2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways.

Size: px
Start display at page:

Download "2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways."

Transcription

1 Math 142 September 27, How many ways can 9 people be arranged in order? 9! = 362,880 ways 2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways. 3. The letters in MATH are re-arranged. How many of them start with the letter H? The first letter is fixed, leaving three other letters to re-arrange. Hence, 3! = 6 ways. 4. An password contains 4 letters (all lower case, all 26 are allowed) followed by 4 numbers (digits 0-9). How many passwords could be created? (26)(26)(26)(26)(10)(10)(10)(10) = 4,569,760,000. This is the multiplication principle. 5. A race consists of 10 runners. a) How many ways can 1 st -2 nd -3 rd place be filled? (10)(9)(8) = 720. This is also P(10,3). b) Of the remaining seven runners, the next 4 get a ribbon. How many ways can the ribbons be handed out? Since order does not matter, use combination: C(7,4) = 35 ways. 6. A computer byte is a string of 8 digits consisting of 0s and 1s only, for example, is a byte. How many possible bytes are there? 2 =256. Here, use the multiplication principle. 7. From a group of 8 people, a committee of 5 is to be formed. How many committees are possible? Since a committee does not imply order matters, use combination: C(8,5) = From a group of 10 men and 12 women, a committee of 3 men and 4 women is to be formed. How many committees are possible? Since order does not matter, use combinations: Men: C(10,3) = 120, women: C(12,4) = 495. There will be (120)(495) = 59,400 possible committees. 9. Evaluate!. Hint: your calculator may freeze. Try simplifying first.!! = =10,100. Don t depend on your calculator to do big factorials like this. It will! freeze. Instead, reduce as shown, and cancel. 10. How many ways can three six-sided dice be rolled? (6)(6)(6) = 216 ways. (Mult. Princ.) 11. If two dice are rolled, how many of the rolls show a sum of 9? 4 of them do. Hint: write out all 36 outcomes and count off the ones that sum to 9. Writing out the entire sample space is a very big hint, if you catch my drift. 12. If repeats are allowed, you use the multiplication principle. If repeats are not allowed and order matters, you use permutation. If repeats are not allowed and order does not matter, you use combination.

2 MAT 142 Intro to Probability Worksheet (Oct. 4, 2011) 1. A jar of M&M candies contains 12 brown, 4 yellow, 2 blue, 5 red, 3 green and 4 orange. You select one at random. Find the probability that you select one that is: (Leave answers as fractions) a. Brown: 12/30 b. Green or orange: 7/30 c. Not red: 25/30 d. Yellow and blue: 0. It s impossible to select one candy that is both colors simultaneously. Read the questions carefully. And indicates simultaneously, and or indicated union. 2. Shoppers at a local department store were asked to complete a survey of their shopping experience. The results are shown in the table below: Satisfied Not satisfied Total Made a purchase Did not make a purchase Totals a. What is the probability that a shopper selected at random made a purchase? 624/1522. Reduction is not necessary. b. What are the odds that a shopper selected at random was satisfied with the service? 845:677 Must be in odds form! 3. In a study of fatal car accidents, some accidents were attributed to high speed or drunk driving. The probability that the fatality was attributed to high speeds was 0.57 The probability that the fatality was attributed to drunk driving was 0.62 The probability that high speed and drunk driving caused the accident was 0.41 Hint: Make a Venn Diagram a. What is the probability that a fatal accident will be attributed to high speeds or drunk driving? This is the union. b. What is the probability that a fatal accident will be attributed to neither cause? 0.22 c. What is the probability that the fatality will be attributed to drunk driving, but not high speeds? If a single card is selected from a standard 52 card deck, what is the probability that a red face card is selected? 26/52 5. If a single card is drawn from a standard 52 card deck, what is the probability that we obtain a face card or a red card? P(Red) = 26/52, P(Face) = 12/52. P(Both) = 6/52. Therefore, P(Red or Face) = P(Red) + P(Face) P(Both) =26/ /52 6/52 = 32/52.

3 6. If 5 cards are drawn from a standard 52 card deck, what is the probability that the result is 3 red cards and 2 black cards? (, ) (, ) (, ) =0.325, about a 32.5% probability. 7. If the odds for E occurring is 2:5, what is the probability of E? 2/7. Remember, Odds for is written success:failure. Probability is success/total. There are 2 ways to succeed, 5 ways to fail, 7 total. Also, use correct notation. Fractions in place of the colon for odds will be marked wrong! As will the other way around. 8. If a fair coin is tossed three times, write down the sample space S. Then find the probability that exactly two heads occur. S = {ttt, tth, tht, thh, htt, hth, hht, hhh}, P(2 heads) = 3/8 9. If the probability of E occurring is 0.26, what is the probability E does not occur? = 0.74 Look for key words that indicate an ordering or not. Look for phrases like with repetition, which means items can be re-used, or without repetition, which means items cannot be re-used. The formulas for permutation and combination are given but know how to find them on your calculator too. Know how to reduce a large factorial expression. Some calculators will freeze. Always be on the lookout for the words or indicating union, and and indicating intersection (both). A lot of you are still making rookie mistakes by misreading the problems and not picking up on these fine details. If a problem asks for probability, leave your answer in fraction or decimal form. If a problem asks for odds, leave the answer in the colon format. Read the question carefully: odds for is success:failure, odds against is failure:success. Probability is always success/total and they are related by failure + success = total. Draw Venns, Tables or Trees as needed. They help a lot. In conditional probabilities, remember to reduce the sample space accordingly. Read the questions carefully. Look for words like given to indicate a conditional probability. READ ALL QUESTIONS SLOWLY AND CAREFULLY! This is not a race.

4 Math 142 October 11, Two candidates, Smith and Wilson, are running for mayor. The voting breakdown is shown below in the table: Rep (R) Dem (D) Indep (I) Total Smith (S) Wilson (W) Total A voter is selected at random. Determine these probabilities: a) The probability the voter voted for Smith, given the voter was Republican. ( ):72/118 b) The probability the voter was Independent, given the voter voted for Wilson. ( ) 22/129 c) Determine ( ): 68/129. d) Determine ( ): 110/ A jar has 15 red, 20 orange and 22 blue candies. Two candies are drawn without replacement. Find these probabilities: a) The second candy is blue given the first was red. 22/56 b) The second is orange given the first was blue. 20/56 c) Both candies were blue. 22/57 times 21/56 = or 11/76 (both are the same). d) (2 pts extra credit) Both candies are of different color. It s easier to figure the probability of getting the same color first: Two blues is (from part c). Two reds is 0.066, and two oranges is The probability all are the same color is the sum: = Therefore, the probability the two candies are different color is = Tourists to Las Vegas are surveyed. 52% visit Hoover Dam, 31% visit the Strip, and 14% visit both the Strip and Hoover Dam. Determine the following probabilities. You may leave your answer in decimal format. Hint: draw a Venn. a) The probability a tourist visited the Hoover Dam given the tourist visited the Strip. 0.14/0.31 = 0.45 b) The probability a tourist visited Strip given the tourist visited Hoover Dam. 0.14/0.52 = 0.27 c) The probability a tourist did not visit Hoover Dam given the tourist did not visit the Strip. The probability a tourist did not visit the strip is The probability the tourist visited neither place is Thus, the probability is 0.31/0.69 = 0.45

5 4. You roll a single die once. If it lands a 6, you get $10. Otherwise, you get nothing. The cost to play is free. What is the expected value of one roll of this die? There is a 1/6 chance of winning $10, 5/6 chance of winning nothing. The EV is (1/6)(10) + (5/6)(0) = 10/6 = $ A bag has 20 tokens in it. They all feel the same. One is gold colored and worth $20. Two are silver colored and worth $5 each. The other 17 are worth nothing. For $3, you can reach in and randomly grab one token. What is the expected value of this game? Subtract out the $3 cost when figuring the winnings: You have a 1/20 chance of netting $17, a 2/20 chance of netting $2, and a 17/20 chance of losing your $3. The EV is (1/20)(17) + (2/20)(2) + (17/20)(-3) = -30/20 = This means on average, you ll lose $1.50 per game. In the long term, it s a bad game. 6. A lottery sells 100 tickets for $1 each. One ticket is the winner, with a jackpot of $75. The rest are worthless, and you lose your $1. Your friend s bright idea is to buy all the tickets. Use Expected Value to explain why this is a lousy idea. Show your calculation and give a one sentence explanation. The EV is (1/100)(74) + (99/100)(-1) = -25/100 = -$0.25. The EV is negative so you ll lose in the long term. If you spent $100 to get $75, you have lost $ A roulette wheel has 38 slots. The cost to play is $1. If the ball lands in a slot you picked, you win $36. Otherwise, you lose the $1. a) Find the Expected Value of one play. (1/38)(35) + (37/38)(-1) = -2/38 = -$ Is this game in your favor? (Y/N) No. You ll lose on average a little over five cents per game in the long term. b) If you played 100 games, how much up or down can you expect to be? 100 times the EV; (100)(- $0.053) = -$5.30. You ll be down about $5.30. c) What is the fair price to play this game? Fair price = cost + EV = $1 + (-$0.053) = $0.947, or about 95 cents.

Lesson 1. Basics of Probability. Principles of Mathematics 12: Explained! www.math12.com 314

Lesson 1. Basics of Probability. Principles of Mathematics 12: Explained! www.math12.com 314 Lesson 1 Basics of Probability www.math12.com 314 Sample Spaces: Probability Lesson 1 Part I: Basic Elements of Probability Consider the following situation: A six sided die is rolled The sample space

More information

Chapter 6. 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? Ans: 4/52.

Chapter 6. 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? Ans: 4/52. Chapter 6 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? 4/52. 2. What is the probability that a randomly selected integer chosen from the first 100 positive

More information

Probability --QUESTIONS-- Principles of Math 12 - Probability Practice Exam 1 www.math12.com

Probability --QUESTIONS-- Principles of Math 12 - Probability Practice Exam 1 www.math12.com Probability --QUESTIONS-- Principles of Math - Probability Practice Exam www.math.com Principles of Math : Probability Practice Exam Use this sheet to record your answers:... 4... 4... 4.. 6. 4.. 6. 7..

More information

Chapter 4 - Practice Problems 1

Chapter 4 - Practice Problems 1 Chapter 4 - Practice Problems SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. ) Compare the relative frequency formula

More information

Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions.

Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions. Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

More information

V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE

V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPETED VALUE A game of chance featured at an amusement park is played as follows: You pay $ to play. A penny and a nickel are flipped. You win $ if either

More information

Find the indicated probability. 1) If a single fair die is rolled, find the probability of a 4 given that the number rolled is odd.

Find the indicated probability. 1) If a single fair die is rolled, find the probability of a 4 given that the number rolled is odd. Math 0 Practice Test 3 Fall 2009 Covers 7.5, 8.-8.3 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the indicated probability. ) If a single

More information

Contemporary Mathematics- MAT 130. Probability. a) What is the probability of obtaining a number less than 4?

Contemporary Mathematics- MAT 130. Probability. a) What is the probability of obtaining a number less than 4? Contemporary Mathematics- MAT 30 Solve the following problems:. A fair die is tossed. What is the probability of obtaining a number less than 4? What is the probability of obtaining a number less than

More information

36 Odds, Expected Value, and Conditional Probability

36 Odds, Expected Value, and Conditional Probability 36 Odds, Expected Value, and Conditional Probability What s the difference between probabilities and odds? To answer this question, let s consider a game that involves rolling a die. If one gets the face

More information

Probabilistic Strategies: Solutions

Probabilistic Strategies: Solutions Probability Victor Xu Probabilistic Strategies: Solutions Western PA ARML Practice April 3, 2016 1 Problems 1. You roll two 6-sided dice. What s the probability of rolling at least one 6? There is a 1

More information

Probability. Section 9. Probability. Probability of A = Number of outcomes for which A happens Total number of outcomes (sample space)

Probability. Section 9. Probability. Probability of A = Number of outcomes for which A happens Total number of outcomes (sample space) Probability Section 9 Probability Probability of A = Number of outcomes for which A happens Total number of outcomes (sample space) In this section we summarise the key issues in the basic probability

More information

MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.

MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values. MA 5 Lecture 4 - Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the

More information

Section 7C: The Law of Large Numbers

Section 7C: The Law of Large Numbers Section 7C: The Law of Large Numbers Example. You flip a coin 00 times. Suppose the coin is fair. How many times would you expect to get heads? tails? One would expect a fair coin to come up heads half

More information

AP Stats - Probability Review

AP Stats - Probability Review AP Stats - Probability Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. I toss a penny and observe whether it lands heads up or tails up. Suppose

More information

Chapter 4 - Practice Problems 2

Chapter 4 - Practice Problems 2 Chapter - Practice Problems 2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the indicated probability. 1) If you flip a coin three times, the

More information

Exam. Name. How many distinguishable permutations of letters are possible in the word? 1) CRITICS

Exam. Name. How many distinguishable permutations of letters are possible in the word? 1) CRITICS Exam Name How many distinguishable permutations of letters are possible in the word? 1) CRITICS 2) GIGGLE An order of award presentations has been devised for seven people: Jeff, Karen, Lyle, Maria, Norm,

More information

Elementary Statistics and Inference. Elementary Statistics and Inference. 16 The Law of Averages (cont.) 22S:025 or 7P:025.

Elementary Statistics and Inference. Elementary Statistics and Inference. 16 The Law of Averages (cont.) 22S:025 or 7P:025. Elementary Statistics and Inference 22S:025 or 7P:025 Lecture 20 1 Elementary Statistics and Inference 22S:025 or 7P:025 Chapter 16 (cont.) 2 D. Making a Box Model Key Questions regarding box What numbers

More information

Probability. Sample space: all the possible outcomes of a probability experiment, i.e., the population of outcomes

Probability. Sample space: all the possible outcomes of a probability experiment, i.e., the population of outcomes Probability Basic Concepts: Probability experiment: process that leads to welldefined results, called outcomes Outcome: result of a single trial of a probability experiment (a datum) Sample space: all

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Practice Test Chapter 9 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the odds. ) Two dice are rolled. What are the odds against a sum

More information

Fundamentals of Probability

Fundamentals of Probability Fundamentals of Probability Introduction Probability is the likelihood that an event will occur under a set of given conditions. The probability of an event occurring has a value between 0 and 1. An impossible

More information

EXAM. Exam #3. Math 1430, Spring 2002. April 21, 2001 ANSWERS

EXAM. Exam #3. Math 1430, Spring 2002. April 21, 2001 ANSWERS EXAM Exam #3 Math 1430, Spring 2002 April 21, 2001 ANSWERS i 60 pts. Problem 1. A city has two newspapers, the Gazette and the Journal. In a survey of 1, 200 residents, 500 read the Journal, 700 read the

More information

Ch. 13.2: Mathematical Expectation

Ch. 13.2: Mathematical Expectation Ch. 13.2: Mathematical Expectation Random Variables Very often, we are interested in sample spaces in which the outcomes are distinct real numbers. For example, in the experiment of rolling two dice, we

More information

Probability and Expected Value

Probability and Expected Value Probability and Expected Value This handout provides an introduction to probability and expected value. Some of you may already be familiar with some of these topics. Probability and expected value are

More information

1 Combinations, Permutations, and Elementary Probability

1 Combinations, Permutations, and Elementary Probability 1 Combinations, Permutations, and Elementary Probability Roughly speaking, Permutations are ways of grouping things where the order is important. Combinations are ways of grouping things where the order

More information

2. Three dice are tossed. Find the probability of a) a sum of 4; or b) a sum greater than 4 (may use complement)

2. Three dice are tossed. Find the probability of a) a sum of 4; or b) a sum greater than 4 (may use complement) Probability Homework Section P4 1. A two-person committee is chosen at random from a group of four men and three women. Find the probability that the committee contains at least one man. 2. Three dice

More information

Hoover High School Math League. Counting and Probability

Hoover High School Math League. Counting and Probability Hoover High School Math League Counting and Probability Problems. At a sandwich shop there are 2 kinds of bread, 5 kinds of cold cuts, 3 kinds of cheese, and 2 kinds of dressing. How many different sandwiches

More information

A probability experiment is a chance process that leads to well-defined outcomes. 3) What is the difference between an outcome and an event?

A probability experiment is a chance process that leads to well-defined outcomes. 3) What is the difference between an outcome and an event? Ch 4.2 pg.191~(1-10 all), 12 (a, c, e, g), 13, 14, (a, b, c, d, e, h, i, j), 17, 21, 25, 31, 32. 1) What is a probability experiment? A probability experiment is a chance process that leads to well-defined

More information

PERMUTATIONS AND COMBINATIONS

PERMUTATIONS AND COMBINATIONS PERMUTATIONS AND COMBINATIONS Mathematics for Elementary Teachers: A Conceptual Approach New Material for the Eighth Edition Albert B. Bennett, Jr., Laurie J. Burton and L. Ted Nelson Math 212 Extra Credit

More information

Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Know the definitions of sample space, event and probability function. 2. Be able to

More information

Review for Test 2. Chapters 4, 5 and 6

Review for Test 2. Chapters 4, 5 and 6 Review for Test 2 Chapters 4, 5 and 6 1. You roll a fair six-sided die. Find the probability of each event: a. Event A: rolling a 3 1/6 b. Event B: rolling a 7 0 c. Event C: rolling a number less than

More information

Lecture 13. Understanding Probability and Long-Term Expectations

Lecture 13. Understanding Probability and Long-Term Expectations Lecture 13 Understanding Probability and Long-Term Expectations Thinking Challenge What s the probability of getting a head on the toss of a single fair coin? Use a scale from 0 (no way) to 1 (sure thing).

More information

Introduction to Discrete Probability. Terminology. Probability definition. 22c:19, section 6.x Hantao Zhang

Introduction to Discrete Probability. Terminology. Probability definition. 22c:19, section 6.x Hantao Zhang Introduction to Discrete Probability 22c:19, section 6.x Hantao Zhang 1 Terminology Experiment A repeatable procedure that yields one of a given set of outcomes Rolling a die, for example Sample space

More information

Chapter 16: law of averages

Chapter 16: law of averages Chapter 16: law of averages Context................................................................... 2 Law of averages 3 Coin tossing experiment......................................................

More information

Probability and Venn diagrams UNCORRECTED PAGE PROOFS

Probability and Venn diagrams UNCORRECTED PAGE PROOFS Probability and Venn diagrams 12 This chapter deals with further ideas in chance. At the end of this chapter you should be able to: identify complementary events and use the sum of probabilities to solve

More information

Session 8 Probability

Session 8 Probability Key Terms for This Session Session 8 Probability Previously Introduced frequency New in This Session binomial experiment binomial probability model experimental probability mathematical probability outcome

More information

Activities/ Resources for Unit V: Proportions, Ratios, Probability, Mean and Median

Activities/ Resources for Unit V: Proportions, Ratios, Probability, Mean and Median Activities/ Resources for Unit V: Proportions, Ratios, Probability, Mean and Median 58 What is a Ratio? A ratio is a comparison of two numbers. We generally separate the two numbers in the ratio with a

More information

Curriculum Design for Mathematic Lesson Probability

Curriculum Design for Mathematic Lesson Probability Curriculum Design for Mathematic Lesson Probability This curriculum design is for the 8th grade students who are going to learn Probability and trying to show the easiest way for them to go into this class.

More information

The overall size of these chance errors is measured by their RMS HALF THE NUMBER OF TOSSES NUMBER OF HEADS MINUS 0 400 800 1200 1600 NUMBER OF TOSSES

The overall size of these chance errors is measured by their RMS HALF THE NUMBER OF TOSSES NUMBER OF HEADS MINUS 0 400 800 1200 1600 NUMBER OF TOSSES INTRODUCTION TO CHANCE VARIABILITY WHAT DOES THE LAW OF AVERAGES SAY? 4 coins were tossed 1600 times each, and the chance error number of heads half the number of tosses was plotted against the number

More information

Pattern matching probabilities and paradoxes A new variation on Penney s coin game

Pattern matching probabilities and paradoxes A new variation on Penney s coin game Osaka Keidai Ronshu, Vol. 63 No. 4 November 2012 Pattern matching probabilities and paradoxes A new variation on Penney s coin game Yutaka Nishiyama Abstract This paper gives an outline of an interesting

More information

Expected Value. 24 February 2014. Expected Value 24 February 2014 1/19

Expected Value. 24 February 2014. Expected Value 24 February 2014 1/19 Expected Value 24 February 2014 Expected Value 24 February 2014 1/19 This week we discuss the notion of expected value and how it applies to probability situations, including the various New Mexico Lottery

More information

Section 6.2 Definition of Probability

Section 6.2 Definition of Probability Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability that it will

More information

Basic Probability Theory II

Basic Probability Theory II RECAP Basic Probability heory II Dr. om Ilvento FREC 408 We said the approach to establishing probabilities for events is to Define the experiment List the sample points Assign probabilities to the sample

More information

Stat 20: Intro to Probability and Statistics

Stat 20: Intro to Probability and Statistics Stat 20: Intro to Probability and Statistics Lecture 16: More Box Models Tessa L. Childers-Day UC Berkeley 22 July 2014 By the end of this lecture... You will be able to: Determine what we expect the sum

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. STATISTICS/GRACEY PRACTICE TEST/EXAM 2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Identify the given random variable as being discrete or continuous.

More information

Mathematics Higher Level

Mathematics Higher Level Mathematics Higher Level for the IB Diploma Exam Preparation Guide Paul Fannon, Vesna Kadelburg, Ben Woolley, Stephen Ward INTRODUCTION ABOUT THIS BOOK If you are using this book, you re probably getting

More information

Math 3C Homework 3 Solutions

Math 3C Homework 3 Solutions Math 3C Homework 3 s Ilhwan Jo and Akemi Kashiwada ilhwanjo@math.ucla.edu, akashiwada@ucla.edu Assignment: Section 2.3 Problems 2, 7, 8, 9,, 3, 5, 8, 2, 22, 29, 3, 32 2. You draw three cards from a standard

More information

Section 6.1 Discrete Random variables Probability Distribution

Section 6.1 Discrete Random variables Probability Distribution Section 6.1 Discrete Random variables Probability Distribution Definitions a) Random variable is a variable whose values are determined by chance. b) Discrete Probability distribution consists of the values

More information

Question of the Day. Key Concepts. Vocabulary. Mathematical Ideas. QuestionofDay

Question of the Day. Key Concepts. Vocabulary. Mathematical Ideas. QuestionofDay QuestionofDay Question of the Day What is the probability that in a family with two children, both are boys? What is the probability that in a family with two children, both are boys, if we already know

More information

Ch. 13.3: More about Probability

Ch. 13.3: More about Probability Ch. 13.3: More about Probability Complementary Probabilities Given any event, E, of some sample space, U, of a random experiment, we can always talk about the complement, E, of that event: this is the

More information

Chapter 5 A Survey of Probability Concepts

Chapter 5 A Survey of Probability Concepts Chapter 5 A Survey of Probability Concepts True/False 1. Based on a classical approach, the probability of an event is defined as the number of favorable outcomes divided by the total number of possible

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 10

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 10 CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 10 Introduction to Discrete Probability Probability theory has its origins in gambling analyzing card games, dice,

More information

Statistics 100A Homework 2 Solutions

Statistics 100A Homework 2 Solutions Statistics Homework Solutions Ryan Rosario Chapter 9. retail establishment accepts either the merican Express or the VIS credit card. total of percent of its customers carry an merican Express card, 6

More information

Exam Style Questions. Revision for this topic. Name: Ensure you have: Pencil, pen, ruler, protractor, pair of compasses and eraser

Exam Style Questions. Revision for this topic. Name: Ensure you have: Pencil, pen, ruler, protractor, pair of compasses and eraser Name: Exam Style Questions Ensure you have: Pencil, pen, ruler, protractor, pair of compasses and eraser You may use tracing paper if needed Guidance 1. Read each question carefully before you begin answering

More information

Math 202-0 Quizzes Winter 2009

Math 202-0 Quizzes Winter 2009 Quiz : Basic Probability Ten Scrabble tiles are placed in a bag Four of the tiles have the letter printed on them, and there are two tiles each with the letters B, C and D on them (a) Suppose one tile

More information

Bayesian Tutorial (Sheet Updated 20 March)

Bayesian Tutorial (Sheet Updated 20 March) Bayesian Tutorial (Sheet Updated 20 March) Practice Questions (for discussing in Class) Week starting 21 March 2016 1. What is the probability that the total of two dice will be greater than 8, given that

More information

EDEXCEL FUNCTIONAL SKILLS PILOT

EDEXCEL FUNCTIONAL SKILLS PILOT EEXEL FUNTIONAL SKILLS PILOT Maths Level hapter 7 Working with probability SETION K Measuring probability 9 Remember what you have learned 3 raft for Pilot Functional Maths Level hapter 7 Pearson Education

More information

How To Know When A Roulette Wheel Is Random

How To Know When A Roulette Wheel Is Random 226 Part IV Randomness and Probability Chapter 14 From Randomness to Probability 1. Roulette. If a roulette wheel is to be considered truly random, then each outcome is equally likely to occur, and knowing

More information

A Few Basics of Probability

A Few Basics of Probability A Few Basics of Probability Philosophy 57 Spring, 2004 1 Introduction This handout distinguishes between inductive and deductive logic, and then introduces probability, a concept essential to the study

More information

For two disjoint subsets A and B of Ω, say that A and B are disjoint events. For disjoint events A and B we take an axiom P(A B) = P(A) + P(B)

For two disjoint subsets A and B of Ω, say that A and B are disjoint events. For disjoint events A and B we take an axiom P(A B) = P(A) + P(B) Basic probability A probability space or event space is a set Ω together with a probability measure P on it. This means that to each subset A Ω we associate the probability P(A) = probability of A with

More information

We rst consider the game from the player's point of view: Suppose you have picked a number and placed your bet. The probability of winning is

We rst consider the game from the player's point of view: Suppose you have picked a number and placed your bet. The probability of winning is Roulette: On an American roulette wheel here are 38 compartments where the ball can land. They are numbered 1-36, and there are two compartments labeled 0 and 00. Half of the compartments numbered 1-36

More information

Methods Used for Counting

Methods Used for Counting COUNTING METHODS From our preliminary work in probability, we often found ourselves wondering how many different scenarios there were in a given situation. In the beginning of that chapter, we merely tried

More information

Week 5: Expected value and Betting systems

Week 5: Expected value and Betting systems Week 5: Expected value and Betting systems Random variable A random variable represents a measurement in a random experiment. We usually denote random variable with capital letter X, Y,. If S is the sample

More information

Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution

Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution Recall: Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution A variable is a characteristic or attribute that can assume different values. o Various letters of the alphabet (e.g.

More information

Section 6-5 Sample Spaces and Probability

Section 6-5 Sample Spaces and Probability 492 6 SEQUENCES, SERIES, AND PROBABILITY 52. How many committees of 4 people are possible from a group of 9 people if (A) There are no restrictions? (B) Both Juan and Mary must be on the committee? (C)

More information

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the

More information

PROBABILITY. Chapter. 0009T_c04_133-192.qxd 06/03/03 19:53 Page 133

PROBABILITY. Chapter. 0009T_c04_133-192.qxd 06/03/03 19:53 Page 133 0009T_c04_133-192.qxd 06/03/03 19:53 Page 133 Chapter 4 PROBABILITY Please stand up in front of the class and give your oral report on describing data using statistical methods. Does this request to speak

More information

Math Games For Skills and Concepts

Math Games For Skills and Concepts Math Games p.1 Math Games For Skills and Concepts Original material 2001-2006, John Golden, GVSU permission granted for educational use Other material copyright: Investigations in Number, Data and Space,

More information

14.4. Expected Value Objectives. Expected Value

14.4. Expected Value Objectives. Expected Value . Expected Value Objectives. Understand the meaning of expected value. 2. Calculate the expected value of lotteries and games of chance.. Use expected value to solve applied problems. Life and Health Insurers

More information

Homework Assignment #2: Answer Key

Homework Assignment #2: Answer Key Homework Assignment #2: Answer Key Chapter 4: #3 Assuming that the current interest rate is 3 percent, compute the value of a five-year, 5 percent coupon bond with a face value of $,000. What happens if

More information

That s Not Fair! ASSESSMENT #HSMA20. Benchmark Grades: 9-12

That s Not Fair! ASSESSMENT #HSMA20. Benchmark Grades: 9-12 That s Not Fair! ASSESSMENT # Benchmark Grades: 9-12 Summary: Students consider the difference between fair and unfair games, using probability to analyze games. The probability will be used to find ways

More information

7.S.8 Interpret data to provide the basis for predictions and to establish

7.S.8 Interpret data to provide the basis for predictions and to establish 7 th Grade Probability Unit 7.S.8 Interpret data to provide the basis for predictions and to establish experimental probabilities. 7.S.10 Predict the outcome of experiment 7.S.11 Design and conduct an

More information

PROBABILITY. The theory of probabilities is simply the Science of logic quantitatively treated. C.S. PEIRCE

PROBABILITY. The theory of probabilities is simply the Science of logic quantitatively treated. C.S. PEIRCE PROBABILITY 53 Chapter 3 PROBABILITY The theory of probabilities is simply the Science of logic quantitatively treated. C.S. PEIRCE 3. Introduction In earlier Classes, we have studied the probability as

More information

Decision Making Under Uncertainty. Professor Peter Cramton Economics 300

Decision Making Under Uncertainty. Professor Peter Cramton Economics 300 Decision Making Under Uncertainty Professor Peter Cramton Economics 300 Uncertainty Consumers and firms are usually uncertain about the payoffs from their choices Example 1: A farmer chooses to cultivate

More information

Ready, Set, Go! Math Games for Serious Minds

Ready, Set, Go! Math Games for Serious Minds Math Games with Cards and Dice presented at NAGC November, 2013 Ready, Set, Go! Math Games for Serious Minds Rande McCreight Lincoln Public Schools Lincoln, Nebraska Math Games with Cards Close to 20 -

More information

Chapter 13 & 14 - Probability PART

Chapter 13 & 14 - Probability PART Chapter 13 & 14 - Probability PART IV : PROBABILITY Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Chapter 13 & 14 - Probability 1 / 91 Why Should We Learn Probability Theory? Dr. Joseph

More information

Chapter 3. Probability

Chapter 3. Probability Chapter 3 Probability Every Day, each us makes decisions based on uncertainty. Should you buy an extended warranty for your new DVD player? It depends on the likelihood that it will fail during the warranty.

More information

Decimals and Percentages

Decimals and Percentages Decimals and Percentages Specimen Worksheets for Selected Aspects Paul Harling b recognise the number relationship between coordinates in the first quadrant of related points Key Stage 2 (AT2) on a line

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level S2 of challenge: B/C S2 Mathematical goals Starting points Materials required Time needed Evaluating probability statements To help learners to: discuss and clarify some common misconceptions about

More information

(b) You draw two balls from an urn and track the colors. When you start, it contains three blue balls and one red ball.

(b) You draw two balls from an urn and track the colors. When you start, it contains three blue balls and one red ball. Examples for Chapter 3 Probability Math 1040-1 Section 3.1 1. Draw a tree diagram for each of the following situations. State the size of the sample space. (a) You flip a coin three times. (b) You draw

More information

Chapter 16. Law of averages. Chance. Example 1: rolling two dice Sum of draws. Setting up a. Example 2: American roulette. Summary.

Chapter 16. Law of averages. Chance. Example 1: rolling two dice Sum of draws. Setting up a. Example 2: American roulette. Summary. Overview Box Part V Variability The Averages Box We will look at various chance : Tossing coins, rolling, playing Sampling voters We will use something called s to analyze these. Box s help to translate

More information

Conditional Probability, Independence and Bayes Theorem Class 3, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Conditional Probability, Independence and Bayes Theorem Class 3, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom Conditional Probability, Independence and Bayes Theorem Class 3, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Know the definitions of conditional probability and independence

More information

Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability

Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability Math/Stats 425 Introduction to Probability 1. Uncertainty and the axioms of probability Processes in the real world are random if outcomes cannot be predicted with certainty. Example: coin tossing, stock

More information

Introduction to Probability

Introduction to Probability 3 Introduction to Probability Given a fair coin, what can we expect to be the frequency of tails in a sequence of 10 coin tosses? Tossing a coin is an example of a chance experiment, namely a process which

More information

PROBABILITY. SIMPLE PROBABILITY is the likelihood that a specific event will occur, represented by a number between 0 and 1.

PROBABILITY. SIMPLE PROBABILITY is the likelihood that a specific event will occur, represented by a number between 0 and 1. PROBABILITY SIMPLE PROBABILITY SIMPLE PROBABILITY is the likelihood that a specific event will occur, represented by a number between 0 and. There are two categories of simple probabilities. THEORETICAL

More information

Basic Probability. Probability: The part of Mathematics devoted to quantify uncertainty

Basic Probability. Probability: The part of Mathematics devoted to quantify uncertainty AMS 5 PROBABILITY Basic Probability Probability: The part of Mathematics devoted to quantify uncertainty Frequency Theory Bayesian Theory Game: Playing Backgammon. The chance of getting (6,6) is 1/36.

More information

2.5 Conditional Probabilities and 2-Way Tables

2.5 Conditional Probabilities and 2-Way Tables 2.5 Conditional Probabilities and 2-Way Tables Learning Objectives Understand how to calculate conditional probabilities Understand how to calculate probabilities using a contingency or 2-way table It

More information

PERMUTATIONS and COMBINATIONS. If the order doesn't matter, it is a Combination. If the order does matter it is a Permutation.

PERMUTATIONS and COMBINATIONS. If the order doesn't matter, it is a Combination. If the order does matter it is a Permutation. Page 1 PERMUTATIONS and COMBINATIONS If the order doesn't matter, it is a Combination. If the order does matter it is a Permutation. PRACTICE! Determine whether each of the following situations is a Combination

More information

Chapter 7 Probability and Statistics

Chapter 7 Probability and Statistics Chapter 7 Probability and Statistics In this chapter, students develop an understanding of data sampling and making inferences from representations of the sample data, with attention to both measures of

More information

Using Permutations and Combinations to Compute Probabilities

Using Permutations and Combinations to Compute Probabilities Using Permutations and Combinations to Compute Probabilities Student Outcomes Students distinguish between situations involving combinations and situations involving permutations. Students use permutations

More information

Definition and Calculus of Probability

Definition and Calculus of Probability In experiments with multivariate outcome variable, knowledge of the value of one variable may help predict another. For now, the word prediction will mean update the probabilities of events regarding the

More information

Determine the empirical probability that a person selected at random from the 1000 surveyed uses Mastercard.

Determine the empirical probability that a person selected at random from the 1000 surveyed uses Mastercard. Math 120 Practice Exam II Name You must show work for credit. 1) A pair of fair dice is rolled 50 times and the sum of the dots on the faces is noted. Outcome 2 4 5 6 7 8 9 10 11 12 Frequency 6 8 8 1 5

More information

AMS 5 CHANCE VARIABILITY

AMS 5 CHANCE VARIABILITY AMS 5 CHANCE VARIABILITY The Law of Averages When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So if the coin is tossed a large number of times, the number of heads and

More information

Probability and Compound Events Examples

Probability and Compound Events Examples Probability and Compound Events Examples 1. A compound event consists of two or more simple events. ossing a die is a simple event. ossing two dice is a compound event. he probability of a compound event

More information

High School Statistics and Probability Common Core Sample Test Version 2

High School Statistics and Probability Common Core Sample Test Version 2 High School Statistics and Probability Common Core Sample Test Version 2 Our High School Statistics and Probability sample test covers the twenty most common questions that we see targeted for this level.

More information

Probability definitions

Probability definitions Probability definitions 1. Probability of an event = chance that the event will occur. 2. Experiment = any action or process that generates observations. In some contexts, we speak of a data-generating

More information

UNIT 7A 118 CHAPTER 7: PROBABILITY: LIVING WITH THE ODDS

UNIT 7A 118 CHAPTER 7: PROBABILITY: LIVING WITH THE ODDS 11 CHAPTER 7: PROBABILITY: LIVING WITH THE ODDS UNIT 7A TIME OUT TO THINK Pg. 17. Birth orders of BBG, BGB, and GBB are the outcomes that produce the event of two boys in a family of. We can represent

More information

Math 408, Actuarial Statistics I, Spring 2008. Solutions to combinatorial problems

Math 408, Actuarial Statistics I, Spring 2008. Solutions to combinatorial problems , Spring 2008 Word counting problems 1. Find the number of possible character passwords under the following restrictions: Note there are 26 letters in the alphabet. a All characters must be lower case

More information

All the examples in this worksheet and all the answers to questions are available as answer sheets or videos.

All the examples in this worksheet and all the answers to questions are available as answer sheets or videos. BIRKBECK MATHS SUPPORT www.mathsupport.wordpress.com Numbers 3 In this section we will look at - improper fractions and mixed fractions - multiplying and dividing fractions - what decimals mean and exponents

More information

Everyday Math Online Games (Grades 1 to 3)

Everyday Math Online Games (Grades 1 to 3) Everyday Math Online Games (Grades 1 to 3) FOR ALL GAMES At any time, click the Hint button to find out what to do next. Click the Skip Directions button to skip the directions and begin playing the game.

More information

13.0 Central Limit Theorem

13.0 Central Limit Theorem 13.0 Central Limit Theorem Discuss Midterm/Answer Questions Box Models Expected Value and Standard Error Central Limit Theorem 1 13.1 Box Models A Box Model describes a process in terms of making repeated

More information