Lecture 13. Understanding Probability and Long-Term Expectations
|
|
|
- Reynold Welch
- 10 years ago
- Views:
Transcription
1 Lecture 13 Understanding Probability and Long-Term Expectations
2 Thinking Challenge What s the probability of getting a head on the toss of a single fair coin? Use a scale from 0 (no way) to 1 (sure thing). So toss a coin twice. Do it! Did you get one head & one tail? What s it all mean?
3 Probability as long term relative frequency
4 What about Probability? The foundation of Probability theory lies in problems associated with gambling and games of chance The Romans used played a game with ASTRAGALI - Heel bones of animals
5 DICE DICE as we know them were invented around 300 BC
6 I lied, cheated and stole to become a millionaire. Now anybody at all can win the lottery and become a millionaire
7 LOTTO 6/42 What are the chances of winning with one selection of 6 numbers? Matches Odds 6 1 in 5,245, in 24, in 555
8 LOTTO 6/42 The average time to win each of the prizes is given by: Match 3 with Bonus 2 Years, 6 Weeks Match 4 2 Years, 8 Months Match Years, 9 Months Match 5 with Bonus 4323 Years, 5 Months Share in Jackpot 25,220 Years
9 Why do people still play the lottery? If you re not in you can t win! You never know your luck until you try! My chances of winning a million are better than my chances of earning a million. The lottery is a tax on the statistically challenged.
10 Thought Question 1: Two very different queries about probability: a. If you flip a coin and do it fairly, what is the probability that it will land heads up? b. What is the probability that you will eventually own a home; that is, how likely do you think it is? (If you already own a home, what is the probability that you will own a different home within the next 5 years?) For which question was it easier to provide a precise answer? Why?
11 Thought Question 2: Explain what it means for someone to say that the probability of his or her eventually owning a home is 70%.
12 Thought Question 3: Explain what s wrong with this partial answer to Thought Question 1: The probability that I will eventually own a home, or of any other particular event happening, is 1/2 because either it will happen or it won t.
13 Thought Question 4: Why do you think insurance companies charge young men more than they do older men for automobile insurance, but charge older men more for life insurance?
14 Thought Question 5: How much would you be willing to pay for a ticket to a contest in which there was a 1% chance that you would win $500 and a 99% chance that you would win nothing? Explain your answer.
15 16.1 Probability What does the word probability mean? Two distinct interpretations: For the probability of winning a lottery based on buying a single ticket -- we can quantify the chances exactly. For the probability that we will eventually buy a home -- we are basing our assessment on personal beliefs about how life will evolve for us.
16 16.2 The Relative-Frequency Interpretation Relative-frequency interpretation: applies to situations that can be repeated over and over again. Examples: Buying a weekly lottery ticket and observing whether it is a winner. Commuting to work daily and observing whether a certain traffic signal is red when we encounter it. Testing individuals in a population and observing whether they carry a gene for a certain disease. Observing births and noting if baby is male or female.
17 Idea of Long-Run Relative Frequency Probability = proportion of time it occurs over the long run Long-run relative frequency of males born in the United States is about (Information Please Almanac, 1991, p. 815) Possible results for relative frequency of male births: Proportion of male births jumps around at first but starts to settle down just above.51 in the long run.
18 Determining the Probability of an Outcome Method 1: Make an Assumption about the Physical World Example: assume coins made such that they are equally likely to land with heads or tails up when flipped. probability of a flipped coin showing heads up is ½. Method 2: Observe the Relative Frequency Example: observe the relative frequency of male births in a given city over the course of a year. In 1987 there were a total of 3,809,394 live births in the U.S., of which 1,951,153 where males. probability of male birth is 1,951,153/3,809,394 =
19 Summary of Relative-Frequency Interpretation of Probability Can be applied when situation can be repeated numerous times and outcome observed each time. Relative frequency should settle down to constant value over long run, which is the probability. Does not apply to situations where outcome one time is influenced by or influences outcome the next time. Cannot be used to determine whether outcome will occur on a single occasion but can be used to predict long-term proportion of times the outcome will occur.
20 16.3 The Personal-Probability Interpretation Person probability: the degree to which a given individual believes the event will happen. They must be between 0 and 1 and be coherent. Examples: Probability of finding a parking space downtown on Saturday. Probability that a particular candidate for a position would fit the job best.
21 16.4 Applying Some Simple Probability Rules Rule 1: If there are only two possible outcomes in an uncertain situation, then their probabilities must add to 1. Example 1: If probability of a single birth resulting in a boy is 0.51, then the probability of it resulting in a girl is 0.49.
22 Simple Probability Rules Rule 2: If two outcomes cannot happen simultaneously, they are said to be mutually exclusive. The probability of one or the other of two mutually exclusive outcomes happening is the sum of their individual probabilities. Example 5: If you think probability of getting an A in your statistics class is 50% and probability of getting a B is 30%, then probability of getting either an A or a B is 80%. Thus, probability of getting C or less is 20% (using Rule 1).
23 Simple Probability Rules Rule 3: If two events do not influence each other, and if knowledge about one doesn t help with knowledge of the probability of the other, the events are said to be independent of each other. If two events are independent, the probability that they both happen is found by multiplying their individual probabilities. Example 7: Woman will have two children. Assume outcome of 2 nd birth independent of 1 st and probability birth results in boy is Then probability of a boy followed by a girl is (0.51)(0.49) = About a 25% chance a woman will have a boy and then a girl.
24 Simple Probability Rules Rule 4: If the ways in which one event can occur are a subset of those in which another event can occur, then the probability of the subset event cannot be higher than the probability of the one for which it is a subset. Example 10: Suppose you are 18 and speculating about your future. You decide the probability you will eventually get married and have children is 75%. By Rule 4, probability that you will eventually get married is at least 75%.
25 16.5 When Will It Happen? Probability an outcome will occur on any given instance is p. Probability the outcome will not occur is (1 p). Outcome each time is independent of outcome all other times. Probability it doesn t occur on 1 st try but does occur on 2 nd try is (1 p)p.
26 Example 11: Number of Births to First Girls Probability of a birth resulting in a boy is about.51, and the probability of a birth resulting in a girl is about.49. Suppose couple will continue having children until have a girl. Assuming outcomes of births are independent of each other, probabilities of having the first girl on the first, second, third, fifth, and seventh tries are shown below.
27 Accumulated Probability Probability of 1 st occurrence not happening by occasion n is (1 p) n. Probability 1 st occurrence has happened by occasion n is [1 (1 p) n ]. Example 12: Getting Infected with HIV Suppose probability of infected is 1/500 = Probability of not infected is So probability of infection by 2 nd encounter is [1 ( ) 2 ] =
28 16.6 Long-Term Gains, Losses, and Expectations Long-Term Outcomes Can Be Predicted Example 14: Insurance Policies A simple case: All customers charged $500/year, 10% submit a claim in any given year and claims always for $1500. How much can the company expect to make per customer? Average Gain =.90 ($500).10 ($1000) = $350 per customer
29 Expected Value (EV) EV = expected value = A 1 p 1 + A 2 p 2 + A 3 p A k p k where A 1, A 2, A 3,, A k are the possible amounts and p 1, p 2, p 3,, p k are the associated probabilities. Example 14, continued: A 1 p 1 + A 2 p 2 = (.10)( $1000) + (.90)($500) = $350 = expected value of company s profit per customer. Key: Expected value is the average value per measurement over the long run and not necessarily a typical value for any one occasion or person.
30 Example 15: California Decco Lottery Game Decco: player chooses one card from each of four suits. A winning card drawn from each suit. Prizes awarded based on the number of matches. Cost to play = $1. EV = ($4999)(1/28,561) + ($49)(1/595) + ($4)(.0303) + ( $1)(.726) = $0.35 Over many repetitions, players will lose an average of 35 cents per play. The Lottery Commission will only pay out about 65 cents for each $1 ticket sold.
31 Expected Value as Mean Number If measurement taken over a large group of individuals, the expected value can be interpreted as the mean value per individual. Example: Suppose 40% of people in a population smoke a pack of cigarettes a day (20 cigarettes) and remaining 60% smoke none. Expected number of cigarettes smoked per day by one person: EV = (0.40)(20 cigarettes) + (0.60)(0 cigarettes) = 8 cigarettes On average 8 cigarettes are smoked per person per day. Here again, the EV is not a value we actually expect to measure on any one individual.
32 Example: Consider a lottery game where you pay $1 to play and have the following chances of winning certain prizes. What is the expected value of this game? Prize Net Gain Probability $0.00 -$ $1.00 $ $10.00 $ $ $ Answer: EV= (-$1)(0.7) + ($0)(0.25) +($9)(0.049) + (99)(0.001) = -$0.16 This result tells us that over many repetitions of the game, you will lose an average of 16 cents per game.
33 Roulette Gamble What is the EV of betting $1 on black 13 in Roulette?
34 Roulette Gamble What is the EV of betting $1 on black 13 in Roulette? Outcome Probability of $ Payoff occurrence 13 1/38 $35 Not 13 37/38 $-1
35 Roulette Gamble What is the EV of betting $1 on black 13 in Roulette? ($35 * 1/38) + ($-1 * 37/38) = $ Each time you place a bet on the roulette table you should expect to lose 5.26%.
36 Case Study 16.1: Birthdays and Death Days Is There a Connection? Study Details: Data from death certificates of adults in California who died of natural causes between 1979 and Each death classified as to how many weeks after the birthday it occurred. Compared actual numbers of deaths to expected number (seasonally adjusted). Results: Women: biggest peak in Week 0; highest number of women died the week after their birthdays. Men: biggest peak was in Week 51; highest number of men died the week before their birthdays. Probability biggest peak for women in Week 0 AND biggest peak for men in Week 51 = (1/52)(1/52) = Source: Phillips, Van Voorhies, and Ruth, 1992
37 For Those Who Like Formulas
38 We re ready to play some games
39 An Example Experiment: Roll Two Dice Possible Outcomes: Any number from 1 to 6 can appear on each die. There are 36 possible outcomes Each Outcome in the Sample Space is equally probable. So the probability of each outcome is 1/36 What is the probability of the Event - get combined total of 7 on the dice
40 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) (6,1 ) (5,2 ) (4,3 ) (3,4 ) (2,5 ) (1,6 )
41 Lets Play a Game html
42 The Monty Hall Problem Let s Make A Deal: a game show back in 90 s. A player is given the choice of three doors. Behind one door is the Grand Prize (a car and a cruise); behind the other two doors, booby prizes (stinking pigs). The player picks a door, and the host peeks behind the doors and opens one of the rest of the doors. There is a booby prize behind the open door. The host offers the player either to stay with the door that was chosen at the beginning, or to switch to the remaining closed door. Which is better: to switch doors or to stay with the original choice? What are the chances of winning in either case?
43 Let s Make a Deal! Assume your are a contestant on this game show. There are three doors: 1 2 3
44 Let s Make a Deal! You have been asked to select one of these three doors
45 Let s Make a Deal! Behind one of the doors is the grand prize! 1
46 Let s Make a Deal! Behind one of the doors is the booby prize! 2
47 Let s Make a Deal! Now assume you have selected Door # 1. Monty Hall (the host) will now open one of the other doors (door # 2 or 3) and show you the prize behind that door (it won t be the grand prize).
48 Let s Make a Deal! He will now ask you whether you would like to keep your original selection (Door #1) or switch to the other unopened door (Door # 2 or 3). Should you switch?
49 Let s Make a Deal! Marilyn vos Savant - When you first choose door No. 1 from among the three, there s a 1/3 chance that the prize is behind that one and a 2/3 chance that it s behind one of the others. But then the host steps in and gives you a clue. If the prize is behind No. 2, the host shows you No. 3; and if the prize is behind is behind No. 3, the host shows you No. 2. So when you switch, you win if the prize is behind No. 2 or No. 3. YOU WIN EITHER WAY! But if you don t switch, you win only if the prize is behind door No. 1.
50 Let s Make a Deal! Grand Prize You choose: Host Opens: You Switch Result Is In: To: or 3 2 or 3 Lose Win Win Win or 3 1 or 3 Lose Win Win Win or 2 1 or 2 Lose
51 Let s Make a Deal! You lose in 3/9 cases - p(lose) = 1/3 You win in 6/9 cases - p(win) = 2/3.
Section 7C: The Law of Large Numbers
Section 7C: The Law of Large Numbers Example. You flip a coin 00 times. Suppose the coin is fair. How many times would you expect to get heads? tails? One would expect a fair coin to come up heads half
36 Odds, Expected Value, and Conditional Probability
36 Odds, Expected Value, and Conditional Probability What s the difference between probabilities and odds? To answer this question, let s consider a game that involves rolling a die. If one gets the face
V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE
V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPETED VALUE A game of chance featured at an amusement park is played as follows: You pay $ to play. A penny and a nickel are flipped. You win $ if either
Elementary Statistics and Inference. Elementary Statistics and Inference. 16 The Law of Averages (cont.) 22S:025 or 7P:025.
Elementary Statistics and Inference 22S:025 or 7P:025 Lecture 20 1 Elementary Statistics and Inference 22S:025 or 7P:025 Chapter 16 (cont.) 2 D. Making a Box Model Key Questions regarding box What numbers
Week 2: Conditional Probability and Bayes formula
Week 2: Conditional Probability and Bayes formula We ask the following question: suppose we know that a certain event B has occurred. How does this impact the probability of some other A. This question
MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.
MA 5 Lecture 4 - Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the
Introduction to Discrete Probability. Terminology. Probability definition. 22c:19, section 6.x Hantao Zhang
Introduction to Discrete Probability 22c:19, section 6.x Hantao Zhang 1 Terminology Experiment A repeatable procedure that yields one of a given set of outcomes Rolling a die, for example Sample space
Probability and Expected Value
Probability and Expected Value This handout provides an introduction to probability and expected value. Some of you may already be familiar with some of these topics. Probability and expected value are
Ch. 13.2: Mathematical Expectation
Ch. 13.2: Mathematical Expectation Random Variables Very often, we are interested in sample spaces in which the outcomes are distinct real numbers. For example, in the experiment of rolling two dice, we
A probability experiment is a chance process that leads to well-defined outcomes. 3) What is the difference between an outcome and an event?
Ch 4.2 pg.191~(1-10 all), 12 (a, c, e, g), 13, 14, (a, b, c, d, e, h, i, j), 17, 21, 25, 31, 32. 1) What is a probability experiment? A probability experiment is a chance process that leads to well-defined
Week 5: Expected value and Betting systems
Week 5: Expected value and Betting systems Random variable A random variable represents a measurement in a random experiment. We usually denote random variable with capital letter X, Y,. If S is the sample
We rst consider the game from the player's point of view: Suppose you have picked a number and placed your bet. The probability of winning is
Roulette: On an American roulette wheel here are 38 compartments where the ball can land. They are numbered 1-36, and there are two compartments labeled 0 and 00. Half of the compartments numbered 1-36
6.042/18.062J Mathematics for Computer Science. Expected Value I
6.42/8.62J Mathematics for Computer Science Srini Devadas and Eric Lehman May 3, 25 Lecture otes Expected Value I The expectation or expected value of a random variable is a single number that tells you
The overall size of these chance errors is measured by their RMS HALF THE NUMBER OF TOSSES NUMBER OF HEADS MINUS 0 400 800 1200 1600 NUMBER OF TOSSES
INTRODUCTION TO CHANCE VARIABILITY WHAT DOES THE LAW OF AVERAGES SAY? 4 coins were tossed 1600 times each, and the chance error number of heads half the number of tosses was plotted against the number
Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions.
Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
AMS 5 CHANCE VARIABILITY
AMS 5 CHANCE VARIABILITY The Law of Averages When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So if the coin is tossed a large number of times, the number of heads and
In the situations that we will encounter, we may generally calculate the probability of an event
What does it mean for something to be random? An event is called random if the process which produces the outcome is sufficiently complicated that we are unable to predict the precise result and are instead
Standard 12: The student will explain and evaluate the financial impact and consequences of gambling.
STUDENT MODULE 12.1 GAMBLING PAGE 1 Standard 12: The student will explain and evaluate the financial impact and consequences of gambling. Risky Business Simone, Paula, and Randy meet in the library every
Exam. Name. How many distinguishable permutations of letters are possible in the word? 1) CRITICS
Exam Name How many distinguishable permutations of letters are possible in the word? 1) CRITICS 2) GIGGLE An order of award presentations has been devised for seven people: Jeff, Karen, Lyle, Maria, Norm,
Find the indicated probability. 1) If a single fair die is rolled, find the probability of a 4 given that the number rolled is odd.
Math 0 Practice Test 3 Fall 2009 Covers 7.5, 8.-8.3 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the indicated probability. ) If a single
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Ch. 4 Discrete Probability Distributions 4.1 Probability Distributions 1 Decide if a Random Variable is Discrete or Continuous 1) State whether the variable is discrete or continuous. The number of cups
Introductory Probability. MATH 107: Finite Mathematics University of Louisville. March 5, 2014
Introductory Probability MATH 07: Finite Mathematics University of Louisville March 5, 204 What is probability? Counting and probability 2 / 3 Probability in our daily lives We see chances, odds, and probabilities
Basic Probability. Probability: The part of Mathematics devoted to quantify uncertainty
AMS 5 PROBABILITY Basic Probability Probability: The part of Mathematics devoted to quantify uncertainty Frequency Theory Bayesian Theory Game: Playing Backgammon. The chance of getting (6,6) is 1/36.
AP Stats - Probability Review
AP Stats - Probability Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. I toss a penny and observe whether it lands heads up or tails up. Suppose
Chapter 4 Lecture Notes
Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,
Chapter 7 Probability. Example of a random circumstance. Random Circumstance. What does probability mean?? Goals in this chapter
Homework (due Wed, Oct 27) Chapter 7: #17, 27, 28 Announcements: Midterm exams keys on web. (For a few hours the answer to MC#1 was incorrect on Version A.) No grade disputes now. Will have a chance to
Betting systems: how not to lose your money gambling
Betting systems: how not to lose your money gambling G. Berkolaiko Department of Mathematics Texas A&M University 28 April 2007 / Mini Fair, Math Awareness Month 2007 Gambling and Games of Chance Simple
Chapter 16: law of averages
Chapter 16: law of averages Context................................................................... 2 Law of averages 3 Coin tossing experiment......................................................
Basic Probability Theory II
RECAP Basic Probability heory II Dr. om Ilvento FREC 408 We said the approach to establishing probabilities for events is to Define the experiment List the sample points Assign probabilities to the sample
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Practice Test Chapter 9 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the odds. ) Two dice are rolled. What are the odds against a sum
Statistics 100A Homework 3 Solutions
Chapter Statistics 00A Homework Solutions Ryan Rosario. Two balls are chosen randomly from an urn containing 8 white, black, and orange balls. Suppose that we win $ for each black ball selected and we
Probability: The Study of Randomness Randomness and Probability Models. IPS Chapters 4 Sections 4.1 4.2
Probability: The Study of Randomness Randomness and Probability Models IPS Chapters 4 Sections 4.1 4.2 Chapter 4 Overview Key Concepts Random Experiment/Process Sample Space Events Probability Models Probability
The New Mexico Lottery
The New Mexico Lottery 26 February 2014 Lotteries 26 February 2014 1/27 Today we will discuss the various New Mexico Lottery games and look at odds of winning and the expected value of playing the various
Practical Probability:
Practical Probability: Casino Odds and Sucker Bets Tom Davis [email protected] April 2, 2011 Abstract Gambling casinos are there to make money, so in almost every instance, the games you can bet
Probabilities. Probability of a event. From Random Variables to Events. From Random Variables to Events. Probability Theory I
Victor Adamchi Danny Sleator Great Theoretical Ideas In Computer Science Probability Theory I CS 5-25 Spring 200 Lecture Feb. 6, 200 Carnegie Mellon University We will consider chance experiments with
Elementary Statistics and Inference. Elementary Statistics and Inference. 17 Expected Value and Standard Error. 22S:025 or 7P:025.
Elementary Statistics and Inference S:05 or 7P:05 Lecture Elementary Statistics and Inference S:05 or 7P:05 Chapter 7 A. The Expected Value In a chance process (probability experiment) the outcomes of
Determine the empirical probability that a person selected at random from the 1000 surveyed uses Mastercard.
Math 120 Practice Exam II Name You must show work for credit. 1) A pair of fair dice is rolled 50 times and the sum of the dots on the faces is noted. Outcome 2 4 5 6 7 8 9 10 11 12 Frequency 6 8 8 1 5
Expected Value and the Game of Craps
Expected Value and the Game of Craps Blake Thornton Craps is a gambling game found in most casinos based on rolling two six sided dice. Most players who walk into a casino and try to play craps for the
Unit 19: Probability Models
Unit 19: Probability Models Summary of Video Probability is the language of uncertainty. Using statistics, we can better predict the outcomes of random phenomena over the long term from the very complex,
Find an expected value involving two events. Find an expected value involving multiple events. Use expected value to make investment decisions.
374 Chapter 8 The Mathematics of Likelihood 8.3 Expected Value Find an expected value involving two events. Find an expected value involving multiple events. Use expected value to make investment decisions.
2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways.
Math 142 September 27, 2011 1. How many ways can 9 people be arranged in order? 9! = 362,880 ways 2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways. 3. The letters in MATH are
Expected Value. 24 February 2014. Expected Value 24 February 2014 1/19
Expected Value 24 February 2014 Expected Value 24 February 2014 1/19 This week we discuss the notion of expected value and how it applies to probability situations, including the various New Mexico Lottery
Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 10
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 10 Introduction to Discrete Probability Probability theory has its origins in gambling analyzing card games, dice,
Problem sets for BUEC 333 Part 1: Probability and Statistics
Problem sets for BUEC 333 Part 1: Probability and Statistics I will indicate the relevant exercises for each week at the end of the Wednesday lecture. Numbered exercises are back-of-chapter exercises from
Lotto Master Formula (v1.3) The Formula Used By Lottery Winners
Lotto Master Formula (v.) The Formula Used By Lottery Winners I. Introduction This book is designed to provide you with all of the knowledge that you will need to be a consistent winner in your local lottery
14.4. Expected Value Objectives. Expected Value
. Expected Value Objectives. Understand the meaning of expected value. 2. Calculate the expected value of lotteries and games of chance.. Use expected value to solve applied problems. Life and Health Insurers
ACMS 10140 Section 02 Elements of Statistics October 28, 2010 Midterm Examination II Answers
ACMS 10140 Section 02 Elements of Statistics October 28, 2010 Midterm Examination II Answers Name DO NOT remove this answer page. DO turn in the entire exam. Make sure that you have all ten (10) pages
Stat 20: Intro to Probability and Statistics
Stat 20: Intro to Probability and Statistics Lecture 16: More Box Models Tessa L. Childers-Day UC Berkeley 22 July 2014 By the end of this lecture... You will be able to: Determine what we expect the sum
Statistics 100A Homework 2 Solutions
Statistics Homework Solutions Ryan Rosario Chapter 9. retail establishment accepts either the merican Express or the VIS credit card. total of percent of its customers carry an merican Express card, 6
Statistics and Random Variables. Math 425 Introduction to Probability Lecture 14. Finite valued Random Variables. Expectation defined
Expectation Statistics and Random Variables Math 425 Introduction to Probability Lecture 4 Kenneth Harris [email protected] Department of Mathematics University of Michigan February 9, 2009 When a large
Chapter 16. Law of averages. Chance. Example 1: rolling two dice Sum of draws. Setting up a. Example 2: American roulette. Summary.
Overview Box Part V Variability The Averages Box We will look at various chance : Tossing coins, rolling, playing Sampling voters We will use something called s to analyze these. Box s help to translate
Probability. Sample space: all the possible outcomes of a probability experiment, i.e., the population of outcomes
Probability Basic Concepts: Probability experiment: process that leads to welldefined results, called outcomes Outcome: result of a single trial of a probability experiment (a datum) Sample space: all
Mind on Statistics. Chapter 8
Mind on Statistics Chapter 8 Sections 8.1-8.2 Questions 1 to 4: For each situation, decide if the random variable described is a discrete random variable or a continuous random variable. 1. Random variable
The Normal Approximation to Probability Histograms. Dice: Throw a single die twice. The Probability Histogram: Area = Probability. Where are we going?
The Normal Approximation to Probability Histograms Where are we going? Probability histograms The normal approximation to binomial histograms The normal approximation to probability histograms of sums
Probability. a number between 0 and 1 that indicates how likely it is that a specific event or set of events will occur.
Probability Probability Simple experiment Sample space Sample point, or elementary event Event, or event class Mutually exclusive outcomes Independent events a number between 0 and 1 that indicates how
Ch. 13.3: More about Probability
Ch. 13.3: More about Probability Complementary Probabilities Given any event, E, of some sample space, U, of a random experiment, we can always talk about the complement, E, of that event: this is the
Contemporary Mathematics- MAT 130. Probability. a) What is the probability of obtaining a number less than 4?
Contemporary Mathematics- MAT 30 Solve the following problems:. A fair die is tossed. What is the probability of obtaining a number less than 4? What is the probability of obtaining a number less than
Economics 1011a: Intermediate Microeconomics
Lecture 11: Choice Under Uncertainty Economics 1011a: Intermediate Microeconomics Lecture 11: Choice Under Uncertainty Tuesday, October 21, 2008 Last class we wrapped up consumption over time. Today we
PROBABILITY SECOND EDITION
PROBABILITY SECOND EDITION Table of Contents How to Use This Series........................................... v Foreword..................................................... vi Basics 1. Probability All
STATISTICS 8: CHAPTERS 7 TO 10, SAMPLE MULTIPLE CHOICE QUESTIONS
STATISTICS 8: CHAPTERS 7 TO 10, SAMPLE MULTIPLE CHOICE QUESTIONS 1. If two events (both with probability greater than 0) are mutually exclusive, then: A. They also must be independent. B. They also could
ACMS 10140 Section 02 Elements of Statistics October 28, 2010. Midterm Examination II
ACMS 10140 Section 02 Elements of Statistics October 28, 2010 Midterm Examination II Name DO NOT remove this answer page. DO turn in the entire exam. Make sure that you have all ten (10) pages of the examination
Chapter 5 A Survey of Probability Concepts
Chapter 5 A Survey of Probability Concepts True/False 1. Based on a classical approach, the probability of an event is defined as the number of favorable outcomes divided by the total number of possible
AP Statistics 7!3! 6!
Lesson 6-4 Introduction to Binomial Distributions Factorials 3!= Definition: n! = n( n 1)( n 2)...(3)(2)(1), n 0 Note: 0! = 1 (by definition) Ex. #1 Evaluate: a) 5! b) 3!(4!) c) 7!3! 6! d) 22! 21! 20!
Inside the pokies - player guide
Inside the pokies - player guide 3nd Edition - May 2009 References 1, 2, 3 Productivity Commission 1999, Australia s Gambling Industries, Report No. 10, AusInfo, Canberra. 4 Victorian Department of Justice,
KENO TRAINING MANUAL
KENO TRAINING MANUAL 1 Contents I. How to play Keno Pg 3 1. Keno Menu Pg 3 2. Keno Kwikfacts Pg 3 3. Keno Pg 4 4. Kwikpicks Pg 8 5. Jackpots Pg 10 6. Keno Bonus Pg 10 7. Lucky Last Pg 10 8. Heads or Tails
How To Increase Your Odds Of Winning Scratch-Off Lottery Tickets!
How To Increase Your Odds Of Winning Scratch-Off Lottery Tickets! Disclaimer: All of the information inside this report reflects my own personal opinion and my own personal experiences. I am in NO way
STRIKE FORCE ROULETTE
STRIKE FORCE ROULETTE Cycles, cycles, cycles... You cannot get away from them in the game of Roulette. Red, black, red, black... Red, red, red, red. Black, black, black... Red, red, black, black... 1st
STATISTICS 8, FINAL EXAM. Last six digits of Student ID#: Circle your Discussion Section: 1 2 3 4
STATISTICS 8, FINAL EXAM NAME: KEY Seat Number: Last six digits of Student ID#: Circle your Discussion Section: 1 2 3 4 Make sure you have 8 pages. You will be provided with a table as well, as a separate
Statistics 100A Homework 4 Solutions
Chapter 4 Statistics 00A Homework 4 Solutions Ryan Rosario 39. A ball is drawn from an urn containing 3 white and 3 black balls. After the ball is drawn, it is then replaced and another ball is drawn.
Standard 12: The student will explain and evaluate the financial impact and consequences of gambling.
TEACHER GUIDE 12.1 GAMBLING PAGE 1 Standard 12: The student will explain and evaluate the financial impact and consequences of gambling. Risky Business Priority Academic Student Skills Personal Financial
Probability, statistics and football Franka Miriam Bru ckler Paris, 2015.
Probability, statistics and football Franka Miriam Bru ckler Paris, 2015 Please read this before starting! Although each activity can be performed by one person only, it is suggested that you work in groups
Chapter 20: chance error in sampling
Chapter 20: chance error in sampling Context 2 Overview................................................................ 3 Population and parameter..................................................... 4
TOPIC P2: SAMPLE SPACE AND ASSIGNING PROBABILITIES SPOTLIGHT: THE CASINO GAME OF ROULETTE. Topic P2: Sample Space and Assigning Probabilities
TOPIC P2: SAMPLE SPACE AND ASSIGNING PROBABILITIES SPOTLIGHT: THE CASINO GAME OF ROULETTE Roulette is one of the most popular casino games. The name roulette is derived from the French word meaning small
Decision Making Under Uncertainty. Professor Peter Cramton Economics 300
Decision Making Under Uncertainty Professor Peter Cramton Economics 300 Uncertainty Consumers and firms are usually uncertain about the payoffs from their choices Example 1: A farmer chooses to cultivate
Lotto! Online Product Guide
BCLC Lotto! Online Product Guide Resource Manual for Lottery Retailers 29/04/2014 The focus of this document is to provide retailers the tools needed in order to feel knowledgeable when selling and discussing
Choice Under Uncertainty
Decision Making Under Uncertainty Choice Under Uncertainty Econ 422: Investment, Capital & Finance University of ashington Summer 2006 August 15, 2006 Course Chronology: 1. Intertemporal Choice: Exchange
! Insurance and Gambling
2009-8-18 0 Insurance and Gambling Eric Hehner Gambling works as follows. You pay some money to the house. Then a random event is observed; it may be the roll of some dice, the draw of some cards, or the
R Simulations: Monty Hall problem
R Simulations: Monty Hall problem Monte Carlo Simulations Monty Hall Problem Statistical Analysis Simulation in R Exercise 1: A Gift Giving Puzzle Exercise 2: Gambling Problem R Simulations: Monty Hall
MONEY MANAGEMENT. Guy Bower delves into a topic every trader should endeavour to master - money management.
MONEY MANAGEMENT Guy Bower delves into a topic every trader should endeavour to master - money management. Many of us have read Jack Schwager s Market Wizards books at least once. As you may recall it
Decision Theory. 36.1 Rational prospecting
36 Decision Theory Decision theory is trivial, apart from computational details (just like playing chess!). You have a choice of various actions, a. The world may be in one of many states x; which one
.4 120 +.1 80 +.5 100 = 48 + 8 + 50 = 106.
Chapter 16. Risk and Uncertainty Part A 2009, Kwan Choi Expected Value X i = outcome i, p i = probability of X i EV = pix For instance, suppose a person has an idle fund, $100, for one month, and is considering
Chapter 5 Section 2 day 1 2014f.notebook. November 17, 2014. Honors Statistics
Chapter 5 Section 2 day 1 2014f.notebook November 17, 2014 Honors Statistics Monday November 17, 2014 1 1. Welcome to class Daily Agenda 2. Please find folder and take your seat. 3. Review Homework C5#3
Mathematical Expectation
Mathematical Expectation Properties of Mathematical Expectation I The concept of mathematical expectation arose in connection with games of chance. In its simplest form, mathematical expectation is the
(a) FLORIDA LOTTO is a lottery online terminal game in which players select six (6) numbers from a field of
53ER14-18 FLORIDA LOTTO. (1) How to Play FLORIDA LOTTO. (a) FLORIDA LOTTO is a lottery online terminal game in which players select six (6) numbers from a field of one (1) to fifty-three (53). (b) Players
That s Not Fair! ASSESSMENT #HSMA20. Benchmark Grades: 9-12
That s Not Fair! ASSESSMENT # Benchmark Grades: 9-12 Summary: Students consider the difference between fair and unfair games, using probability to analyze games. The probability will be used to find ways
How To Choose Between A Goat And A Door In A Game Of \"The Black Jackpot\"
Appendix D: The Monty Hall Controversy Appendix D: The Monty Hall Controversy - Page 1 Let's Make a Deal Prepared by Rich Williams, Spring 1991 Last Modified Fall, 2004 You are playing Let's Make a Deal
Gaming the Law of Large Numbers
Gaming the Law of Large Numbers Thomas Hoffman and Bart Snapp July 3, 2012 Many of us view mathematics as a rich and wonderfully elaborate game. In turn, games can be used to illustrate mathematical ideas.
Lab 11. Simulations. The Concept
Lab 11 Simulations In this lab you ll learn how to create simulations to provide approximate answers to probability questions. We ll make use of a particular kind of structure, called a box model, that
Random Variables. 9. Variation 1. Find the standard deviations of the random variables in Exercise 1.
Random Variables 1. Expected value. Find the expected value of each random variable: a) x 10 20 30 P(X=x) 0.3 0.5 0.2 b) x 2 4 6 8 P(X=x) 0.3 0.4 0.2 0.1 2. Expected value. Find the expected value of each
calculating probabilities
4 calculating probabilities Taking Chances What s the probability he s remembered I m allergic to non-precious metals? Life is full of uncertainty. Sometimes it can be impossible to say what will happen
Probability --QUESTIONS-- Principles of Math 12 - Probability Practice Exam 1 www.math12.com
Probability --QUESTIONS-- Principles of Math - Probability Practice Exam www.math.com Principles of Math : Probability Practice Exam Use this sheet to record your answers:... 4... 4... 4.. 6. 4.. 6. 7..
13.0 Central Limit Theorem
13.0 Central Limit Theorem Discuss Midterm/Answer Questions Box Models Expected Value and Standard Error Central Limit Theorem 1 13.1 Box Models A Box Model describes a process in terms of making repeated
Grade 6 Math Circles Mar.21st, 2012 Probability of Games
University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Grade 6 Math Circles Mar.21st, 2012 Probability of Games Gambling is the wagering of money or something of
INFO ABOUT THE ODDS BETTING ON LOTTO, LOTTERIES OR KENO?
INFO ABOUT THE ODDS BETTING ON LOTTO, LOTTERIES OR KENO? YOU MAY HEAR OF PEOPLE HAVING A WIN WITH LOTTO AND POWERBALL, GETTING LUCKY IN THE LOTTERY, OR HAVING WINNING NUMBERS COME UP IN THE POOLS OR KENO.
Example: Find the expected value of the random variable X. X 2 4 6 7 P(X) 0.3 0.2 0.1 0.4
MATH 110 Test Three Outline of Test Material EXPECTED VALUE (8.5) Super easy ones (when the PDF is already given to you as a table and all you need to do is multiply down the columns and add across) Example:
Discrete Math in Computer Science Homework 7 Solutions (Max Points: 80)
Discrete Math in Computer Science Homework 7 Solutions (Max Points: 80) CS 30, Winter 2016 by Prasad Jayanti 1. (10 points) Here is the famous Monty Hall Puzzle. Suppose you are on a game show, and you
Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?
ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the
Math 58. Rumbos Fall 2008 1. Solutions to Review Problems for Exam 2
Math 58. Rumbos Fall 2008 1 Solutions to Review Problems for Exam 2 1. For each of the following scenarios, determine whether the binomial distribution is the appropriate distribution for the random variable
The Math. P (x) = 5! = 1 2 3 4 5 = 120.
The Math Suppose there are n experiments, and the probability that someone gets the right answer on any given experiment is p. So in the first example above, n = 5 and p = 0.2. Let X be the number of correct
6. Let X be a binomial random variable with distribution B(10, 0.6). What is the probability that X equals 8? A) (0.6) (0.4) B) 8! C) 45(0.6) (0.
Name: Date:. For each of the following scenarios, determine the appropriate distribution for the random variable X. A) A fair die is rolled seven times. Let X = the number of times we see an even number.
