System Informatics: Combine Engineering Knowledge and Big Data for Model Building and Decision Making
|
|
|
- Byron Mathews
- 10 years ago
- Views:
Transcription
1 System Informatics: Combine Engineering Knowledge and Big Data for Model Building and Decision Making Yu Ding Barnes Professor of Industrial & Systems Engineering Feb 13, 2015 Yu Ding (ISEN) BigData Workshop 1 / 10
2 ISEN Big Data related areas Advanced Manufacturing Human & Organizational Systems Operations Research System Informatics Yu Ding (ISEN) BigData Workshop 2 / 10
3 ISEN System Informatics group Dr. Andy Banerjee, system-level simulation visualization for healthcare, security and manufacturing applications. Dr. Justin Yates, spatial and geodata analysis and social media networks for security and logistics applications. Dr. Yu Ding, applied statistics and quality engineering for energy, manufacturing, and security applications. Dr. Li Zeng, applied Bayesian statistics and statistical process control for bio-manufacturing and nano-manufacturing. Dr. Andy Johnson, production economics and nonparametric estimation for energy, manufacturing, and healthcare applications. Data: Manufacturing & production data, material characterization data, economics data and logistic data. Engineering Applications: Manufacturing, healthcare, energy, and security and logistics. Yu Ding (ISEN) BigData Workshop 3 / 10
4 Nano informatics Data: Static and dynamic (video) nano imaging data, in the amount exceeding 1.2 GB. Data Providers: TAMU Nanomaterials Processing and Atomic Imaging Lab; Chinese National Nano Science Center; KAUST; Georgia Tech Manufacturing Institute; FSU s High Performance Material Institute. Collaborators: Huang (STAT), Mallick (STAT), Liang (MEEN), Ji (ECEN), Bukkapatnam (ISEN). Yu Ding (ISEN) BigData Workshop 4 / 10
5 Energy informatics High production efficiency Anatomy of a wind turbine: gearbox is particularly prone to failure. ground vehicle wind turbine component crew member Construction of wind turbines at a remote site. Low production efficiency Data: Real data in the amount of 120 GB and simulated data (by NWTC) of 1.2 TB. Data Providers: Risø National Lab, Nationa Wind Technology Center (NWTC), commercial wind farms, and ABB (pending). Collaborators: Huang (STAT), Mallick (STAT), Genton (STAT), Xie (ECEN), Kumar (ECEN), Kezunovic (ECEN), Johnson (ISEN), Moreno-Centeno (ISEN), Ntaimo (ISEN). Yu Ding (ISEN) BigData Workshop 5 / 10
6 System informatics theme System Informatics Fusing systems and information Systems Energy production systems. Health and human systems. Manufacturing systems. Security and logistics systems. Sensors, Sensor Networks, and Metrology Devices Methodologies Diagnosis, predictive analytics, and maintenance Fast computation and inference of big data Fault tolerance analysis and uncertainty quantification Optimal sensor deployment System informatics promotes an effective and seamless integration of physical knowledge and first principle models with data driven methodologies. Yu Ding (ISEN) BigData Workshop 6 / 10
7 A case study: multiple-dependency model for wind power curve Based on Lee, Genton, Xie, Ding. 2015, Power curve estimation with multivariate environmental factors for inland and offshore wind farms," Journal of the American Statistical Association, forthcoming. Technical objective: build a probability predictive model p(y x), in which y is the power output of a turbine; x comprises the vector of, at least: 1. wind speed v; 2. wind direction d; 3. air density ρ (incorporating temperature and air pressure); 4. turbulence intensity t b ; 5. humidity h m; 6. above-hub wind shear w a; 7. below-hub wind shear w b. Yu Ding (ISEN) BigData Workshop 7 / 10
8 Current practice Industrial standard (recommended by IEC): Binning Cut-in speed = 4 m/s Other data driven methods: Multivariate product kernels; Smoothing spline method (SSANOVA); Bayesian Additive Regression Trees (BART): a Bayesian version of the classification and regression tree method. Challenge: balance capability to capture system complexity and scalability. Yu Ding (ISEN) BigData Workshop 8 / 10
9 Our approach Physical law provides us some clue. Physics behind: Power = 1 2 ρ A Cp v 3 At least three important factors affect wind power generation; Functional relationship nonlinear with function form unknown; Interactions exist among the factors. This insights motivate a hybrid structure that we name it an Additive multivariate kernel (AMK) model: p(y x) kernel(v, d, ρ) + kernel(v, d, h m ) + kernel(v, d, t m ) +... A three-component multivariate kernel captures the critical factor interactions (with wind speed and wind direction); An additive structure ensures the scalability of the final model. Yu Ding (ISEN) BigData Workshop 9 / 10
10 What difference does this make? Six sets of turbine data for comparison. WT 1 - WT4 : inland turbine datasets; WT 5 - WT6: offshore turbine datasets. Noise level: WT1-WT3 s noise relatively low, WT4 data sees a 50% increase, and WT5 and WT6 s noise level triples that of WT1-WT3 s. Against Binning (industry practice): AMK reduces predictive error by as much as 45%. Against BART: Comparably on WT1-WT3 data; but considerably better on WT4-WT6 data. AMK beats BART by 18% on WT4 data and over 30% on WT5-WT6 data. Implication: AMK is competitive because of the special kernel model structure advised by the physical insights. BART tries to learn the intrinsic structure through the data. BART does so well enough when data are of good quality but its capability becomes remarkably less effective when data are noisy. Yu Ding (ISEN) BigData Workshop 10 / 10
Uncertainty of Power Production Predictions of Stationary Wind Farm Models
Uncertainty of Power Production Predictions of Stationary Wind Farm Models Juan P. Murcia, PhD. Student, Department of Wind Energy, Technical University of Denmark Pierre E. Réthoré, Senior Researcher,
Is a Data Scientist the New Quant? Stuart Kozola MathWorks
Is a Data Scientist the New Quant? Stuart Kozola MathWorks 2015 The MathWorks, Inc. 1 Facts or information used usually to calculate, analyze, or plan something Information that is produced or stored by
MSCA 31000 Introduction to Statistical Concepts
MSCA 31000 Introduction to Statistical Concepts This course provides general exposure to basic statistical concepts that are necessary for students to understand the content presented in more advanced
Master s Program Requirements. Industrial & Systems Engineering at Texas A&M University. Since Fall 2014.
Master s Program Requirements Industrial & Systems Engineering at Texas A&M University Since Fall 2014. 1 Overview Three programs: - Master of Engineering in Industrial Engineering (ME IE) - Master of
Introduction to Data Mining
Introduction to Data Mining 1 Why Data Mining? Explosive Growth of Data Data collection and data availability Automated data collection tools, Internet, smartphones, Major sources of abundant data Business:
Statistics for BIG data
Statistics for BIG data Statistics for Big Data: Are Statisticians Ready? Dennis Lin Department of Statistics The Pennsylvania State University John Jordan and Dennis K.J. Lin (ICSA-Bulletine 2014) Before
MSCA 31000 Introduction to Statistical Concepts
MSCA 31000 Introduction to Statistical Concepts This course provides general exposure to basic statistical concepts that are necessary for students to understand the content presented in more advanced
Big Data Analytics for SCADA
ENERGY Big Data Analytics for SCADA Machine Learning Models for Fault Detection and Turbine Performance Elizabeth Traiger, Ph.D., M.Sc. 14 April 2016 1 SAFER, SMARTER, GREENER Points to Convey Big Data
NC STATE UNIVERSITY Exploratory Analysis of Massive Data for Distribution Fault Diagnosis in Smart Grids
Exploratory Analysis of Massive Data for Distribution Fault Diagnosis in Smart Grids Yixin Cai, Mo-Yuen Chow Electrical and Computer Engineering, North Carolina State University July 2009 Outline Introduction
Solar Irradiance Forecasting Using Multi-layer Cloud Tracking and Numerical Weather Prediction
Solar Irradiance Forecasting Using Multi-layer Cloud Tracking and Numerical Weather Prediction Jin Xu, Shinjae Yoo, Dantong Yu, Dong Huang, John Heiser, Paul Kalb Solar Energy Abundant, clean, and secure
COMPARISON OF LIDARS, GERMAN TEST STATION FOR REMOTE WIND SENSING DEVICES
COMPARISON OF LIDARS, GERMAN TEST STATION FOR REMOTE WIND SENSING DEVICES A. Albers, A.W. Janssen, J. Mander Deutsche WindGuard Consulting GmbH, Oldenburger Straße, D-31 Varel, Germany E-mail: [email protected],
Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Turban, Aronson, and Liang Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
From Raw Data to. Actionable Insights with. MATLAB Analytics. Learn more. Develop predictive models. 1Access and explore data
100 001 010 111 From Raw Data to 10011100 Actionable Insights with 00100111 MATLAB Analytics 01011100 11100001 1 Access and Explore Data For scientists the problem is not a lack of available but a deluge.
Guidelines for Course Selection MS Degree Students
Guidelines for Course Selection MS Degree Students For an MS degree in the Mechanical and Industrial Engineering Department (MIE) a minimum of 30 credits are required. For an MS Thesis student, up to 9
SureSense Software Suite Overview
SureSense Software Overview Eliminate Failures, Increase Reliability and Safety, Reduce Costs and Predict Remaining Useful Life for Critical Assets Using SureSense and Health Monitoring Software What SureSense
Course Requirements for the Ph.D., M.S. and Certificate Programs
Health Informatics Course Requirements for the Ph.D., M.S. and Certificate Programs Health Informatics Core (6 s.h.) All students must take the following two courses. 173:120 Principles of Public Health
BIOINF 585 Fall 2015 Machine Learning for Systems Biology & Clinical Informatics http://www.ccmb.med.umich.edu/node/1376
Course Director: Dr. Kayvan Najarian (DCM&B, [email protected]) Lectures: Labs: Mondays and Wednesdays 9:00 AM -10:30 AM Rm. 2065 Palmer Commons Bldg. Wednesdays 10:30 AM 11:30 AM (alternate weeks) Rm.
Learning outcomes. Knowledge and understanding. Competence and skills
Syllabus Master s Programme in Statistics and Data Mining 120 ECTS Credits Aim The rapid growth of databases provides scientists and business people with vast new resources. This programme meets the challenges
A Comparison Between Data Mining Prediction Algorithms for Fault Detection (Case study: Ahanpishegan co.)
www.ijcsi.org 425 A Comparison Between Data Mining Prediction Algorithms for Fault Detection (Case study: Ahanpishegan co.) Golriz Amooee 1*, Behrouz Minaei-Bidgoli 2, Malihe Bagheri-Dehnavi 3 1 Department
Predictive Modeling Techniques in Insurance
Predictive Modeling Techniques in Insurance Tuesday May 5, 2015 JF. Breton Application Engineer 2014 The MathWorks, Inc. 1 Opening Presenter: JF. Breton: 13 years of experience in predictive analytics
USE OF REMOTE SENSING FOR WIND ENERGY ASSESSMENTS
RECOMMENDED PRACTICE DNV-RP-J101 USE OF REMOTE SENSING FOR WIND ENERGY ASSESSMENTS APRIL 2011 FOREWORD (DNV) is an autonomous and independent foundation with the objectives of safeguarding life, property
Statistics in Applications III. Distribution Theory and Inference
2.2 Master of Science Degrees The Department of Statistics at FSU offers three different options for an MS degree. 1. The applied statistics degree is for a student preparing for a career as an applied
German Test Station for Remote Wind Sensing Devices
German Test Station for Remote Wind Sensing Devices A. Albers, A.W. Janssen, J. Mander Deutsche WindGuard Consulting GmbH, Oldenburger Straße, D-31 Varel, Germany E-mail: [email protected], Tel: (++9)
Machine Learning with MATLAB David Willingham Application Engineer
Machine Learning with MATLAB David Willingham Application Engineer 2014 The MathWorks, Inc. 1 Goals Overview of machine learning Machine learning models & techniques available in MATLAB Streamlining the
A Statistician s View of Big Data
A Statistician s View of Big Data Max Kuhn, Ph.D (Pfizer Global R&D, Groton, CT) Kjell Johnson, Ph.D (Arbor Analytics, Ann Arbor MI) What Does Big Data Mean? The advantages and issues related to Big Data
ENERGY YIELD ASSESSMENT
Module 2.4-2 ENERGY YIELD ASSESSMENT Gerhard J. Gerdes Workshop on Renewable Energies November 14-25, 25 Nadi, Republic of the Fiji Islands Contents power curve of wind turbine and international regulations
Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Oman College of Management and Technology Course 803401 DSS Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization CS/MIS Department Information Sharing
Getting insights about life cycle cost drivers: an approach based on big data inspired statistical modelling
Introduction A Big Data applied to LCC Conclusion, Getting insights about life cycle cost drivers: an approach based on big data inspired statistical modelling Instituto Superior Técnico, Universidade
Principles of Data Mining by Hand&Mannila&Smyth
Principles of Data Mining by Hand&Mannila&Smyth Slides for Textbook Ari Visa,, Institute of Signal Processing Tampere University of Technology October 4, 2010 Data Mining: Concepts and Techniques 1 Differences
Imputing Values to Missing Data
Imputing Values to Missing Data In federated data, between 30%-70% of the data points will have at least one missing attribute - data wastage if we ignore all records with a missing value Remaining data
International Journal of Computer & Organization Trends Volume21 Number1 June 2015 A Study on Load Balancing in Cloud Computing
A Study on Load Balancing in Cloud Computing * Parveen Kumar * Er.Mandeep Kaur Guru kashi University,Talwandi Sabo Guru kashi University,Talwandi Sabo Abstract: Load Balancing is a computer networking
Onshore Wind Services
GE Renewable Energy Onshore Wind Services www.ge.com/wind PITCH TABLE OF CONTENTS: 3 Operate and Maintain 3 Asset and Park Management 5 Turbine Maintenance 8 Enhance and Optimize 8 Wind PowerUp * Services
The Combination Forecasting Model of Auto Sales Based on Seasonal Index and RBF Neural Network
, pp.67-76 http://dx.doi.org/10.14257/ijdta.2016.9.1.06 The Combination Forecasting Model of Auto Sales Based on Seasonal Index and RBF Neural Network Lihua Yang and Baolin Li* School of Economics and
Comparative Analysis of EM Clustering Algorithm and Density Based Clustering Algorithm Using WEKA tool.
International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 9, Issue 8 (January 2014), PP. 19-24 Comparative Analysis of EM Clustering Algorithm
Power fluctuations from large offshore wind farms
Power fluctuations from large offshore wind farms Poul Sørensen Wind Energy Systems (VES) Wind Energy Division Project was funded by Energinet.dk PSO 2004-6506 Geographical spreading 2 Wind turbine sites
Data Analytics at NICTA. Stephen Hardy National ICT Australia (NICTA) [email protected]
Data Analytics at NICTA Stephen Hardy National ICT Australia (NICTA) [email protected] NICTA Copyright 2013 Outline Big data = science! Data analytics at NICTA Discrete Finite Infinite Machine Learning
POWER CURVE MEASUREMENT EXPERIENCES, AND NEW APPROACHES
POWER CURVE MEASUREMENT EXPERIENCES, AND NEW APPROACHES EWEA Resource Assessment Workshop 2013 - Dublin Mark Young - Head of Department, Renewables Objectives Overview of reasons for power performance
Introduction to nonparametric regression: Least squares vs. Nearest neighbors
Introduction to nonparametric regression: Least squares vs. Nearest neighbors Patrick Breheny October 30 Patrick Breheny STA 621: Nonparametric Statistics 1/16 Introduction For the remainder of the course,
DATA MINING TECHNIQUES AND APPLICATIONS
DATA MINING TECHNIQUES AND APPLICATIONS Mrs. Bharati M. Ramageri, Lecturer Modern Institute of Information Technology and Research, Department of Computer Application, Yamunanagar, Nigdi Pune, Maharashtra,
Opportunities to Overcome Key Challenges
The Electricity Transmission System Opportunities to Overcome Key Challenges Summary Results of Breakout Group Discussions Electricity Transmission Workshop Double Tree Crystal City, Arlington, Virginia
HT2015: SC4 Statistical Data Mining and Machine Learning
HT2015: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Bayesian Nonparametrics Parametric vs Nonparametric
Wind turbine blade heating
Wind turbine blade heating Can it pay even more? René Cattin Icing in Switzerland Wind map of Switzerland Currently installed: 40 MW Potential: 400 600 MW (maybe more?) 6-7.5 m/s Icing Reserach Project
OFFSHORE WIND ENERGY
OFFSHORE WIND ENERGY University of Stavanger 2010-2011 OFFSHORE WIND ENERGY Offshore wind energy is a 30sp course package for part-time students. It is special designed for professionals in the offshore
Database Marketing, Business Intelligence and Knowledge Discovery
Database Marketing, Business Intelligence and Knowledge Discovery Note: Using material from Tan / Steinbach / Kumar (2005) Introduction to Data Mining,, Addison Wesley; and Cios / Pedrycz / Swiniarski
Industrial Internet @GE. Dr. Stefan Bungart
Industrial Internet @GE Dr. Stefan Bungart The vision is clear The real opportunity for change surpassing the magnitude of the consumer Internet is the Industrial Internet, an open, global network that
The Rise of Industrial Big Data. Brian Courtney General Manager Industrial Data Intelligence
The Rise of Industrial Big Data Brian Courtney General Manager Industrial Data Intelligence Agenda Introduction Big Data for the industrial sector Case in point: Big data saves millions at GE Energy Seeking
AUTO CLAIM FRAUD DETECTION USING MULTI CLASSIFIER SYSTEM
AUTO CLAIM FRAUD DETECTION USING MULTI CLASSIFIER SYSTEM ABSTRACT Luis Alexandre Rodrigues and Nizam Omar Department of Electrical Engineering, Mackenzie Presbiterian University, Brazil, São Paulo [email protected],[email protected]
OCRP Implementation to Optimize Resource Provisioning Cost in Cloud Computing
OCRP Implementation to Optimize Resource Provisioning Cost in Cloud Computing K. Satheeshkumar PG Scholar K. Senthilkumar PG Scholar A. Selvakumar Assistant Professor Abstract- Cloud computing is a large-scale
MIT M2M ZU INDUSTRIE 4.0
MIT M2M ZU INDUSTRIE 4.0 Jürgen Hase [email protected] Darmstadt, May 23, 2014 M2M // IMPACT ALONG MANY INDUSTRIES M2M ECOSYSTEM 8 5 4 7 6 2 1 9 3 1. Transport & Logistics 2. Vehicle Telematics 3.
Nonparametric Time Series Analysis: A review of Peter Lewis contributions to the field
Nonparametric Time Series Analysis: A review of Peter Lewis contributions to the field Bonnie Ray IBM T. J. Watson Research Center Joint Statistical Meetings 2012 Outline Background My connection to Peter
Statistical Models in Data Mining
Statistical Models in Data Mining Sargur N. Srihari University at Buffalo The State University of New York Department of Computer Science and Engineering Department of Biostatistics 1 Srihari Flood of
GE Power & Water Renewable Energy. Digital Wind Farm THE NEXT EVOLUTION OF WIND ENERGY. www.ge.com/wind
GE Power & Water Renewable Energy Digital Wind Farm THE NEXT EVOLUTION OF WIND ENERGY www.ge.com/wind GE S DIGITAL WIND FARM PITCH Since entering the wind industry in 2002, GE Power & Water s Renewable
Tracking in flussi video 3D. Ing. Samuele Salti
Seminari XXIII ciclo Tracking in flussi video 3D Ing. Tutors: Prof. Tullio Salmon Cinotti Prof. Luigi Di Stefano The Tracking problem Detection Object model, Track initiation, Track termination, Tracking
International Journal of Computer Science Trends and Technology (IJCST) Volume 2 Issue 3, May-Jun 2014
RESEARCH ARTICLE OPEN ACCESS A Survey of Data Mining: Concepts with Applications and its Future Scope Dr. Zubair Khan 1, Ashish Kumar 2, Sunny Kumar 3 M.Tech Research Scholar 2. Department of Computer
Adjustment of Anemometer Readings for Energy Production Estimates WINDPOWER June 2008 Houston, Texas
Adjustment of Anemometer Readings for Energy Production Estimates WINDPOWER June 2008 Houston, Texas Matthew Filippelli, Julien Bouget, Michael Brower, and Dan Bernadett AWS Truewind, LLC 463 New Karner
Smart City Australia
Smart City Australia Slaven Marusic Department of Electrical and Electronic Engineering The University of Melbourne, Australia ARC Research Network on Intelligent Sensors, Sensor Networks and Information
Igniting the Next Industrial Revolution
Igniting the Next Industrial Revolution Defining an M2M Technology Platform for the Industrial Internet M2M Evolution Conference, 30 Jan 2014 Nikhil Chauhan Director Product Marketing, GE Software Sufficiently
Trends and Research Opportunities in Spatial Big Data Analytics and Cloud Computing NCSU GeoSpatial Forum
Trends and Research Opportunities in Spatial Big Data Analytics and Cloud Computing NCSU GeoSpatial Forum Siva Ravada Senior Director of Development Oracle Spatial and MapViewer 2 Evolving Technology Platforms
Perspectives on Data Mining
Perspectives on Data Mining Niall Adams Department of Mathematics, Imperial College London [email protected] April 2009 Objectives Give an introductory overview of data mining (DM) (or Knowledge Discovery
An Introduction to Data Mining. Big Data World. Related Fields and Disciplines. What is Data Mining? 2/12/2015
An Introduction to Data Mining for Wind Power Management Spring 2015 Big Data World Every minute: Google receives over 4 million search queries Facebook users share almost 2.5 million pieces of content
Dynamic Process Modeling. Process Dynamics and Control
Dynamic Process Modeling Process Dynamics and Control 1 Description of process dynamics Classes of models What do we need for control? Modeling for control Mechanical Systems Modeling Electrical circuits
Advanced Methods for Pedestrian and Bicyclist Sensing
Advanced Methods for Pedestrian and Bicyclist Sensing Yinhai Wang PacTrans STAR Lab University of Washington Email: [email protected] Tel: 1-206-616-2696 For Exchange with University of Nevada Reno Sept. 25,
Statistics Graduate Courses
Statistics Graduate Courses STAT 7002--Topics in Statistics-Biological/Physical/Mathematics (cr.arr.).organized study of selected topics. Subjects and earnable credit may vary from semester to semester.
Data Mining mit der JMSL Numerical Library for Java Applications
Data Mining mit der JMSL Numerical Library for Java Applications Stefan Sineux 8. Java Forum Stuttgart 07.07.2005 Agenda Visual Numerics JMSL TM Numerical Library Neuronale Netze (Hintergrund) Demos Neuronale
Big Data and Analytics: Getting Started with ArcGIS. Mike Park Erik Hoel
Big Data and Analytics: Getting Started with ArcGIS Mike Park Erik Hoel Agenda Overview of big data Distributed computation User experience Data management Big data What is it? Big Data is a loosely defined
Statistical Challenges with Big Data in Management Science
Statistical Challenges with Big Data in Management Science Arnab Kumar Laha Indian Institute of Management Ahmedabad Analytics vs Reporting Competitive Advantage Reporting Prescriptive Analytics (Decision
STA 4273H: Statistical Machine Learning
STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! [email protected]! http://www.cs.toronto.edu/~rsalakhu/ Lecture 6 Three Approaches to Classification Construct
SMART TRANSPORTATION
SMART TRANSPORTATION Professor William HK LAM, The Hong Kong Polytechnic University Professor Hong K LO, The Hong Kong University of Science and Technology Professor SC WONG, The University of Hong Kong
Data Mining - Evaluation of Classifiers
Data Mining - Evaluation of Classifiers Lecturer: JERZY STEFANOWSKI Institute of Computing Sciences Poznan University of Technology Poznan, Poland Lecture 4 SE Master Course 2008/2009 revised for 2010
Master of Science (MS) in Biostatistics 2014-2015. Program Director and Academic Advisor:
Master of Science (MS) in Biostatistics 014-015 Note: All curriculum revisions will be updated immediately on the website http://publichealh.gwu.edu Program Director and Academic Advisor: Dante A. Verme,
Certificate Program in Applied Big Data Analytics in Dubai. A Collaborative Program offered by INSOFE and Synergy-BI
Certificate Program in Applied Big Data Analytics in Dubai A Collaborative Program offered by INSOFE and Synergy-BI Program Overview Today s manager needs to be extremely data savvy. They need to work
Geography 4203 / 5203. GIS Modeling. Class (Block) 9: Variogram & Kriging
Geography 4203 / 5203 GIS Modeling Class (Block) 9: Variogram & Kriging Some Updates Today class + one proposal presentation Feb 22 Proposal Presentations Feb 25 Readings discussion (Interpolation) Last
International Journal of Advanced Engineering Research and Applications (IJAERA) ISSN: 2454-2377 Vol. 1, Issue 6, October 2015. Big Data and Hadoop
ISSN: 2454-2377, October 2015 Big Data and Hadoop Simmi Bagga 1 Satinder Kaur 2 1 Assistant Professor, Sant Hira Dass Kanya MahaVidyalaya, Kala Sanghian, Distt Kpt. INDIA E-mail: [email protected]
Predictive Analytics
Predictive Analytics How many of you used predictive today? 2015 SAP SE. All rights reserved. 2 2015 SAP SE. All rights reserved. 3 How can you apply predictive to your business? Predictive Analytics is
Chapter 5. Warehousing, Data Acquisition, Data. Visualization
Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization 5-1 Learning Objectives
ANALYTICS IN BIG DATA ERA
ANALYTICS IN BIG DATA ERA ANALYTICS TECHNOLOGY AND ARCHITECTURE TO MANAGE VELOCITY AND VARIETY, DISCOVER RELATIONSHIPS AND CLASSIFY HUGE AMOUNT OF DATA MAURIZIO SALUSTI SAS Copyr i g ht 2012, SAS Ins titut
Data Mining and Exploration. Data Mining and Exploration: Introduction. Relationships between courses. Overview. Course Introduction
Data Mining and Exploration Data Mining and Exploration: Introduction Amos Storkey, School of Informatics January 10, 2006 http://www.inf.ed.ac.uk/teaching/courses/dme/ Course Introduction Welcome Administration
Big Data and Cloud Computing for GHRSST
Big Data and Cloud Computing for GHRSST Jean-Francois Piollé ([email protected]) Frédéric Paul, Olivier Archer CERSAT / Institut Français de Recherche pour l Exploitation de la Mer Facing data deluge
Statistics, Data Mining and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data. and Alex Gray
Statistics, Data Mining and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data Željko Ivezić, Andrew J. Connolly, Jacob T. VanderPlas University of Washington and Alex
Virtual Met Mast verification report:
Virtual Met Mast verification report: June 2013 1 Authors: Alasdair Skea Karen Walter Dr Clive Wilson Leo Hume-Wright 2 Table of contents Executive summary... 4 1. Introduction... 6 2. Verification process...
Traffic Prediction and Analysis using a Big Data and Visualisation Approach
Traffic Prediction and Analysis using a Big Data and Visualisation Approach Declan McHugh 1 1 Department of Computer Science, Institute of Technology Blanchardstown March 10, 2015 Summary This abstract
Business Intelligence. Data Mining and Optimization for Decision Making
Brochure More information from http://www.researchandmarkets.com/reports/2325743/ Business Intelligence. Data Mining and Optimization for Decision Making Description: Business intelligence is a broad category
RESEARCH INTERESTS Modeling and Simulation, Complex Systems, Biofabrication, Bioinformatics
FENG GU Assistant Professor of Computer Science College of Staten Island, City University of New York 2800 Victory Boulevard, Staten Island, NY 10314 Doctoral Faculty of Computer Science Graduate Center
Lecture/Recitation Topic SMA 5303 L1 Sampling and statistical distributions
SMA 50: Statistical Learning and Data Mining in Bioinformatics (also listed as 5.077: Statistical Learning and Data Mining ()) Spring Term (Feb May 200) Faculty: Professor Roy Welsch Wed 0 Feb 7:00-8:0
