMESAN A first attempt at SMHI for re-analyses of temperature, precipitation and wind over
An Analysis of the Rossby Wave Theory
An Analysis of the Rossby Wave Theory Morgan E. Brown, Elise V. Johnson, Stephen A. Kearney ABSTRACT Large-scale planetary waves are known as Rossby waves. The Rossby wave theory gives us an idealized
IMPACT OF SAINT LOUIS UNIVERSITY-AMERENUE QUANTUM WEATHER PROJECT MESONET DATA ON WRF-ARW FORECASTS
IMPACT OF SAINT LOUIS UNIVERSITY-AMERENUE QUANTUM WEATHER PROJECT MESONET DATA ON WRF-ARW FORECASTS M. J. Mueller, R. W. Pasken, W. Dannevik, T. P. Eichler Saint Louis University Department of Earth and
Temporal variation in snow cover over sea ice in Antarctica using AMSR-E data product
Temporal variation in snow cover over sea ice in Antarctica using AMSR-E data product Michael J. Lewis Ph.D. Student, Department of Earth and Environmental Science University of Texas at San Antonio ABSTRACT
Estimation of satellite observations bias correction for limited area model
Estimation of satellite observations bias correction for limited area model Roger Randriamampianina Hungarian Meteorological Service, Budapest, Hungary [email protected] Abstract Assimilation of satellite radiances
4.12 Improving wind profiler data recovery in non-uniform precipitation using a modified consensus algorithm
4.12 Improving wind profiler data recovery in non-uniform precipitation using a modified consensus algorithm Raisa Lehtinen 1, Daniel Gottas 2, Jim Jordan 3, Allen White 2 1 Vaisala Inc, Boulder, Colorado,
Sintermann discussion measurement of ammonia emission from field-applied manure
Sintermann discussion measurement of ammonia emission from field-applied manure Jan Huijsmans, Julio Mosquera and Arjan Hensen 9 April 2013 During the1990 s the measurement methods for ammonia (NH 3 )
6.4 THE SIERRA ROTORS PROJECT, OBSERVATIONS OF MOUNTAIN WAVES. William O. J. Brown 1 *, Stephen A. Cohn 1, Vanda Grubiši 2, and Brian Billings 2
6.4 THE SIERRA ROTORS PROJECT, OBSERVATIONS OF MOUNTAIN WAVES William O. J. Brown 1 *, Stephen A. Cohn 1, Vanda Grubiši 2, and Brian Billings 2 1 National Center for Atmospheric Research, Boulder, Colorado.
IMPACTS OF IN SITU AND ADDITIONAL SATELLITE DATA ON THE ACCURACY OF A SEA-SURFACE TEMPERATURE ANALYSIS FOR CLIMATE
INTERNATIONAL JOURNAL OF CLIMATOLOGY Int. J. Climatol. 25: 857 864 (25) Published online in Wiley InterScience (www.interscience.wiley.com). DOI:.2/joc.68 IMPACTS OF IN SITU AND ADDITIONAL SATELLITE DATA
ENERGY YIELD ASSESSMENT
Module 2.4-2 ENERGY YIELD ASSESSMENT Gerhard J. Gerdes Workshop on Renewable Energies November 14-25, 25 Nadi, Republic of the Fiji Islands Contents power curve of wind turbine and international regulations
Monsoon Variability and Extreme Weather Events
Monsoon Variability and Extreme Weather Events M Rajeevan National Climate Centre India Meteorological Department Pune 411 005 [email protected] Outline of the presentation Monsoon rainfall Variability
AMS 2009 Summer Community Meeting Renewable Energy Topic
AMS 2009 Summer Community Meeting Renewable Energy Topic The 2009 American Meteorological Society s Summer Community Meeting addressed the roles of academia, industry and government in supporting the development
RenaissanceRe. Agriculture Products
Syndicate 1458 Agriculture Products Syndicate 1458 Agriculture Products Syndicate 1458 is part of the Group of Companies a leading global provider of property catastrophe and specialty reinsurance, and
USE OF REMOTE SENSING FOR WIND ENERGY ASSESSMENTS
RECOMMENDED PRACTICE DNV-RP-J101 USE OF REMOTE SENSING FOR WIND ENERGY ASSESSMENTS APRIL 2011 FOREWORD (DNV) is an autonomous and independent foundation with the objectives of safeguarding life, property
COMPARISON OF LIDARS, GERMAN TEST STATION FOR REMOTE WIND SENSING DEVICES
COMPARISON OF LIDARS, GERMAN TEST STATION FOR REMOTE WIND SENSING DEVICES A. Albers, A.W. Janssen, J. Mander Deutsche WindGuard Consulting GmbH, Oldenburger Straße, D-31 Varel, Germany E-mail: [email protected],
Wind Resource Assessment for BETHEL, ALASKA Date last modified: 2/21/2006 Compiled by: Mia Devine
813 W. Northern Lights Blvd. Anchorage, AK 99503 Phone: 907-269-3000 Fax: 907-269-3044 www.akenergyauthority.org Wind Resource Assessment for BETHEL, ALASKA Date last modified: 2/21/2006 Compiled by: Mia
Comparison of Resource and Energy Yield Assessment Procedures
Comparison of Resource and Energy Yield Assessment Procedures Niels G. Mortensen and Hans E. Jørgensen Wind Energy Division, Risø DTU EWEA Wind Resource Assessment Technology Workshop 2011 F Acknowledgements
The Wind Integration National Dataset (WIND) toolkit
The Wind Integration National Dataset (WIND) toolkit EWEA Wind Power Forecasting Workshop, Rotterdam December 3, 2013 Caroline Draxl NREL/PR-5000-60977 NREL is a national laboratory of the U.S. Department
Interactive comment on Total cloud cover from satellite observations and climate models by P. Probst et al.
Interactive comment on Total cloud cover from satellite observations and climate models by P. Probst et al. Anonymous Referee #1 (Received and published: 20 October 2010) The paper compares CMIP3 model
Chapter 4 Atmospheric Pressure and Wind
Chapter 4 Atmospheric Pressure and Wind Understanding Weather and Climate Aguado and Burt Pressure Pressure amount of force exerted per unit of surface area. Pressure always decreases vertically with height
SOLAR IRRADIANCE FORECASTING, BENCHMARKING of DIFFERENT TECHNIQUES and APPLICATIONS of ENERGY METEOROLOGY
SOLAR IRRADIANCE FORECASTING, BENCHMARKING of DIFFERENT TECHNIQUES and APPLICATIONS of ENERGY METEOROLOGY Wolfgang Traunmüller 1 * and Gerald Steinmaurer 2 1 BLUE SKY Wetteranalysen, 4800 Attnang-Puchheim,
Online Site-Specific Degree-Day Predictions Using GIS and Climate Map Technologies
This newsletter is provided as a printable pdf file at http://oregonipm.ippc.orst.edu Online Site-Specific Degree-Day Predictions Using GIS and Climate Map Technologies Leonard Coop and Paul Jepson Integrated
THE STRATEGIC PLAN OF THE HYDROMETEOROLOGICAL PREDICTION CENTER
THE STRATEGIC PLAN OF THE HYDROMETEOROLOGICAL PREDICTION CENTER FISCAL YEARS 2012 2016 INTRODUCTION Over the next ten years, the National Weather Service (NWS) of the National Oceanic and Atmospheric Administration
Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models Yefim L. Kogan Cooperative Institute
[ Climate Data Collection and Forecasting Element ] An Advanced Monitoring Network In Support of the FloodER Program
[ Climate Data Collection and Forecasting Element ] An Advanced Monitoring Network In Support of the FloodER Program December 2010 1 Introduction Extreme precipitation and the resulting flooding events
Improved diagnosis of low-level cloud from MSG SEVIRI data for assimilation into Met Office limited area models
Improved diagnosis of low-level cloud from MSG SEVIRI data for assimilation into Met Office limited area models Peter N. Francis, James A. Hocking & Roger W. Saunders Met Office, Exeter, U.K. Abstract
Guy Carpenter Asia-Pacific Climate Impact Centre, School of energy and Environment, City University of Hong Kong
Diurnal and Semi-diurnal Variations of Rainfall in Southeast China Judy Huang and Johnny Chan Guy Carpenter Asia-Pacific Climate Impact Centre School of Energy and Environment City University of Hong Kong
APPENDIX N. Data Validation Using Data Descriptors
APPENDIX N Data Validation Using Data Descriptors Data validation is often defined by six data descriptors: 1) reports to decision maker 2) documentation 3) data sources 4) analytical method and detection
Including thermal effects in CFD simulations
Including thermal effects in CFD simulations Catherine Meissner, Arne Reidar Gravdahl, Birthe Steensen [email protected], [email protected] Fjordgaten 15, N-125 Tonsberg hone: +47 8 1800 Norway Fax:
BASIC APPROACH TO CLIMATE MONITORING PRODUCTS AND CLIMATE MONITORING PRODUCTS IN WMO RA VI
BASIC APPROACH TO CLIMATE MONITORING PRODUCTS AND CLIMATE MONITORING PRODUCTS IN WMO RA VI Mesut DEMIRCAN Geodesy and Photogrametry Engineer Turkish State Meteorological Service Agrometeorology and Climatological
4.3. David E. Rudack*, Meteorological Development Laboratory Office of Science and Technology National Weather Service, NOAA 1.
43 RESULTS OF SENSITIVITY TESTING OF MOS WIND SPEED AND DIRECTION GUIDANCE USING VARIOUS SAMPLE SIZES FROM THE GLOBAL ENSEMBLE FORECAST SYSTEM (GEFS) RE- FORECASTS David E Rudack*, Meteorological Development
Meteorological SPACE WEATHER SPECIAL! BRITISH ANTARCTIC SURVEY The meteorological capabilities and work of the BAS explained
THE INTERNATIONAL REVIEW OF WEATHER, CLIMATE AND HYDROLOGY TECHNOLOGIES AND SERVICES Meteorological T E C H N O L O G Y I N T E R N A T I O N A L SPACE WEATHER SPECIAL! Exclusive interview with the UK
DIURNAL CYCLE OF CLOUD SYSTEM MIGRATION OVER SUMATERA ISLAND
DIURNAL CYCLE OF CLOUD SYSTEM MIGRATION OVER SUMATERA ISLAND NAMIKO SAKURAI 1, FUMIE MURATA 2, MANABU D. YAMANAKA 1,3, SHUICHI MORI 3, JUN-ICHI HAMADA 3, HIROYUKI HASHIGUCHI 4, YUDI IMAN TAUHID 5, TIEN
Reconstruction of Upper-Level Temperature and Geopotential Height Fields for the Northern Extratropics back to 1920
Reconstruction of Upper-Level Temperature and Geopotential Height Fields for the Northern Extratropics back to 1920 Technical report Thomas Griesser, Stefan Brönnimann, Andrea Grant, Tracy Ewen, Alexander
Climate Extremes Research: Recent Findings and New Direc8ons
Climate Extremes Research: Recent Findings and New Direc8ons Kenneth Kunkel NOAA Cooperative Institute for Climate and Satellites North Carolina State University and National Climatic Data Center h#p://assessment.globalchange.gov
Mode-S Enhanced Surveillance derived observations from multiple Air Traffic Control Radars and the impact in hourly HIRLAM
Mode-S Enhanced Surveillance derived observations from multiple Air Traffic Control Radars and the impact in hourly HIRLAM 1 Introduction Upper air wind is one of the most important parameters to obtain
As a minimum, the report must include the following sections in the given sequence:
5.2 Limits for Wind Generators and Transformer Substations In cases where the noise impact at a Point of Reception is composed of combined contributions due to the Transformer Substation as well as the
A SEVERE WEATHER CLIMATOLOGY FOR THE WILMINGTON, NC WFO COUNTY WARNING AREA
A SEVERE WEATHER CLIMATOLOGY FOR THE WILMINGTON, NC WFO COUNTY WARNING AREA Carl R. Morgan National Weather Service Wilmington, NC 1. INTRODUCTION The National Weather Service (NWS) Warning Forecast Office
Current posture analysis is nothing without providing bilateral feedback aiming towards improving performance through appropriate remedial actions:
NATIONAL UPPER-AIR NETWORK PERFORMANCE MONITORING, TASKS AND EXPERIENCE A. Kats, A. Naumov, A. Ivanov Central Aerological Observatory, Roshydromet 3 Pervomaiskaya Street, Dolgoprudny, 141700, Russian Federation
Malcolm L. Spaulding Professor Emeritus, Ocean Engineering University of Rhode Island Narragansett, RI 02881
Malcolm L. Spaulding Professor Emeritus, Ocean Engineering University of Rhode Island Narragansett, RI 02881 USACE Coastal and Hydraulics Laboratory(CHL) Data Infrastructure Workshop January 23, 2014 Overview
REGIONAL CLIMATE AND DOWNSCALING
REGIONAL CLIMATE AND DOWNSCALING Regional Climate Modelling at the Hungarian Meteorological Service ANDRÁS HORÁNYI (horanyi( [email protected]@met.hu) Special thanks: : Gabriella Csima,, Péter Szabó, Gabriella
Studying Topography, Orographic Rainfall, and Ecosystems (STORE)
Studying Topography, Orographic Rainfall, and Ecosystems (STORE) Introduction Basic Lesson 2: Using ArcGIS Explorer to Analyze the Connection between Topography and Rainfall This lesson introduces Geographical
Offshore Wind Farms the Need for Metocean Data
Offshore Wind Farms the Need for Metocean Data Vagner Jacobsen and Morten Rugbjerg DHI Water & Environment, Agern Allé 5, DK-2970 Hørsholm, Denmark Introduction The wind power community has a long record
