ANALYTICS IN BIG DATA ERA
|
|
|
- Sharlene Day
- 10 years ago
- Views:
Transcription
1 ANALYTICS IN BIG DATA ERA ANALYTICS TECHNOLOGY AND ARCHITECTURE TO MANAGE VELOCITY AND VARIETY, DISCOVER RELATIONSHIPS AND CLASSIFY HUGE AMOUNT OF DATA MAURIZIO SALUSTI SAS Copyr i g ht 2012, SAS Ins titut e Inc. All rights res er ve d.
2 AGENDA From DBMS to BIG DATA Architectural Considerations Big Data Analytics Methods Data Discovery: Visual Analytics
3 WHAT IS BIG DATA? DATA are everywhere: IT organization often collect many data in EDW but them need to integrate with many other sources The ability to generate, communicate, share, and access information has been revolutionized by the increasing number of people, devices, and sensors that are now connected by digital networks. People leave information in networks Devices many ways to provide information Data are a stream continuos of information Data are not only measures but text, images, sounds
4 ACTUAL COMPANY DATA ORGANIZATION DATA ARE DEPLOYED INFORMATION AS SNAPSHOTS: DATA WAREHOUSE ANALYTICAL DATAMARTS Same information are replicated in several data structures provide slow updating process and slow renewal data. Spreading information need drastic changements into paradigm how companies collect their data and how they use it: Customer data are not only in Customer company DB. These data give partial customers vision: i.e. Telco operators collect customer voice and sms traffic, while many their customers establish contacts using social media and apps. Customers can give many signal on market preferences like a sensor on market but the actual data storage structures and their analytics tools are not be able to deal with these data.
5 TREND COMPANY DATA ORGANIZATION NEEDS: TO AVOID DATA PROLIFERATION TO PROVIDE SEVERAL SCENARIO OF SAME DATA DATA ENRICHMENT WITH SEVERAL SOURCES QUICKLY DATA RENEWAL TO PROVIDE PATTERN OF CHANGEMENTS SCENARIO Big data refers to datasets whose size is beyond the ability of typical database software tools to capture, store, manage, and analyze. The ability to store, aggregate, and combine data and then use the results to perform analysis in motion has become ever more accessible as trends.
6 NEW QUESTIONS Not always data are in structured data model Often we need to join data with not same keys Often data coming with periodic flow near real time Often we need to recognize pattern from data changing frequently New ways to manage distributed and not structured in classical way data are needed: We need different paradigm to organize data and, above all, to query them. Collect several sources and manage them open several new problems: Relational data (GRAPH DATA) can be useful to understand event spreading in a population. Data in motion coming from several tools on field (sensor devices, smarthphone) provide dynamic pattern often without an history of their form
7 ANALYSIS Not always you can apply sampling to extract data Not always you can join data to define ABT Often you need to know how environment can influence event: like buy, choice, changement. Often we need to merging information collected with different scope. SQL Queries often are useless to reach these data: Information are not organized into DB structures Data are very different way to provides information: i.e. text are not easy to query using traditional query languages. Merging are driven by fuzzy keys where you can assign group information according statistic relationship. Event can be happen driven from relational with other data rather from specific behavior.
8 BIG DATA What types?
9 AGENDA From DBMS to BIG DATA Architectural Considerations Big Data Analytics Methods Data Discovery: Visual Analytics
10 DBMS and Datamart help to analyzing data coming from one central point data. You need only to know where data is and their meaning. Query are managed directly from DBMS Data are stored in different place and you have to know relationship MAPPING coming from different sources. Here before you extract data your query have to know from which place into the net you have data.
11 MULTI POINT DATA HUB BUILDING BLOCKS OF A BIG DATA ANALYTICS PROCESS ANALYTICS
12 REFERENCE ARCHITECTURE EXAMPLE SAS-RACK IMPLEMENTATION CLIENT GREENPLUM TERADATA ORACLE HADOOP
13 Input Hadoop Output Visual Analytics Metadata High Performance Analytics
14 Input In memory GRID COMPUTING In Database Output Visual Analytics Metadata Analytical Tool High Performance Analytics
15 AGENDA From DBMS to BIG DATA Architectural Considerations Big Data Analytics Methods Data Discovery: Visual Analytics
16 SAS HIGH- PERFORMANCE ANALYTICS Worrying about software performance is not a new concept at SAS What is New? Dedicated high-performance software Accelerated development Why Now?» Customer needs» Blade systems have proven viable platforms for high-performance computing» New computing paradigms» Partnerships with MPP database vendors
17 SAS PROCEDURES THEN AND NOW proc logistic data=td.mydata; proc hplogistic data=td.mydata; class A B C; class A B C; model y(event= 1 ) = A B B*C; model y(event= 1 ) = A B B*C; run; run; Single-threaded Not aware of distributed computing environment Runs on client Multi-threaded Aware of distributed computing environment Runs on client or DBMS appliance
18 HP PROCS IN SINGLE SERVER libname disk BASE /filesys ; proc hpreg data=disk.source; analytic stuff run; SAS Process Steps: (1) SAS Process Starts on HW & O/S (2) SAS sets up access library to disk (3) SAS starts HPREG PROC (4) HPREG reads data through ACCESS during computation* (5) Multiple threads are launched to process the incoming data (6) As execution continues, temporary data is written out to utility files on disk *SMP HP PROCS do not load the entire source dataset into RAM the SAS Process utilizes the MEMSIZE option as a boundary. No different than MVA or regular procs, datastep, etc. Process Temp/Utility files to support SAS OPERATING SYSTEM 6 1 SAS Process Disks /filesys 4 SAS Datasets
19 HPPROCS IN DISTRIBUTED ARCHITECTURE HADOOP HDAT SHARED-RACK EXAMPLE libname a sashdat; option set=gridhost= NAMENODE ; proc hpreg data=a.source; analytic stuff performance nodes=all; run; SAS Process Steps: (1) SAS Process Starts on HW & O/S (2) SAS sets up access library to disk (3) SAS starts HPREG PROC (4) Due to GRIDHOST and proper access engine setting, multi-threaded processes are started on grid nodes (via TKGrid) (5) As TKGrid processes start up, ALL data is lifted into RAM from HDFS. (6) Processing occurs in parallel against in memory data (7) Results return to initiating process on SAS Server OPERATING SYSTEM Process SAS Process HADOOP NAMENODE 4 NODE Data 6 NODE Data 6 NODE N 4 5 Data 6
20 Big data analysis can be done using several analytic strategy. SAS collects many different methods many of them coming from traditional statistical inference analysis using SEMMA paradigm. Other coming from stochastic process analysis both for continue and discrete events. Other coming from linear and not linear mixed models. Graph analysis
21 AGENDA From DBMS to BIG DATA Architectural Considerations Big Data Analytics Methods Data Discovery: Visual Analytics
22 ANALYTICAL CATEGORIES AND TARGET USAGE Statistics Data Mining Text Mining Forecasting Econometrics Optimization Binary target & continuous no. predictions Linear, Non- Linear, & Mixed Linear modeling Complex relationships Tree-based Classification Variable Selection Parsing large-scale text collections Extract entities Auto. Stemming & synonym detection Large-scale, multiple hierarchy problems Probability of events Severity of random events Local search optimization Large-scale linear & mixed integer problems Graph theory
23 Data coming from different sources can be tie using different methods like canonical decomposition. Data pattern variability on data in motion like data coming from devices can be sampled or simulate pattern distribution using Markov chain Monte Carlo methods. Sparse vector data with missing values can be simulate using MCMC or other regression methods Discrete choice among different events can be defined using multinomial discrete models.
24 GRAPH ANALYSIS Network The Network Analysis objectives are: Identifying the subnets (communities) with high potential of information exchange. Community Measuring changes over time. Producing initiatives which increase the enterprise presence in the single communities knowing the spreading strength of the community.
25 GRAPH ANALYSIS Node 2 Link A network is collection of the relationships among nodes by links. A node is an individual featured by qualities which can be transmitted through the links (impulses). A link is the relationship which connects 2 nodes. It can be outgoing, incoming or with no direction.
26 AGENDA From DBMS to BIG DATA Architectural Considerations Big Data Analytics Methods Data Discovery: Visual Analytics
27 ...provide very easy to use - yet sophisticated statistical graphic tools to all of your users? SAS VISUAL ANALYTICS A Single solution for Statistical Visualization and reporting use ad hoc exploration and visualizations to analyze multivariate results? quickly produce mobile dashboards and reports that convey more foresight than hindsight?
28 SAS VISUAL ANALYTICS BUSINESS VISUALIZATION DRIVEN BY ANALYTICS EXPLORATION AND VISUALIZATION POWER OF ANALYTICS RAPID DELIVERY OF MOBILE INSIGHTS
29 BUSINESS VISUALIZATION THE DIFFERENCE BETWEEN RAPID INSIGHT AND FAST INFORMATION DATA VISUALIZATION ANALYTIC VISUALIZATION EXPLORATION DISCOVERY
30 BENEFITS INCREASE THE USE OF ANALYTICS AND BI Self-service Easy to use Analytics Work with more data Reporting and Dashboards Mobile BI Collaboration
31 SAS VISUAL ANALYTICS MEETING YOUR BUSINESS NEEDS THROUGH FLEXIBILITY Traditional on premise Deployments Public Private Hybrid SAS Cloud & SAS Solutions on Demand
ANALYTICS IN BIG DATA ERA
ANALYTICS IN BIG DATA ERA ANALYTICS TECHNOLOGY AND ARCHITECTURE TO MANAGE VELOCITY AND VARIETY, DISCOVER RELATIONSHIPS AND CLASSIFY HUGE AMOUNT OF DATA MAURIZIO SALUSTI SAS Copyr i g ht 2012, SAS Ins titut
Advanced Big Data Analytics with R and Hadoop
REVOLUTION ANALYTICS WHITE PAPER Advanced Big Data Analytics with R and Hadoop 'Big Data' Analytics as a Competitive Advantage Big Analytics delivers competitive advantage in two ways compared to the traditional
Hortonworks & SAS. Analytics everywhere. Page 1. Hortonworks Inc. 2011 2014. All Rights Reserved
Hortonworks & SAS Analytics everywhere. Page 1 A change in focus. A shift in Advertising From mass branding A shift in Financial Services From Educated Investing A shift in Healthcare From mass treatment
DATA VISUALIZATION: CONVERTING INFORMATION TO DECISIONS DAVID FRONING, PRINCIPAL PRODUCT MANAGER
DATA VISUALIZATION: CONVERTING INFORMATION TO DECISIONS DAVID FRONING, PRINCIPAL PRODUCT MANAGER SAS WHO WE ARE World leader in analytics Founded in 1976 400 offices world-wide Used at 65,000 sites in
ANALYTICS MODERNIZATION TRENDS, APPROACHES, AND USE CASES. Copyright 2013, SAS Institute Inc. All rights reserved.
ANALYTICS MODERNIZATION TRENDS, APPROACHES, AND USE CASES STUNNING FACT Making the Modern World: Materials and Dematerialization - Vaclav Smil Trends in Platforms Hadoop Microsoft PDW COST PER TERABYTE
WHAT S NEW IN SAS 9.4
WHAT S NEW IN SAS 9.4 PLATFORM, HPA & SAS GRID COMPUTING MICHAEL GODDARD CHIEF ARCHITECT SAS INSTITUTE, NEW ZEALAND SAS 9.4 WHAT S NEW IN THE PLATFORM Platform update SAS Grid Computing update Hadoop support
Find the Hidden Signal in Market Data Noise
Find the Hidden Signal in Market Data Noise Revolution Analytics Webinar, 13 March 2013 Andrie de Vries Business Services Director (Europe) @RevoAndrie [email protected] Agenda Find the Hidden
News and trends in Data Warehouse Automation, Big Data and BI. Johan Hendrickx & Dirk Vermeiren
News and trends in Data Warehouse Automation, Big Data and BI Johan Hendrickx & Dirk Vermeiren Extreme Agility from Source to Analysis DWH Appliances & DWH Automation Typical Architecture 3 What Business
In-Memory Analytics for Big Data
In-Memory Analytics for Big Data Game-changing technology for faster, better insights WHITE PAPER SAS White Paper Table of Contents Introduction: A New Breed of Analytics... 1 SAS In-Memory Overview...
Big Data Integration: A Buyer's Guide
SEPTEMBER 2013 Buyer s Guide to Big Data Integration Sponsored by Contents Introduction 1 Challenges of Big Data Integration: New and Old 1 What You Need for Big Data Integration 3 Preferred Technology
EMC/Greenplum Driving the Future of Data Warehousing and Analytics
EMC/Greenplum Driving the Future of Data Warehousing and Analytics EMC 2010 Forum Series 1 Greenplum Becomes the Foundation of EMC s Data Computing Division E M C A CQ U I R E S G R E E N P L U M Greenplum,
Big Data & QlikView. Democratizing Big Data Analytics. David Freriks Principal Solution Architect
Big Data & QlikView Democratizing Big Data Analytics David Freriks Principal Solution Architect TDWI Vancouver Agenda What really is Big Data? How do we separate hype from reality? How does that relate
Advanced In-Database Analytics
Advanced In-Database Analytics Tallinn, Sept. 25th, 2012 Mikko-Pekka Bertling, BDM Greenplum EMEA 1 That sounds complicated? 2 Who can tell me how best to solve this 3 What are the main mathematical functions??
Luncheon Webinar Series May 13, 2013
Luncheon Webinar Series May 13, 2013 InfoSphere DataStage is Big Data Integration Sponsored By: Presented by : Tony Curcio, InfoSphere Product Management 0 InfoSphere DataStage is Big Data Integration
Architecting for the Internet of Things & Big Data
Architecting for the Internet of Things & Big Data Robert Stackowiak, Oracle North America, VP Information Architecture & Big Data September 29, 2014 Safe Harbor Statement The following is intended to
BIG DATA What it is and how to use?
BIG DATA What it is and how to use? Lauri Ilison, PhD Data Scientist 21.11.2014 Big Data definition? There is no clear definition for BIG DATA BIG DATA is more of a concept than precise term 1 21.11.14
Big Data and Advanced Analytics Technologies for the Smart Grid
1 Big Data and Advanced Analytics Technologies for the Smart Grid Arnie de Castro, PhD SAS Institute IEEE PES 2014 General Meeting July 27-31, 2014 Panel Session: Using Smart Grid Data to Improve Planning,
End to End Solution to Accelerate Data Warehouse Optimization. Franco Flore Alliance Sales Director - APJ
End to End Solution to Accelerate Data Warehouse Optimization Franco Flore Alliance Sales Director - APJ Big Data Is Driving Key Business Initiatives Increase profitability, innovation, customer satisfaction,
Understanding the Value of In-Memory in the IT Landscape
February 2012 Understing the Value of In-Memory in Sponsored by QlikView Contents The Many Faces of In-Memory 1 The Meaning of In-Memory 2 The Data Analysis Value Chain Your Goals 3 Mapping Vendors to
ANALYTICS CENTER LEARNING PROGRAM
Overview of Curriculum ANALYTICS CENTER LEARNING PROGRAM The following courses are offered by Analytics Center as part of its learning program: Course Duration Prerequisites 1- Math and Theory 101 - Fundamentals
Introducing Oracle Exalytics In-Memory Machine
Introducing Oracle Exalytics In-Memory Machine Jon Ainsworth Director of Business Development Oracle EMEA Business Analytics 1 Copyright 2011, Oracle and/or its affiliates. All rights Agenda Topics Oracle
Deploy. Friction-free self-service BI solutions for everyone Scalable analytics on a modern architecture
Friction-free self-service BI solutions for everyone Scalable analytics on a modern architecture Apps and data source extensions with APIs Future white label, embed or integrate Power BI Deploy Intelligent
High-Performance Analytics
High-Performance Analytics David Pope January 2012 Principal Solutions Architect High Performance Analytics Practice Saturday, April 21, 2012 Agenda Who Is SAS / SAS Technology Evolution Current Trends
Achieving Business Value through Big Data Analytics Philip Russom
Achieving Business Value through Big Data Analytics Philip Russom TDWI Research Director for Data Management October 3, 2012 Sponsor 2 Speakers Philip Russom Research Director, Data Management, TDWI Brian
Big Data Analytics. with EMC Greenplum and Hadoop. Big Data Analytics. Ofir Manor Pre Sales Technical Architect EMC Greenplum
Big Data Analytics with EMC Greenplum and Hadoop Big Data Analytics with EMC Greenplum and Hadoop Ofir Manor Pre Sales Technical Architect EMC Greenplum 1 Big Data and the Data Warehouse Potential All
ESS event: Big Data in Official Statistics. Antonino Virgillito, Istat
ESS event: Big Data in Official Statistics Antonino Virgillito, Istat v erbi v is 1 About me Head of Unit Web and BI Technologies, IT Directorate of Istat Project manager and technical coordinator of Web
Integrated Big Data: Hadoop + DBMS + Discovery for SAS High Performance Analytics
Paper 1828-2014 Integrated Big Data: Hadoop + DBMS + Discovery for SAS High Performance Analytics John Cunningham, Teradata Corporation, Danville, CA ABSTRACT SAS High Performance Analytics (HPA) is a
BIG DATA: FROM HYPE TO REALITY. Leandro Ruiz Presales Partner for C&LA Teradata
BIG DATA: FROM HYPE TO REALITY Leandro Ruiz Presales Partner for C&LA Teradata Evolution in The Use of Information Action s ACTIVATING MAKE it happen! Insights OPERATIONALIZING WHAT IS happening now? PREDICTING
How to use Big Data in Industry 4.0 implementations. LAURI ILISON, PhD Head of Big Data and Machine Learning
How to use Big Data in Industry 4.0 implementations LAURI ILISON, PhD Head of Big Data and Machine Learning Big Data definition? Big Data is about structured vs unstructured data Big Data is about Volume
Parallel Data Warehouse
MICROSOFT S ANALYTICS SOLUTIONS WITH PARALLEL DATA WAREHOUSE Parallel Data Warehouse Stefan Cronjaeger Microsoft May 2013 AGENDA PDW overview Columnstore and Big Data Business Intellignece Project Ability
Getting Started Practical Input For Your Roadmap
Getting Started Practical Input For Your Roadmap Mike Ferguson Managing Director, Intelligent Business Strategies BA4ALL Big Data & Analytics Insight Conference Stockholm, May 2015 About Mike Ferguson
Big Data Are You Ready? Jorge Plascencia Solution Architect Manager
Big Data Are You Ready? Jorge Plascencia Solution Architect Manager Big Data: The Datafication Of Everything Thoughts Devices Processes Thoughts Things Processes Run the Business Organize data to do something
Testing Big data is one of the biggest
Infosys Labs Briefings VOL 11 NO 1 2013 Big Data: Testing Approach to Overcome Quality Challenges By Mahesh Gudipati, Shanthi Rao, Naju D. Mohan and Naveen Kumar Gajja Validate data quality by employing
Hadoop and Relational Database The Best of Both Worlds for Analytics Greg Battas Hewlett Packard
Hadoop and Relational base The Best of Both Worlds for Analytics Greg Battas Hewlett Packard The Evolution of Analytics Mainframe EDW Proprietary MPP Unix SMP MPP Appliance Hadoop? Questions Is Hadoop
I/O Considerations in Big Data Analytics
Library of Congress I/O Considerations in Big Data Analytics 26 September 2011 Marshall Presser Federal Field CTO EMC, Data Computing Division 1 Paradigms in Big Data Structured (relational) data Very
How to make BIG DATA work for you. Faster results with Microsoft SQL Server PDW
How to make BIG DATA work for you. Faster results with Microsoft SQL Server PDW Roger Breu PDW Solution Specialist Microsoft Western Europe Marcus Gullberg PDW Partner Account Manager Microsoft Sweden
What Does Big Data Mean and Who Will Win? Michael Stonebraker
What Does Big Data Mean and Who Will Win? Michael Stonebraker The Meaning of Big Data - 3 V s Big Volume Business stuff with simple (SQL) analytics Business stuff with complex (non-sql) analytics Science
Oracle Big Data Discovery The Visual Face of Hadoop
Disclaimer: This document is for informational purposes. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development,
Bringing Big Data Modelling into the Hands of Domain Experts
Bringing Big Data Modelling into the Hands of Domain Experts David Willingham Senior Application Engineer MathWorks [email protected] 2015 The MathWorks, Inc. 1 Data is the sword of the
Mark Bennett. Search and the Virtual Machine
Mark Bennett Search and the Virtual Machine Agenda Intro / Business Drivers What to do with Search + Virtual What Makes Search Fast (or Slow!) Virtual Platforms Test Results Trends / Wrap Up / Q & A Business
RevoScaleR Speed and Scalability
EXECUTIVE WHITE PAPER RevoScaleR Speed and Scalability By Lee Edlefsen Ph.D., Chief Scientist, Revolution Analytics Abstract RevoScaleR, the Big Data predictive analytics library included with Revolution
ANALYTICS STRATEGY: creating a roadmap for success
ANALYTICS STRATEGY: creating a roadmap for success Companies in the capital and commodity markets are looking at analytics for opportunities to improve revenue and cost savings. Yet, many firms are struggling
Big Data and Data Science: Behind the Buzz Words
Big Data and Data Science: Behind the Buzz Words Peggy Brinkmann, FCAS, MAAA Actuary Milliman, Inc. April 1, 2014 Contents Big data: from hype to value Deconstructing data science Managing big data Analyzing
INTELLIGENT BUSINESS STRATEGIES WHITE PAPER
INTELLIGENT BUSINESS STRATEGIES WHITE PAPER Improving Access to Data for Successful Business Intelligence Part 2: Supporting Multiple Analytical Workloads in a Changing Analytical Landscape By Mike Ferguson
Copyr i g ht 2012, SAS Ins titut e Inc. All rights res er ve d. DATA MANAGEMENT FOR ANALYTICS
DATA MANAGEMENT FOR ANALYTICS WHAT IS ANALYTICS? A VERY BROAD TERM OFTEN CONFUSED Descriptive What happened? When? Why? Advanced What will happen? When? Why? How do we benefit? What actions should I take?
SAP SE - Legal Requirements and Requirements
Finding the signals in the noise Niklas Packendorff @packendorff Solution Expert Analytics & Data Platform Legal disclaimer The information in this presentation is confidential and proprietary to SAP and
Big Data and Your Data Warehouse Philip Russom
Big Data and Your Data Warehouse Philip Russom TDWI Research Director for Data Management April 5, 2012 Sponsor Speakers Philip Russom Research Director, Data Management, TDWI Peter Jeffcock Director,
Oracle Analytics A New Day. Nick Whitehead Senior Director, Oracle Business Analytics, EMEA
Oracle Analytics A New Day Nick Whitehead Senior Director, Oracle Business Analytics, EMEA Safe Harbor Statement Safe Harbor Statement The following is intended to outline our general product direction.
HIGH PERFORMANCE ANALYTICS FOR TERADATA
F HIGH PERFORMANCE ANALYTICS FOR TERADATA F F BORN AND BRED IN FINANCIAL SERVICES AND HEALTHCARE. DECADES OF EXPERIENCE IN PARALLEL PROGRAMMING AND ANALYTICS. FOCUSED ON MAKING DATA SCIENCE HIGHLY PERFORMING
SEIZE THE DATA. 2015 SEIZE THE DATA. 2015
1 Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. BIG DATA CONFERENCE 2015 Boston August 10-13 Predicting and reducing deforestation
SAP Predictive Analytics: An Overview and Roadmap. Charles Gadalla, SAP @cgadalla SESSION CODE: 603
SAP Predictive Analytics: An Overview and Roadmap Charles Gadalla, SAP @cgadalla SESSION CODE: 603 Advanced Analytics SAP Vision Embed Smart Agile Analytics into Decision Processes to Deliver Business
Oracle Big Data Discovery Unlock Potential in Big Data Reservoir
Oracle Big Data Discovery Unlock Potential in Big Data Reservoir Gokula Mishra Premjith Balakrishnan Business Analytics Product Group September 29, 2014 Copyright 2014, Oracle and/or its affiliates. All
Challenges for Data Driven Systems
Challenges for Data Driven Systems Eiko Yoneki University of Cambridge Computer Laboratory Quick History of Data Management 4000 B C Manual recording From tablets to papyrus to paper A. Payberah 2014 2
Decoding the Big Data Deluge a Virtual Approach. Dan Luongo, Global Lead, Field Solution Engineering Data Virtualization Business Unit, Cisco
Decoding the Big Data Deluge a Virtual Approach Dan Luongo, Global Lead, Field Solution Engineering Data Virtualization Business Unit, Cisco High-volume, velocity and variety information assets that demand
An Integrated Analytics & Big Data Infrastructure September 21, 2012 Robert Stackowiak, Vice President Data Systems Architecture Oracle Enterprise
An Integrated Analytics & Big Data Infrastructure September 21, 2012 Robert Stackowiak, Vice President Data Systems Architecture Oracle Enterprise Solutions Group The following is intended to outline our
James Serra Sr BI Architect [email protected] http://jamesserra.com/
James Serra Sr BI Architect [email protected] http://jamesserra.com/ Our Focus: Microsoft Pure-Play Data Warehousing & Business Intelligence Partner Our Customers: Our Reputation: "B.I. Voyage came
Oracle s Big Data solutions. Roger Wullschleger. <Insert Picture Here>
s Big Data solutions Roger Wullschleger DBTA Workshop on Big Data, Cloud Data Management and NoSQL 10. October 2012, Stade de Suisse, Berne 1 The following is intended to outline
Data Centric Systems (DCS)
Data Centric Systems (DCS) Architecture and Solutions for High Performance Computing, Big Data and High Performance Analytics High Performance Computing with Data Centric Systems 1 Data Centric Systems
EMC Greenplum Driving the Future of Data Warehousing and Analytics. Tools and Technologies for Big Data
EMC Greenplum Driving the Future of Data Warehousing and Analytics Tools and Technologies for Big Data Steven Hillion V.P. Analytics EMC Data Computing Division 1 Big Data Size: The Volume Of Data Continues
TE's Analytics on Hadoop and SAP HANA Using SAP Vora
TE's Analytics on Hadoop and SAP HANA Using SAP Vora Naveen Narra Senior Manager TE Connectivity Santha Kumar Rajendran Enterprise Data Architect TE Balaji Krishna - Director, SAP HANA Product Mgmt. -
Towards a Thriving Data Economy: Open Data, Big Data, and Data Ecosystems
Towards a Thriving Data Economy: Open Data, Big Data, and Data Ecosystems Volker Markl [email protected] dima.tu-berlin.de dfki.de/web/research/iam/ bbdc.berlin Based on my 2014 Vision Paper On
Making Sense of the Madness
Making Sense of the Madness Deploying Big Data techniques to deal with real world Bigish Data issues Copyright James Mitchell 2014 1 Introduction Warning! Parental Guidance Recommended Please read the
SAS and Oracle: Big Data and Cloud Partnering Innovation Targets the Third Platform
SAS and Oracle: Big Data and Cloud Partnering Innovation Targets the Third Platform David Lawler, Oracle Senior Vice President, Product Management and Strategy Paul Kent, SAS Vice President, Big Data What
Application of Predictive Analytics for Better Alignment of Business and IT
Application of Predictive Analytics for Better Alignment of Business and IT Boris Zibitsker, PhD [email protected] July 25, 2014 Big Data Summit - Riga, Latvia About the Presenter Boris Zibitsker
Simplifying Big Data Analytics: Unifying Batch and Stream Processing. John Fanelli,! VP Product! In-Memory Compute Summit! June 30, 2015!!
Simplifying Big Data Analytics: Unifying Batch and Stream Processing John Fanelli,! VP Product! In-Memory Compute Summit! June 30, 2015!! Streaming Analy.cs S S S Scale- up Database Data And Compute Grid
Converged, Real-time Analytics Enabling Faster Decision Making and New Business Opportunities
Technology Insight Paper Converged, Real-time Analytics Enabling Faster Decision Making and New Business Opportunities By John Webster February 2015 Enabling you to make the best technology decisions Enabling
SAP Database Strategy Overview. Uwe Grigoleit September 2013
SAP base Strategy Overview Uwe Grigoleit September 2013 SAP s In-Memory and management Strategy Big- in Business-Context: Are you harnessing the opportunity? Mobile Transactions Things Things Instant Messages
Big Data Processing: Past, Present and Future
Big Data Processing: Past, Present and Future Orion Gebremedhin National Solutions Director BI & Big Data, Neudesic LLC. VTSP Microsoft Corp. [email protected] [email protected] @OrionGM
Integrating SAP and non-sap data for comprehensive Business Intelligence
WHITE PAPER Integrating SAP and non-sap data for comprehensive Business Intelligence www.barc.de/en Business Application Research Center 2 Integrating SAP and non-sap data Authors Timm Grosser Senior Analyst
Extend your analytic capabilities with SAP Predictive Analysis
September 9 11, 2013 Anaheim, California Extend your analytic capabilities with SAP Predictive Analysis Charles Gadalla Learning Points Advanced analytics strategy at SAP Simplifying predictive analytics
Information Architecture
The Bloor Group Actian and The Big Data Information Architecture WHITE PAPER The Actian Big Data Information Architecture Actian and The Big Data Information Architecture Originally founded in 2005 to
Bringing Big Data to People
Bringing Big Data to People Microsoft s modern data platform SQL Server 2014 Analytics Platform System Microsoft Azure HDInsight Data Platform Everyone should have access to the data they need. Process
High-Performance Business Analytics: SAS and IBM Netezza Data Warehouse Appliances
High-Performance Business Analytics: SAS and IBM Netezza Data Warehouse Appliances Highlights IBM Netezza and SAS together provide appliances and analytic software solutions that help organizations improve
Oracle Big Data SQL Technical Update
Oracle Big Data SQL Technical Update Jean-Pierre Dijcks Oracle Redwood City, CA, USA Keywords: Big Data, Hadoop, NoSQL Databases, Relational Databases, SQL, Security, Performance Introduction This technical
Microsoft BI Platform Overview
Microsoft BI Platform Overview Introduction Dave DuVarney, Independent BI Consultant Working with Microsoft BI Technologies for 8+ years Part of the Microsoft Ascend Program Author: Professional SQL Server
EMC BACKUP MEETS BIG DATA
EMC BACKUP MEETS BIG DATA Strategies To Protect Greenplum, Isilon And Teradata Systems 1 Agenda Big Data: Overview, Backup and Recovery EMC Big Data Backup Strategy EMC Backup and Recovery Solutions for
SQream Technologies Ltd - Confiden7al
SQream Technologies Ltd - Confiden7al 1 Ge#ng Big Data Done On a GPU- Based Database Ori Netzer VP Product 26- Mar- 14 Analy7cs Performance - 3 TB, 18 Billion records SQream Database 400x More Cost Efficient!
Navigating the Big Data infrastructure layer Helena Schwenk
mwd a d v i s o r s Navigating the Big Data infrastructure layer Helena Schwenk A special report prepared for Actuate May 2013 This report is the second in a series of four and focuses principally on explaining
W o r l d w i d e B u s i n e s s A n a l y t i c s S o f t w a r e 2 0 1 3 2 0 1 7 F o r e c a s t a n d 2 0 1 2 V e n d o r S h a r e s
Global Headquarters: 5 Speen Street Framingham, MA 01701 USA P.508.872.8200 F.508.935.4015 www.idc.com M A R K E T A N A L Y S I S W o r l d w i d e B u s i n e s s A n a l y t i c s S o f t w a r e 2
9.4 Intelligence. SAS Platform. Overview Second Edition. SAS Documentation
SAS Platform Overview Second Edition 9.4 Intelligence SAS Documentation The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2016. SAS 9.4 Intelligence Platform: Overview,
Well packaged sets of preinstalled, integrated, and optimized software on select hardware in the form of engineered systems and appliances
INSIGHT Oracle's All- Out Assault on the Big Data Market: Offering Hadoop, R, Cubes, and Scalable IMDB in Familiar Packages Carl W. Olofson IDC OPINION Global Headquarters: 5 Speen Street Framingham, MA
Bringing the Power of SAS to Hadoop. White Paper
White Paper Bringing the Power of SAS to Hadoop Combine SAS World-Class Analytic Strength with Hadoop s Low-Cost, Distributed Data Storage to Uncover Hidden Opportunities Contents Introduction... 1 What
Trends and Research Opportunities in Spatial Big Data Analytics and Cloud Computing NCSU GeoSpatial Forum
Trends and Research Opportunities in Spatial Big Data Analytics and Cloud Computing NCSU GeoSpatial Forum Siva Ravada Senior Director of Development Oracle Spatial and MapViewer 2 Evolving Technology Platforms
Safe Harbor Statement
Safe Harbor Statement The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment
Hur hanterar vi utmaningar inom området - Big Data. Jan Östling Enterprise Technologies Intel Corporation, NER
Hur hanterar vi utmaningar inom området - Big Data Jan Östling Enterprise Technologies Intel Corporation, NER Legal Disclaimers All products, computer systems, dates, and figures specified are preliminary
5 Keys to Unlocking the Big Data Analytics Puzzle. Anurag Tandon Director, Product Marketing March 26, 2014
5 Keys to Unlocking the Big Data Analytics Puzzle Anurag Tandon Director, Product Marketing March 26, 2014 1 A Little About Us A global footprint. A proven innovator. A leader in enterprise analytics for
Alexander Nikov. 5. Database Systems and Managing Data Resources. Learning Objectives. RR Donnelley Tries to Master Its Data
INFO 1500 Introduction to IT Fundamentals 5. Database Systems and Managing Data Resources Learning Objectives 1. Describe how the problems of managing data resources in a traditional file environment are
Performance and Scalability Overview
Performance and Scalability Overview This guide provides an overview of some of the performance and scalability capabilities of the Pentaho Business Analytics Platform. Contents Pentaho Scalability and
Microsoft Analytics Platform System. Solution Brief
Microsoft Analytics Platform System Solution Brief Contents 4 Introduction 4 Microsoft Analytics Platform System 5 Enterprise-ready Big Data 7 Next-generation performance at scale 10 Engineered for optimal
This Symposium brought to you by www.ttcus.com
This Symposium brought to you by www.ttcus.com Linkedin/Group: Technology Training Corporation @Techtrain Technology Training Corporation www.ttcus.com Big Data Analytics as a Service (BDAaaS) Big Data
www.pwc.com Implementation of Big Data and Analytics Projects with Big Data Discovery and BICS March 2015
www.pwc.com Implementation of Big Data and Analytics Projects with Big Data Discovery and BICS Agenda Big Data Discovery Oracle Business Intelligence Cloud Services (BICS) Use Cases How to start and our
How In-Memory Data Grids Can Analyze Fast-Changing Data in Real Time
SCALEOUT SOFTWARE How In-Memory Data Grids Can Analyze Fast-Changing Data in Real Time by Dr. William Bain and Dr. Mikhail Sobolev, ScaleOut Software, Inc. 2012 ScaleOut Software, Inc. 12/27/2012 T wenty-first
Mike Maxey. Senior Director Product Marketing Greenplum A Division of EMC. Copyright 2011 EMC Corporation. All rights reserved.
Mike Maxey Senior Director Product Marketing Greenplum A Division of EMC 1 Greenplum Becomes the Foundation of EMC s Big Data Analytics (July 2010) E M C A C Q U I R E S G R E E N P L U M For three years,
Is a Data Scientist the New Quant? Stuart Kozola MathWorks
Is a Data Scientist the New Quant? Stuart Kozola MathWorks 2015 The MathWorks, Inc. 1 Facts or information used usually to calculate, analyze, or plan something Information that is produced or stored by
Oracle BI Roadmap & Visual Analyzer Ljiljana Perica, Oracle Business Solution Leader [email protected]
Oracle BI Roadmap & Visual Analyzer Ljiljana Perica, Oracle Business Solution Leader [email protected] Copyright 2015, Oracle and/or its affiliates. All rights reserved. 1 Safe Harbor Statement
