ENERGY YIELD ASSESSMENT
|
|
|
- Melina Fields
- 9 years ago
- Views:
Transcription
1 Module ENERGY YIELD ASSESSMENT Gerhard J. Gerdes Workshop on Renewable Energies November 14-25, 25 Nadi, Republic of the Fiji Islands Contents power curve of wind turbine and international regulations for power curve measurements using power curve and wind data to determine energy output of a turbine at measurement site and measurement height using flow models to calculate wind and energy for different sites and height extension of results to long term time periods possible errors 2
2 Power curve overview practical power output curves follow the power in the wind curve up to the rated wind speed when rated output power is reached power curve generally dependent of mode of output control (stall pitch) rated wind speed (here 13 m/s) v rated or v nominal 3 Rules for power curve and wind speed measurements IEC (International Energy Commission) - international FGW (Fördergesellschaft Wind Energie: Support Society Wind Energy national German rules (= IEC with extra conditions) MEASNET - international (= IEC with extra conditions) IEA (International Energy Agency) Recommendation for wind speed measurements (outdated) generally rules for power measurements (relatively easy to fulfil) and wind speed measurements (more difficult) 4
3 Differences in power curves Electrical power, kw Calculated power curve 2 Measured power curve Wind speed at hub height, m/s Measured power curve and power curve given by manufacturer 5 Air density effect on power curves - stall 7 Power [kw] 6 Std.-Conditions kg/m kg/m kg/m Wind Speed [m/s] 6
4 Air density effect on power curves - pitch 7 Power [kw] 6 Std.-Conditions kg/m kg/m kg/m Wind Speed [m/s] 7 Calculation of wind turbine output two important prerequisites: thoroughly measured and evaluated wind data for the site(s) in question, and an exactly measured power curve, according to international standards, so that turbines on the world market can be compared but still for both power curve and wind data evaluation error margins exist, which make an absolute certainty for output estimation impossible in addition annual variations of wind resource for a given region can be substantial (+/- 2 % normal, up to 4 % ) 8
5 Power output estimation needed: power curve of wind turbine (generally in 1 m/s wind classes) wind speed frequency of the site (also in 1 m/s wind classes) simple multiplication in practice, spreadsheet calculation is easy AEP = Annual Energy Production E i = Energy per wind speed class i f i = Frequency of wind speed class i = Power WTG in a wind speed class i P i AEP = Ei = f i P i 9 Typical power curve 3 kw (table) v [m/s] Power Output (elec.) Power Coefficient Wind Class [kw] cp [ - ] wind class 1 from to 1 m/s; wind class 2 from 1 to 2 m/s, etc. also called bins c p,max = 42 % rated wind speed v rated = 13.5 m/s 1
6 Wind speed frequency distribution 12 1 Frequency [h/year] Total Hours per Year 876h/a Weibull parameters: k = 2, A = 6.7 m/s equals v avg = 6. m/s v Wind speed [m/s] avg = average wind speed 11 Typical power curve 3 kw 35 3 Power [kw] Wind Speed [m/s] 12
7 Energy production per wind speed bin 9' 8' 7' Annual Energy Yield kWh/a Energy [kwh] 6' 5' 4' 3' 2' 1' Wind speed [m/s] 13 Calculation of annual energy yield based on measurement Wind Wind Power frequency Energy [m/s] [mph] [kw] [h/year] [kwh/year] 1 2,2, 372,, 2 4,5, 72,, 3 6,7 3,7 941, 3481,7 4 8,9 1, 177, 177, 5 11,2 21,6 117, 23911,2 6 13,4 38,3 146, 461,8 7 15,7 62,4 92, ,2 8 17,9 93,1 759,5 779,5 9 2,1 132,6 592, 78499,2 1 22,4 181,8 435, 7983, 11 24,6 23,5 33, , ,8 269,3 21, , 13 29,1 29,5 127,5 3738, ,3 3, 77,5 2325, 15 33,6 35, 45, 13725, 16 35,8 35, 25, 7625, 17 38, 35, 15, 4575, 18 4,3 35, 7, 2135, 19 42,5 35, 3, 915, 2 44,7 35, 1,8 549, 21 47, 35,,8 244, 22 49,2 35,,3 91, ,4 35,,1 3, ,7 35,,, 25 55,9 35,,, Total 876 h kwh Frequency [h/year] Power [kw] Energy [kwh] ' 8' 7' 6' 5' 4' 3' 2' 1' Wind speed [m/s] Wind Speed [m/s] Wind speed [m/s] 14
8 Further calculations are needed From measurement height to turbine hub height From measurement site to different wind turbine sites for a planned wind farm From one year measurement period to long-term estimation 15 Measurement and long-term behaviour of wind speed Wind speed is typically measured on potential wind turbine sites for a limited period of time short-term measurement (e.g. 1 year) For the purpose of energy yield assessment this has to be done with high accuracy. To estimate energy production not only for the time of the measurement but for a longer time, information on the long-term behaviour of the wind must be used: Long-term correction has to be performed The quality of this long-term data can be lower than for the short-term measurement The quality of the long-term measurement should be stable in time 16
9 Measurement concept including long term comparison 17 Long term variation of the annual average wind speed 18% Normalised Average Production vwind_hub-height 16% 1 years sliding average (production) 14 m/s 12 m/s 14% 1 m/s 12% 8 m/s 1% 8% 6% 4% years of data 6 m/s 4 m/s 2 m/s m/s 18
10 Long Term Correlation with Measurement - Correlation - Prediction (MCP) - Method Reference-Site: Reference-Site: Available Availablelong longterm termdata + short shortterm termdata (time (time series) series) Prognosis-Site: Prognosis-Site: Average Averagetime time compatibel compatibelto to referenz-site referenz-site Measure Correlation Correlation (Regression) (Regression) of of twelve twelve sectors sectorseach each3 3 degree degree Prediction of of long longterm windspeed distribution at at prognosis-site Correlate Predict 19 Extended energy yield assessment for wind farms The evaluation of a wind speed measurement results in an energy yield, which is valid for the measurement period and the measurement height only To transfer the measurement to other sites in a wind farm area and to different heights, a micrositing model is required To extend the wind speed evaluation results to a longer time period than the measurement period, a long term correlation method is required 2
11 Transfer to different sites and height transfer to different locations h2 h1 measurement site transfer to different height (h1 to h2) 21 Methods of energy yield assessment in in situ situ wind wind measurements meteorological long long term term data data long long term term correlation micro micro --siting siting--model energy energy yield yield prediction 22
12 Wind atlas method resulting in energy yield Roughness description Obstacle description Orography description Meteorological data data Power Power curve curve calculation of of expected annual energy yield yield Power [kw] Wind Speed [m/s] Annual Annual Energy Energy Production Production AEP AEP 23 Influence of wind speed deviations on energy production A small deviation of the average wind speed around 5 m/s results in large deviation of annual energy production (AEP): wind speed deviation AEP deviation v avg = 5 m/s 1 % 2 % 2 % 45 % v avg = average wind speed 24
13 Sources of possible uncertainties Meteorological input data: Gaps in the recorded data Poor or not calibrated anemometer Damaged or malfunctioning sensors Change of obstacles in the vicinity of the met mast (trees, buildings, etc.) Calculation methods: Not suitable for complex terrain Input of roughness, obstacles and orography 25 Sources of possible uncertainties Power curve: Theoretical curve Inaccuracy of the measurements Losses: Wind farm efficiency Availability of the turbines Electrical losses / efficiencies 26
14 How to perform an energy yield assessment 1 select site for WT(s) installation access (roads, bridges, narrow through roads grid (distance, voltage, capacity) general infrastructure (lorries and cranes) perform a wind speed measurement evaluate data in generating wind speed distribution get a measured, certified WT power curve calculate energy yield from the distribution, if met-mast is located at the proposed turbine site otherwise a wind turbine siting model has to be used retrieve long-term wind data from a nearby met-station best is hourly data over 1 years or more otherwise: two wind rose tables (e.g. wind frequency in 25 wind speed classes versus 12 wind direction sectors) first table for short-term measurement duration second table for long-term measurement duration 27 How to perform an energy yield assessment 2 inspect long-term measurement-station take with you detailed map, compass, camera and GPS, if available determine exact location by means of GPS or detailed map make picture from met-mast make picture 36 around the met-mast (for landscape description), clearly identify North direction ask for height of tower or estimate make a sketch of all obstacles in the neighbourhood (estimate distance, angle and height) indicate kind (bush, tree, building) perform long term correction to gain long-term energy yield GPS = geographical positioning system 28
15 Wind speed data evaluation software: General information on wind energy: 29
INFLUENCES OF VERTICAL WIND PROFILES ON POWER PERFORMANCE MEASUREMENTS
Abstract INFLUENCES OF VERTICAL WIND PROFILES ON POWER PERFORMANCE MEASUREMENTS U. Bunse, H. Mellinghoff DEWI GmbH, Ebertstr. 96, D 26382 Wilhelmshaven e mail: [email protected] The IEC 61400 12 1 [1] and
Validation n 2 of the Wind Data Generator (WDG) software performance. Comparison with measured mast data - Flat site in Northern France
Validation n 2 of the Wind Data Generator (WDG) software performance Comparison with measured mast data - Flat site in Northern France Mr. Tristan Fabre* La Compagnie du Vent, GDF-SUEZ, Montpellier, 34967,
Letter Report No. 100413407CRT-004 Project No. G100413407
3933 US Route 11 Cortland, NY 13045 Telephone: (607) 753-6711 Facsimile: (607) 753-1045 www.intertek.com Letter Report No. 100413407CRT-004 Project No. G100413407 Mr. Steve Turek Phone: 952-447-6064 Wind
Excerpts from: Performance, Duration and Acoustic test reports for the Skystream 3.7 wind generator
Excerpts from: Performance, Duration and Acoustic test reports for the Skystream 3.7 wind generator Report One: Power performance measurement on the Skystream 3.7 according to IEC 61400-12-1 and BWEA Report
PARK Energy Calculation
Function Calculation of the energy production of a wind farm including array losses and wind farm-induced turbulence. The PARK calculation is based on the following modules: METEO MODEL Calculation Method
www.wind-power-program.com
This document has been downloaded from the library section of www.wind-power-program.com Visit our website for information on the WindPower program and the UK Wind Speed Database program both downloadable
ENERCON WIND TURBINES
Sales ENERCON GmbH Dreekamp 5 2665 Aurich Germany Phone +49 494192 7 Fax +49 4941 92 71 9 [email protected] E-33 E-44 E-48 E-53 E-7 E-82 ENERCON WIND TURBINES PRODUCT OVERVIEW ENERCON GmbH Dreekamp 5
Wind Resource Assessment for BETHEL, ALASKA Date last modified: 2/21/2006 Compiled by: Mia Devine
813 W. Northern Lights Blvd. Anchorage, AK 99503 Phone: 907-269-3000 Fax: 907-269-3044 www.akenergyauthority.org Wind Resource Assessment for BETHEL, ALASKA Date last modified: 2/21/2006 Compiled by: Mia
Critical Limitations of Wind Turbine Power Curve Warranties
Critical Limitations of Wind Turbine Power Curve Warranties A. Albers Deutsche WindGuard Consulting GmbH, Oldenburger Straße 65, D-26316 Varel, Germany E-mail: [email protected], Tel: (++49) (0)4451/9515-15,
Power Performance Testing: Truly Useful of Just Box Ticking. Mark Young 2 July 2012
Power Performance Testing: Truly Useful of Just Box Ticking Mark Young DNV KEMA Energy & Sustainability Part of DNV Group an independent foundation with HQ in Norway founded in 1864 with 11,000 employees
WIND TURBINE TECHNOLOGY
Module 2.2-2 WIND TURBINE TECHNOLOGY Electrical System Gerhard J. Gerdes Workshop on Renewable Energies November 14-25, 2005 Nadi, Republic of the Fiji Islands Contents Module 2.2 Types of generator systems
QUICK GUIDE - WASP-CFD IN WINDPRO. Draft 1 edition: 01.02.2013. Purpose: EMD International A/S, Aalborg February 1 st, 2013
EMD International A/S, Aalborg February 1 st, 2013 QUICK GUIDE - WASP-CFD IN WINDPRO Draft 1 edition: 01.02.2013 Purpose: To purpose of the WAsP CFD model in WindPRO is to enable the WindPRO user to calculate
Comparison of Resource and Energy Yield Assessment Procedures
Comparison of Resource and Energy Yield Assessment Procedures Niels G. Mortensen and Hans E. Jørgensen Wind Energy Division, Risø DTU EWEA Wind Resource Assessment Technology Workshop 2011 F Acknowledgements
Adjustment of Anemometer Readings for Energy Production Estimates WINDPOWER June 2008 Houston, Texas
Adjustment of Anemometer Readings for Energy Production Estimates WINDPOWER June 2008 Houston, Texas Matthew Filippelli, Julien Bouget, Michael Brower, and Dan Bernadett AWS Truewind, LLC 463 New Karner
POWER CURVE MEASUREMENT EXPERIENCES, AND NEW APPROACHES
POWER CURVE MEASUREMENT EXPERIENCES, AND NEW APPROACHES EWEA Resource Assessment Workshop 2013 - Dublin Mark Young - Head of Department, Renewables Objectives Overview of reasons for power performance
German Test Station for Remote Wind Sensing Devices
German Test Station for Remote Wind Sensing Devices A. Albers, A.W. Janssen, J. Mander Deutsche WindGuard Consulting GmbH, Oldenburger Straße, D-31 Varel, Germany E-mail: [email protected], Tel: (++9)
A E O L I S F O R E C A S T I N G S E R V I C E S WIND FARM ENERGY ASSESSMENT - FEASIBILITY STUDY. Kees van Vliet
A E O L I S F O R E C A S T I N G S E R V I C E S WIND FARM ENERGY ASSESSMENT - FEASIBILITY STUDY Kees van Vliet September 2007 K o n i n g s l a a n 11 2 3 5 8 3 G V U t r e c h t T h e N e t h e r l
USE OF REMOTE SENSING FOR WIND ENERGY ASSESSMENTS
RECOMMENDED PRACTICE DNV-RP-J101 USE OF REMOTE SENSING FOR WIND ENERGY ASSESSMENTS APRIL 2011 FOREWORD (DNV) is an autonomous and independent foundation with the objectives of safeguarding life, property
Integrating WAsP and GIS Tools for Establishing Best Positions for Wind Turbines in South Iraq
Integrating WAsP and GIS Tools for Establishing Best Positions for Wind Turbines in South Iraq S.M. Ali Remote Sensing Research Unit, College of Science, Univ. of Baghdad, Baghdad, Iraq deanoffice {at}
EVALUATION OF ZEPHIR
EVALUATION OF ZEPHIR A. Albers Deutsche WindGuard Consulting GmbH, Oldenburger Straße 5, D-31 Varel, Germany E-mail: [email protected], Tel: (++9) ()51/9515-15, Fax: : (++9) ()51/9515-9 Summary Since
Nordex SE. Capital Markets Day Products & Sales - Lars Bondo Krogsgaard
Nordex SE Capital Markets Day Products & Sales - Lars Bondo Krogsgaard Rostock, 13 October 2011 SUMMARY The situation in the wind industry has changed: Attractive medium-term growth prospects Overcapacity
Sandia National Laboratories New Mexico Wind Resource Assessment Lee Ranch
Sandia National Laboratories New Mexico Wind Resource Assessment Lee Ranch Data Summary and Transmittal for September December 2002 & Annual Analysis for January December 2002 Prepared for: Sandia National
Advanced nacelle anemometry and SCADA-data, analysis techniques and limitations. Frank Ormel Chief Specialist in Product Integration Vestas
Advanced nacelle anemometry and SCADA-data, analysis techniques and limitations Frank Ormel Chief Specialist in Product Integration Vestas Outline Introduction State of the art Advanced methods Nacelle
COMPARISON OF LIDARS, GERMAN TEST STATION FOR REMOTE WIND SENSING DEVICES
COMPARISON OF LIDARS, GERMAN TEST STATION FOR REMOTE WIND SENSING DEVICES A. Albers, A.W. Janssen, J. Mander Deutsche WindGuard Consulting GmbH, Oldenburger Straße, D-31 Varel, Germany E-mail: [email protected],
Wind energy potential estimation and micrositting on Izmir Institute of Technology Campus, Turkey
Renewable Energy 30 (2005) 1623 1633 www.elsevier.com/locate/renene Technical note Wind energy potential estimation and micrositting on Izmir Institute of Technology Campus, Turkey B. Ozerdem*, H.M. Turkeli
NORDEX USA, INC. GREAT LAKES SYMPOSIUM
NORDEX USA, INC. GREAT LAKES SYMPOSIUM CHICAGO 24 Sep 2013 AGENDA 1 About Nordex 2 Wind Industry Challenges & Our Responses Nordex USA, Inc. Great Lakes Symposium Presentation Chicago Sept 2013 Slide 2
Virtual Met Mast verification report:
Virtual Met Mast verification report: June 2013 1 Authors: Alasdair Skea Karen Walter Dr Clive Wilson Leo Hume-Wright 2 Table of contents Executive summary... 4 1. Introduction... 6 2. Verification process...
Improved Bankability. The Ecofys position on LiDAR use. Summary
Improved Bankability The Ecofys position on LiDAR use Summary A key goal of a wind measurement campaign is to reduce project uncertainty, as this will improve bankability in terms of better financing terms
QUALITY OF WIND POWER. How does quality affect the cost of electricity generation from wind power?
QUALITY OF WIND POWER How does quality affect the cost of electricity generation from wind power? QUALITY OF WIND POWER Wind power is a cornerstone in the green transition of the power sector, and onshore
DATA VALIDATION, PROCESSING, AND REPORTING
DATA VALIDATION, PROCESSING, AND REPORTING After the field data are collected and transferred to your office computing environment, the next steps are to validate and process data, and generate reports.
The BASIS module in WindPRO is necessary for the use of any of the other calculation modules. It contains the four following elements:
The BASIS module in WindPRO is necessary for the use of any of the other calculation modules. It contains the four following elements: 1. Project Management / Globe (Project Explorer) 2. WTG Catalogue
Óbuda University Power System Department. The wind. Dr. Péter Kádár Óbuda University, Power System Department, Hungary [email protected].
The wind Dr. Péter Kádár,, Hungary [email protected] Draft Wind basics Drivers of the wind energy application The energy of the wind Dynamic simulation Wind forecast Wind basics - Patra, 2012
Uncertainty in a post-construction energy yield estimate
Uncertainty in a post-construction energy yield estimate Sónia Liléo, Johannes Lindvall and Johan Hansson 2014-12-09 Analysis of Operating Wind Farms, EWEA Technology Workshop, Malmö Contents Methodologies
Power Performance Measured Using a Nacelle-mounted LiDAR
Power Performance Measured Using a Nacelle-mounted LiDAR R. Wagner, M. Courtney, T. F. Pedersen; DTU Wind Energy, Risø Campus, Roskilde, Denmark R. Wagner External Article English Introduction Wind turbine
FLOWSTAR-Energy Validation NoordZee Wind Farm
FLOWSTAR-Energy Validation NoordZee Wind Farm Cambridge Environmental Research Consultants (CERC) Ltd January 26 Introduction FLOWSTAR-Energy 5. NoordZee is an offshore wind farm in Denmark. A FLOWSTAR-Energy
EFFECTS OF COMPLEX WIND REGIMES ON TURBINE PERFORMANCE
EFFECTS OF COMPLEX WIND REGIMES ON TURBINE PERFORMANCE Elisabeth Rareshide, Andrew Tindal 1, Clint Johnson, AnneMarie Graves, Erin Simpson, James Bleeg, Tracey Harris, Danny Schoborg Garrad Hassan America,
46200 Planning and Development of Wind Farms: Wind resource assessment using the WAsP software
Downloaded from orbit.dtu.dk on: Jan 30, 2016 46200 Planning and Development of Wind Farms: Wind resource assessment using the WAsP software Mortensen, Niels Gylling Publication date: 2014 Document Version
V112-3.0 MW. Your best option for low cost energy production at low and medium wind sites. Federico Gonzalez Vives. Director Technology.
V112-3.0 MW Your best option for low cost energy production at low and medium wind sites Federico Gonzalez Vives. Director Technology. Vestas MED REOLTEC. Jornadas tecnicas 17 de junio de 2010 vestas.com
BWEA Summary Report for the C&F Green Energy Small Wind Turbine, Model No. CF20 (Phase A)
Cleeve Road, Leatherhead Surrey, KT22 7SB UK Telephone: +44 (0) 1372 370900 Facsimile: +44 (0) 1372 370999 www.intertek.com BWEA Summary Report for the C&F Green Energy Small Wind Turbine, Model No. CF20
DIRECT MATCHING TO GRID WITHOUT INVERTER VARIABLE PITCH. 20/24/30 mt TOWER WITH HYDRAULIC SYSTEM YAWING SYSTEM SAFETY LEVELS PLC CONTROL
Wind turbine EW 50 Ergo Wind srl can boast of thirty years experience in the field of renewable energies as a producer of low environmental impact systems. The core business is represented by small wind
Wind resources and wind turbine wakes in large wind farms. Professor R.J. Barthelmie Atmospheric Science and Sustainability
Wind resources and wind turbine wakes in large wind farms Professor R.J. Barthelmie Atmospheric Science and Sustainability Overview Wind resource of Egypt Based on Wind Atlas for Egypt Wind turbine wakes
Power output of offshore wind farms in relation to atmospheric stability Laurens Alblas BSc
Power output of offshore wind farms in relation to atmospheric stability Laurens Alblas BSc Photo: Vestas Wind Systems A/S 1 1. Introduction Background Atmospheric stability is known to influence wind
Wind speed and power characteristics at different heights for a wind data collection tower in Saudi Arabia
Wind speed and power characteristics at different heights for a wind data collection tower in Saudi Arabia Alam Md. Mahbub 2, Shafiqur Rehman 1,2,*, Josua Meyer 2, Luai M. Al-Hadhrami 1 1 Center for Engineering
Case Study 5 Use of Wind Turbine Technology
Case Study 5 Use of Wind Turbine Technology 1. Context Hong Kong relies on an adequate and reliable electricity supply for its economic development. Our electricity needs are met by the two electricity
Turbulence assessment with ground based LiDARs
Turbulence assessment with ground based LiDARs E.T.G. Bot June 214 ECN-E--14-43 Acknowledgement The LAWINE project is partially funded by the Dutch government in the framework of TKI Wind op Zee. Abstract
MICRO-HYDROPOWER NEED FOR ENERGY FOR RURAL DEVELOPMENT. By: Payman Hassan Rashed
MICRO-HYDROPOWER NEED FOR ENERGY FOR RURAL DEVELOPMENT Significant water resources are found in many developing countries. In areas where adequate water resources are present, harnessing the power of falling
User manual data files meteorological mast NoordzeeWind
User manual data files meteorological mast NoordzeeWind Document code: NZW-16-S-4-R03 Version: 2.0 Date: 1 October 2007 Author: ing. HJ Kouwenhoven User manual data files meteorological mast NoordzeeWind
CFD SIMULATIONS OF WAKE EFFECTS AT THE ALPHA VENTUS OFFSHORE WIND FARM
CFD SIMULATIONS OF WAKE EFFECTS AT THE ALPHA VENTUS OFFSHORE WIND FARM Annette Westerhellweg, Thomas Neumann DEWI GmbH, Ebertstr. 96, 26382 Wilhelmshaven, Germany Phone: +49 (0)4421 4808-828 Fax: +49 (0)4421
WIND SHEAR, ROUGHNESS CLASSES AND TURBINE ENERGY PRODUCTION
WIND SHEAR, ROUGHNESS CLASSES AND TURBINE ENERGY PRODUCTION M. Ragheb 4//15 INTRODUCTION At a height of about 1 kilometer the wind is barely affected by the surface of the Earth. In the lower atmospheric
Title: IEC WT 01 vs. IEC 61400-22 Development of a new standard and innovations in certification of Wind Turbines. mike.woebbeking@gl-group.
Title: IEC WT 01 vs. IEC 61400-22 Development of a new standard and innovations in certification of Wind Turbines Author: Address: Mike Woebbeking Germanischer Lloyd Industrial Services GmbH, Business
Sweden s leading manufacturer of small-scale wind power stations!
Sweden s leading manufacturer of small-scale wind power stations! Product Information Table of content Content The company, its activities, vision and business concept. Product overview. Technology & security.
GE Energy Wind Technology and Windfarm Overview
GE Energy Wind Technology and Windfarm Overview Forum on Renewable Energy Development in Myanmar November 1, 2012 [email protected] Topics for discussion Introduction to Wind Power technology Windfarm
A Comparison Between Theoretically Calculated and Pratically Generated Electrical Powers of Wind Turbines: A Case Study in Belen Wind farm, Turkey
M.ŞEKKELİ / APJES 1- (01) 41-47 41 A Comparison Between Theoretically Calculated and Pratically Generated Electrical Powers of Wind Turbines: A Case Study in Belen Wind farm, Turkey *1 Mustafa Şekkeli,
EN 1991-1-4:2005. Wind actions
EN 1991 Eurocode 1: Actions on structures Your logo Brussels, 18-20 February 2008 Dissemination of information workshop 1 EN 1991-1-4:2005 Wind actions EN 1991-1-4:2005 Contents Brussels, 18-20 February
USING SIMULATED WIND DATA FROM A MESOSCALE MODEL IN MCP. M. Taylor J. Freedman K. Waight M. Brower
USING SIMULATED WIND DATA FROM A MESOSCALE MODEL IN MCP M. Taylor J. Freedman K. Waight M. Brower Page 2 ABSTRACT Since field measurement campaigns for proposed wind projects typically last no more than
OPERATION AND MAINTENANCE. Levent İshak Service Manager, Vestas Turkey
OPERATION AND MAINTENANCE Levent İshak Service Manager, Vestas Turkey IWPC 2015-Istanbul- April 2015 If your new car drove as much as a wind turbine, it would have to be scrapped after 6 months*. ) The
EFFICIENT EAST-WEST ORIENTATED PV SYSTEMS WITH ONE MPP TRACKER
EFFICIENT EAST-WEST ORIENTATED PV SYSTEMS WITH ONE MPP TRACKER A willingness to install east-west orientated photovoltaic (PV) systems has lacked in the past. Nowadays, however, interest in installing
Battery Energy Storage
CIGRE TNC Technical Seminar Future Renewable Energy and Smart Grid Technologies Battery Energy Storage 6/20/2014 Kenji Takeda Hitachi Research Laboratory, Battery Research Div., Hitachi, Ltd. Presentation
Siemens Wind Turbine SWT-2.3-108. The new productivity benchmark. www.siemens.com/wind
Siemens Wind Turbine SWT-2.3-108 The new productivity benchmark www.siemens.com/wind The industry standard, redefined The Siemens 2.3-MW family has firmly established itself as the tried and tested workhorse
Relative Power Curve Measurements Using Turbine Mounted, Continuous-Wave Lidar
Relative Power Curve Measurements Using Turbine Mounted, Continuous-Wave Lidar Chris Slinger, Matthew Leak, Mark Pitter, Michael Harris ZephIR Ltd., The Old Barns, Fairoaks Farm, Hollybush, Ledbury, Herefordshire,
Monitoring the Operation of Wind Turbines Alex Robertson, Vestas Northern Europe
Monitoring the Operation of Wind Turbines Alex Robertson, Vestas Northern Europe Renewable Efficient Energy II Conference, 21.03.2012, Vaasa, Finland Modern wind power plant produce more data than ever
V52-850 kw The turbine that goes anywhere
V2-8 kw The turbine that goes anywhere Versatile, efficient, dependable and popular The highly efficient operation and flexible configuration of the V2 make this turbine an excellent choice for all kinds
EVALUATING SOLAR ENERGY PLANTS TO SUPPORT INVESTMENT DECISIONS
EVALUATING SOLAR ENERGY PLANTS TO SUPPORT INVESTMENT DECISIONS Author Marie Schnitzer Director of Solar Services Published for AWS Truewind October 2009 Republished for AWS Truepower: AWS Truepower, LLC
The information in this report is provided in good faith and is believed to be correct, but the Met. Office can accept no responsibility for any
Virtual Met Mast Version 1 Methodology and Verification January 2010 The information in this report is provided in good faith and is believed to be correct, but the Met. Office can accept no responsibility
As a minimum, the report must include the following sections in the given sequence:
5.2 Limits for Wind Generators and Transformer Substations In cases where the noise impact at a Point of Reception is composed of combined contributions due to the Transformer Substation as well as the
Risø-R-1374(EN) Design of a 21 m Blade with Risø-A1 Airfoils for Active Stall Controlled Wind Turbines
Risø-R-1374(EN) Design of a 21 m Blade with Risø-A1 Airfoils for Active Stall Controlled Wind Turbines Peter Fuglsang, Risø National Laboratory Ole Sangill, Norwin A/S Peter Hansen, LM Glasfiber A/S Risø
Forecaster comments to the ORTECH Report
Forecaster comments to the ORTECH Report The Alberta Forecasting Pilot Project was truly a pioneering and landmark effort in the assessment of wind power production forecast performance in North America.
Enlarged Wind Power Statistics 2010 including Denmark, Germany, Ireland and Great Britain
1 Enlarged Wind Power Statistics 2010 including Denmark, Germany, Ireland and Great Britain Background This work is based on hourly time series for wind power output in Denmark, Germany, Ireland and Great
Annex to the Accreditation Certificate D-PL-18020-01-00 according to DIN EN ISO/IEC 17025:2005
Deutsche Akkreditierungsstelle GmbH Annex to the Accreditation Certificate D-PL-18020-01-00 according to DIN EN ISO/IEC 17025:2005 Period of validity: 16.08.2013 to 31.10.2017 Holder of certificate: Deutsche
windtest grevenbroich gmbh
windtest grevenbroich gmbh -Company Profile Norsk Tysk Vindenergikonferanse, Oslo, 2009-03-31 Kontakt: windtest grevenbroich gmbh Frimmersdorfer Str. 73a D-41517 Grevenbroich Germany ++ 49 (0) 2181-2278-0
OFF-GRID ELECTRICITY GENERATION WITH HYBRID RENEWABLE ENERGY TECHNOLOGIES IN IRAQ: AN APPLICATION OF HOMER
Diyala Journal of Engineering Sciences ISSN 1999-8716 Printed in Iraq Second Engineering Scientific Conference College of Engineering University of Diyala 16-17 December. 2015, pp. 277-286 OFF-GRID ELECTRICITY
WIND ENERGY - THE FACTS PART I TECHNOLOGY
WIND ENERGY - THE FACTS PART I TECHNOLOGY Acknowledgements Part I was compiled by Paul Gardner, Andrew Garrad, Lars Falbe Hansen, Peter Jamieson, Colin Morgan, Fatma Murray and Andrew Tindal of Garrad
Siemens D7 platform 6.0-MW and 7.0-MW direct drive wind turbines. The new standard for offshore. siemens.com/wind
Siemens D7 platform 6.0-MW and 7.0-MW direct drive wind turbines The new standard for offshore siemens.com/wind The first SWT-6.0-154 prototype Siemens, the offshore leader Intelligent ways to drive down
ASTROSE. Power line monitoring system for high voltage and extra high voltage power lines. Dr. Volker Großer, Dr. Steffen Kurth, Folie 1.
ASTROSE Power line monitoring system for high voltage and extra high voltage power lines Dr. Volker Großer, Dr. Steffen Kurth, Folie 1 Motivation Dissaster prevention Ampacity enhancement Strong fluctuations
INDIA S NATIONAL INITIATIVES AND EXPERIENCES RELATED TO WIND RESOURCE ASSESSMENT
INDIA S NATIONAL INITIATIVES AND EXPERIENCES RELATED TO WIND RESOURCE ASSESSMENT Dr.S.Gomathinayagam ED/CWET & K.Boopathi Scientist & Unit Chief i/c Wind Resource Assessment Unit Centre for Wind Energy
Deutsche WindGuard. WindGuard North America Varel / Berlin /Bremerhaven, Germany Goderich, Canada. [email protected] www.windguard.
Deutsche WindGuard WindGuard North America Varel / Berlin /Bremerhaven, Germany Goderich, Canada [email protected] www.windguard.de Test- and Calibration Laboratory with Quality Management System according
SIMPLIFIED PERFORMANCE MODEL FOR HYBRID WIND DIESEL SYSTEMS. J. F. MANWELL, J. G. McGOWAN and U. ABDULWAHID
SIMPLIFIED PERFORMANCE MODEL FOR HYBRID WIND DIESEL SYSTEMS J. F. MANWELL, J. G. McGOWAN and U. ABDULWAHID Renewable Energy Laboratory Department of Mechanical and Industrial Engineering University of
EWEA CREYAP benchmark exercises: summary for offshore wind farm cases
Downloaded from orbit.dtu.dk on: Jan 07, 2016 EWEA CREYAP benchmark exercises: summary for offshore wind farm cases Mortensen, Niels Gylling; Nielsen, Morten; Ejsing Jørgensen, Hans Publication date: 2015
Database of measurements on the offshore wind farm Egmond aan Zee
Database of measurements on the offshore wind farm Egmond aan Zee A.J. Brand J.W. Wagenaar P.J. Eecen M.C. Holtslag 1 1 TU Delft, Faculty Aerospace Engineering Presented at the the EWEA 2012 conference,
SHADOW Calculation of Flickering from WTGs
Function Calculation and documentation of flickering effects in terms of hours per year during which a neighbor or an area would be exposed to flickering from nearby WTG rotors. Also maximum minutes per
Solar Input Data for PV Energy Modeling
June 2012 Solar Input Data for PV Energy Modeling Marie Schnitzer, Christopher Thuman, Peter Johnson Albany New York, USA Barcelona Spain Bangalore India Company Snapshot Established in 1983; nearly 30
GE Energy 1.5MW. Wind Turbine
GE Energy 1.5MW Wind Turbine The industry workhorse The world needs a reliable, affordable and clean supply of electric power with zero greenhouse gas emissions, which is why GE continues to drive investment
Comparison of predicted and measured wind farm noise levels and implications for assessments of new wind farms
Paper Number 30, Proceedings of ACOUSTICS 2011 2-4 November 2011, Gold Coast, Australia Comparison of predicted and measured wind farm noise levels and implications for assessments of new wind farms Tom
Power fluctuations from large offshore wind farms
Power fluctuations from large offshore wind farms Poul Sørensen Wind Energy Systems (VES) Wind Energy Division Project was funded by Energinet.dk PSO 2004-6506 Geographical spreading 2 Wind turbine sites
EXPERT REMANUFACTURED WIND TURBINE
EXPERT REMANUFACTURED WIND TURBINE Repowering Solutions is a division of Jeraneas Group of companies. Our core business is the remanufacturing of wind turbines of different sizes; a work that we have been
WindScanner Research Infrastructure to measure 3D wind with scanning Lidars
WindScanner Research Infrastructure to measure 3D wind with scanning Lidars Poul Hummelshøj Head of Section Test & Measurements With contributions from a lot of my colleges in the Department! Ground-based
MEASURES OF VARIATION
NORMAL DISTRIBTIONS MEASURES OF VARIATION In statistics, it is important to measure the spread of data. A simple way to measure spread is to find the range. But statisticians want to know if the data are
V66 1.75 MW & V66 2.0 MW (OFFSHORE)
V66 1.75 MW & V66 2. MW (OFFSHORE) with OptiTip and OptiSpeed Offshore and onshore There are two versions of the V66 turbine: a 2. MW model for offshore sites, and a 1.75 MW model for inland locations.
Micro-Hydro. Module 4.1. 4.1.1 Introduction. Tokyo Electric Power Co. (TEPCO)
Module 4.1 Micro-Hydro 4.1.1 Introduction Tokyo Electric Power Co. (TEPCO) Workshop on Renewable Energies November 14-25, 2005 Nadi, Republic of the Fiji Islands Subjects to be Covered in Workshop Potential
in-service inspections www.sgs.com
in-service inspections www.sgs.com Minimising down -time for wind turbines One of the major concerns in investing in wind farm projects is related to turbine availability, which represents the risk of
Controlling Wind in ECN s Scaled Wind Farm
Controlling Wind in ECN s Scaled Wind Farm J.W. Wagenaar L.A.H. Machielse J.G. Schepers [email protected] [email protected] [email protected] ECN Wind Energy ECN Wind Energy ECN Wind Energy Abstract ECN holds
e7/ppa Workshop on Renewable Energy - TEST ANSWER -
e7/ppa Workshop on Renewable Energy - TEST ANSWER - NAME UTILITY 1 Question 1: Give two kinds of gases that cause the global warming. Most serious Green house gas. CO 2 (Carbon dioxide), CH 4 (Methane),
