Discrete mathematics
|
|
|
- Augustine McDowell
- 9 years ago
- Views:
Transcription
1 Discrete mathematics Petr Kovář VŠB Technical University of Ostrava DiM /01, Winter term 2015/2016
2 About this file This file is meant to be a guideline for the lecturer. Many important pieces of information are not in this file, they are to be delivered in the lecture: said, shown or drawn on board. The file is made available with the hope students will easier catch up with lectures they missed. For study the following resources are better suitable: Meyer: Lecture notes and readings for an -fall-2005/readings/ (weeks 1-5, 8-10, 12-13), MIT, Diestel: Graph theory (chapters 1-6), Springer, See also dm.php
3 Lecture overview Chapter 2. Arrangements and selections selections: permutations, k-permutations and k-combinations two basic counting principles multiplication principle (of independent selections) method of double counting permutations, k-permutations and k-combinations with repetition
4 Arrangements and selections We count the number of selections from a given set Today: ordered arrangements / unordered selections, with repetition / without repeating elements. permutations (without repetition) combination (without repetition) k-permutation (without repetition) + problems leading to counting selections Beware! While solving real life problems we usually need to split a complex problem into several sub-cases, complex selections/arrangements during discussions we have to distinguish common/different properties.
5 Definition Permutation of on n-element set X is an (ordered) arrangement of all n elements from X (without repetition). The total number of possible permutations of an n-element set is P(n) = n (n 1) (n 2) 2 1 = n! the first element is chosen among n possibilities the second element is chosen among n 1 possibilities the third element is chosen among n 2 possibilities... Problems, described by permutations (without repetition) number of ordering elements from a set number of bijections from an n-element set onto another n-element set number of ways how to order the cards in a deck distribution of numbers an a start of a marathon distributing keys in a fully occupied hotel
6 Definition Combination (or k-combinations) from a set X is an (unordered) selection of k distinct elements from a given set X (an k-element subset of X.) The number of k-combinations from an n-element set ( ) n! n C(n, k) = k! (n k)! = k n! different orderings (permutations) of X we choose first k elements (not distinguishing their k! orderings) we discard the last n k elements (not distinguishing their (n k)! orderings) Problems, described by combinations (without repetition) number of k-element subsets of an n-element set binomial coefficients: coefficient at x k in (x + 1) n (x + 1) n = n k=0 ( ) n x k k
7 Definition k-permutation from a set X is an ordered arrangement of k elements from an n-element set X (without repetition) (sequence of k-elements from X ). The number of k-permutations from an n-element set V (n, k) = n (n 1) (n k + 1) = n! (n k)! or the first element is chosen among n possibilities the second element is chosen among n 1 possibilities... the k-th element is chosen among n k + 1 possibilities. n! possibilities how to order elements of X we take only first k elements we discard the last n k elements (not distinguishing their (n k)! orderings)
8 Problems, described by k-permutations (without repetition) setting up an k-element sequence from n elements number of injections (one-to-one mappings) from an k-element set to an n-element set number of different race outcomes (trio on a winner s podium) distributing keys in a partially occupied hotel
9 Examples team of four among ten employees calculation using k-combinations (we do not distinguish ordering) ( ) 10 C(10, 4) = = 10! = = = ! 6! number of matches in a tennis tournament of seven players calculation using k-combinations (2-element subsets in a 7-element set) ( ) 7 C(7, 2) = = 21 2
10 Examples number of possible orders after a tournament of seven players calculation based on permutations P(7) = 7! = 5040 number of triples on the winners podium in a tournament of seven calculation by 3-permutations, because the order does matter V (7, 3) = 7! 4! = = 210
11 Complex selections and arrangements In some cases we add and in some cases we multiply the number of selections or arrangements to obtain the result. How to recognize which is correct? Sum rule Suppose there are n 1 selections (arrangements) obtained in one way and n 2 selections (arrangements) obtained in another way, where no selection (arrangement) can be obtained in both ways, then the total number of selections (arrangements) is n 1 + n 2. Product rule Suppose a selection (arrangement) can be broken into a sequence of two selections (arrangements). If the first stage can be obtained in n 1 ways and the second stage can be obtained in n 2 ways for each way (independently) of the first stage, then the total number of selections (arrangements) is n 1 n 2.
12 If a selection is broken into two disjoint sets of selections, then we add the number of selections. Example In the game člověče nezlob se we roll an ordinary dice and move a peg by the indicated number of fields. If we roll a 6 in the first roll, we roll an additional time. By how many fields can we move the peg in one round? We distinguish two cases: if there is not a 6 in the first roll, we move by 1 up to 5 fields, if there is a 6 in the first roll, we move by up to fields. There are 11 possibilities: 1, 2, 3, 4, 5, (!) 7, 8, 9, 10, 11, 12.
13 If a selection can be broken into two stages (subselections), then we multiply the number of selections. Example The coach of a hockey team sets up a formation (three forwards, two full-backs and a goalkeeper). He has a team of 12 forwards, 8 full-backs, and two goalkeepers. How many different formations can he set up? Because there is no relation between the choice of full-backs, forwards, and goalkeepers we can count as follows ( ) ( ) ( ) = = = There are altogether different formations.
14 When two selections are not independent... we cannot just multiply the numbers of each (sub)selection. Example The coach of a hockey team sets up a formation (three forwards, two full-backs and a goalkeeper). He has a team of 11 forwards, 8 full-backs, 1 universal player, and two goalkeepers. How many different formations can he set up? ) choose 3 forwards: ( 12 3 choose 2 full-backs: ( ( 8 2) or 9 2)? It depends, whether the universal player was picked as forward or not.... solution in the discussion Question We roll a dice three times. How many rolls are possible, such that every subsequent roll gives a higher number than the previous one?
15 Double counting Suppose each arrangement can be further split into several finer l arrangements. Moreover, suppose we know how to count the total number of the refined arrangements m. Then the total number of the original arrangements is given by the ratio m/l. Example We have the characters T, Y, P, I, C. How many different (even meaningless) five-letter words can you construct? We do not distinguish Y and I letters. If we distinguish all characters, we have P(5) = 5! = 120 words. Not distinguishing Y, I: TYPIC = TIPYC. In the total of m = 120 we have every arrangement counted twice l = 2. The number of different words is m l = = 60.
16 Arrangements with repetition So far no repetition of selected elements was not allowed (people, subsets,... ) In several problems repetition is expected (rolling dice, characters,... ) Example How many anagrams of the word MISSISSIPPI exist? (anagram is a word obtained by rearranging all characters of a given word) If no character in MISSISSIPPI would repeat, the calculation would rely on permutation. But the repeat: S 4times, I 4times, P 2times. By double counting: 1 first we distinguish all characters (using colors, indices, etc.) 2 we count all arrangements: ( )! 3 divide by the number of indistinguishable arrangements: 4! 4! 2! 1! ( )! 4! 4! 2! 1! = = = 34650
17 Definition Permutation with repetition from the set X is an arrangement elements from X in a sequence such that every element from X occurs a given number of times. Denote the number of them by P (m 1, m 2,..., m k ). (an arrangement with a given number of copies of elements from X ) The number of all permutations with repetition from a k-element set, where the i-th elements is repeated in m i identical copies (i = 1, 2,..., k): Examples P (m 1, m 2,..., m k ) = (m 1 + m m k )!. m 1! m 2! m k! permutation with repetition of 2 elements, one element occurs in k copies the other in (n k) copies ( ) (k + n k)! n k! (n k)! = = C(n, k). k first element = is, the second elements = is not in arrangement permutation of multisets (in multisets identical copies are allowed)
18 Example describing the idea of combination with repetition Example How man ways are there to select 6 balls of three colors, provided we have an unlimited supply of balls of each color? We present a beautiful trick, how to count the total number of selections. Suppose we pick,,,,, This selection we can order (group) based on colors now we observe, that only the bars, not the colors are important The total number of selections is ( ) C (3, 6) = = 2 ( ) 8 = 28. 2
19 Definition A k-combination with repetition from a n-element set X is a selection of k elements from X, while each element can occur in an arbitrary number of identical copies. The number of them we denote by C (n, k). The total number of all k-element selections with repetition from n possibilities is ( ) k + n 1 C (n, k) =. n 1 having n colors, we need n 1 bars we can select bars, or select elements ( ) ( ) k + n 1 k + n 1 C (n, k) = =. n 1 k Problems solved using k-combinations with repetition number of ways how to write k using n nonnegative integer summands drawing elements provided after each draw we return the elements back to the polling urn
20 Example How many ways are there to write k as the sum of n nonnegative integer summands? We distinguish the order of summands! We have k = x 1 + x x n. We will select (draw) k ones and distribute them into n boxes (with the possibility of tossing more ones into each box). some boxes can remain empty (0 N 0 ) we can toss all ones into one box we repeat boxes, not ones! (a different problem) Questions How many ways are there to write k as the sum of n positive summands? How many ways are there to write k as the sum of at least n natural summands? How many ways are there to write k as the sum of at most n natural summands?
21 Definition A k-permutation with repetition from the n-element set set X is an arrangement of k elements from X, while elements can repeat in an arbitrary number of identical copies. The number of them we denote by V (n, k). The arrangement is a sequence. The number of all k-permutations with repetition from n possibilities is V (n, k) = n } n {{ n} = n k. k Problems solved by k-permutation with repetition number of mappings of an k-element set to an n-element set cardinality of the Cartesian power A k Question How many odd-sized subsets has a given set on n elements?
22 Next lecture Chapter 3. Discrete probability motivation sample space independent events
Chapter 3. Distribution Problems. 3.1 The idea of a distribution. 3.1.1 The twenty-fold way
Chapter 3 Distribution Problems 3.1 The idea of a distribution Many of the problems we solved in Chapter 1 may be thought of as problems of distributing objects (such as pieces of fruit or ping-pong balls)
Math 55: Discrete Mathematics
Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 7, due Wedneday, March 14 Happy Pi Day! (If any errors are spotted, please email them to morrison at math dot berkeley dot edu..5.10 A croissant
Lecture Note 1 Set and Probability Theory. MIT 14.30 Spring 2006 Herman Bennett
Lecture Note 1 Set and Probability Theory MIT 14.30 Spring 2006 Herman Bennett 1 Set Theory 1.1 Definitions and Theorems 1. Experiment: any action or process whose outcome is subject to uncertainty. 2.
Math 408, Actuarial Statistics I, Spring 2008. Solutions to combinatorial problems
, Spring 2008 Word counting problems 1. Find the number of possible character passwords under the following restrictions: Note there are 26 letters in the alphabet. a All characters must be lower case
Chapter 4 Lecture Notes
Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,
Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson
Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement
Discrete Math for Computer Science Students
Discrete Math for Computer Science Students Ken Bogart Dept. of Mathematics Dartmouth College Scot Drysdale Dept. of Computer Science Dartmouth College Cliff Stein Dept. of Industrial Engineering and Operations
Combinatorial Proofs
Combinatorial Proofs Two Counting Principles Some proofs concerning finite sets involve counting the number of elements of the sets, so we will look at the basics of counting. Addition Principle: If A
36 Odds, Expected Value, and Conditional Probability
36 Odds, Expected Value, and Conditional Probability What s the difference between probabilities and odds? To answer this question, let s consider a game that involves rolling a die. If one gets the face
MATHEMATICS 154, SPRING 2010 PROBABILITY THEORY Outline #3 (Combinatorics, bridge, poker)
Last modified: February, 00 References: MATHEMATICS 5, SPRING 00 PROBABILITY THEORY Outline # (Combinatorics, bridge, poker) PRP(Probability and Random Processes, by Grimmett and Stirzaker), Section.7.
Question of the Day. Key Concepts. Vocabulary. Mathematical Ideas. QuestionofDay
QuestionofDay Question of the Day What is the probability that in a family with two children, both are boys? What is the probability that in a family with two children, both are boys, if we already know
Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 13. Random Variables: Distribution and Expectation
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 3 Random Variables: Distribution and Expectation Random Variables Question: The homeworks of 20 students are collected
Lecture 2 Binomial and Poisson Probability Distributions
Lecture 2 Binomial and Poisson Probability Distributions Binomial Probability Distribution l Consider a situation where there are only two possible outcomes (a Bernoulli trial) H Example: u flipping a
Lemma 5.2. Let S be a set. (1) Let f and g be two permutations of S. Then the composition of f and g is a permutation of S.
Definition 51 Let S be a set bijection f : S S 5 Permutation groups A permutation of S is simply a Lemma 52 Let S be a set (1) Let f and g be two permutations of S Then the composition of f and g is a
Section 6.4: Counting Subsets of a Set: Combinations
Section 6.4: Counting Subsets of a Set: Combinations In section 6.2, we learnt how to count the number of r-permutations from an n-element set (recall that an r-permutation is an ordered selection of r
Ready, Set, Go! Math Games for Serious Minds
Math Games with Cards and Dice presented at NAGC November, 2013 Ready, Set, Go! Math Games for Serious Minds Rande McCreight Lincoln Public Schools Lincoln, Nebraska Math Games with Cards Close to 20 -
Lecture 18: Applications of Dynamic Programming Steven Skiena. Department of Computer Science State University of New York Stony Brook, NY 11794 4400
Lecture 18: Applications of Dynamic Programming Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Problem of the Day
Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 10
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 10 Introduction to Discrete Probability Probability theory has its origins in gambling analyzing card games, dice,
Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University
Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University 1 Chapter 1 Probability 1.1 Basic Concepts In the study of statistics, we consider experiments
Find the indicated probability. 1) If a single fair die is rolled, find the probability of a 4 given that the number rolled is odd.
Math 0 Practice Test 3 Fall 2009 Covers 7.5, 8.-8.3 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the indicated probability. ) If a single
Probability and Statistics Vocabulary List (Definitions for Middle School Teachers)
Probability and Statistics Vocabulary List (Definitions for Middle School Teachers) B Bar graph a diagram representing the frequency distribution for nominal or discrete data. It consists of a sequence
Hoover High School Math League. Counting and Probability
Hoover High School Math League Counting and Probability Problems. At a sandwich shop there are 2 kinds of bread, 5 kinds of cold cuts, 3 kinds of cheese, and 2 kinds of dressing. How many different sandwiches
Statistics 100A Homework 4 Solutions
Chapter 4 Statistics 00A Homework 4 Solutions Ryan Rosario 39. A ball is drawn from an urn containing 3 white and 3 black balls. After the ball is drawn, it is then replaced and another ball is drawn.
Probabilistic Strategies: Solutions
Probability Victor Xu Probabilistic Strategies: Solutions Western PA ARML Practice April 3, 2016 1 Problems 1. You roll two 6-sided dice. What s the probability of rolling at least one 6? There is a 1
Estimating the Average Value of a Function
Estimating the Average Value of a Function Problem: Determine the average value of the function f(x) over the interval [a, b]. Strategy: Choose sample points a = x 0 < x 1 < x 2 < < x n 1 < x n = b and
Basic Probability. Probability: The part of Mathematics devoted to quantify uncertainty
AMS 5 PROBABILITY Basic Probability Probability: The part of Mathematics devoted to quantify uncertainty Frequency Theory Bayesian Theory Game: Playing Backgammon. The chance of getting (6,6) is 1/36.
Ch. 13.2: Mathematical Expectation
Ch. 13.2: Mathematical Expectation Random Variables Very often, we are interested in sample spaces in which the outcomes are distinct real numbers. For example, in the experiment of rolling two dice, we
8.3 Probability Applications of Counting Principles
8. Probability Applications of Counting Principles In this section, we will see how we can apply the counting principles from the previous two sections in solving probability problems. Many of the probability
Lesson Plans for (9 th Grade Main Lesson) Possibility & Probability (including Permutations and Combinations)
Lesson Plans for (9 th Grade Main Lesson) Possibility & Probability (including Permutations and Combinations) Note: At my school, there is only room for one math main lesson block in ninth grade. Therefore,
COUNTING SUBSETS OF A SET: COMBINATIONS
COUNTING SUBSETS OF A SET: COMBINATIONS DEFINITION 1: Let n, r be nonnegative integers with r n. An r-combination of a set of n elements is a subset of r of the n elements. EXAMPLE 1: Let S {a, b, c, d}.
6.3 Conditional Probability and Independence
222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted
Lecture 17 : Equivalence and Order Relations DRAFT
CS/Math 240: Introduction to Discrete Mathematics 3/31/2011 Lecture 17 : Equivalence and Order Relations Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Last lecture we introduced the notion
Math 55: Discrete Mathematics
Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 5, due Wednesday, February 22 5.1.4 Let P (n) be the statement that 1 3 + 2 3 + + n 3 = (n(n + 1)/2) 2 for the positive integer n. a) What
Generating Functions Count
2 Generating Functions Count 2.1 Counting from Polynomials to Power Series Consider the outcomes when a pair of dice are thrown and our interest is the sum of the numbers showing. One way to model the
14.30 Introduction to Statistical Methods in Economics Spring 2009
MIT OpenCourseWare http://ocw.mit.edu 14.30 Introduction to Statistical Methods in Economics Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
Maths class 11 Chapter 7. Permutations and Combinations
1 P a g e Maths class 11 Chapter 7. Permutations and Combinations Fundamental Principles of Counting 1. Multiplication Principle If first operation can be performed in m ways and then a second operation
Basics of Counting. The product rule. Product rule example. 22C:19, Chapter 6 Hantao Zhang. Sample question. Total is 18 * 325 = 5850
Basics of Counting 22C:19, Chapter 6 Hantao Zhang 1 The product rule Also called the multiplication rule If there are n 1 ways to do task 1, and n 2 ways to do task 2 Then there are n 1 n 2 ways to do
Feb 7 Homework Solutions Math 151, Winter 2012. Chapter 4 Problems (pages 172-179)
Feb 7 Homework Solutions Math 151, Winter 2012 Chapter Problems (pages 172-179) Problem 3 Three dice are rolled. By assuming that each of the 6 3 216 possible outcomes is equally likely, find the probabilities
Definition and Calculus of Probability
In experiments with multivariate outcome variable, knowledge of the value of one variable may help predict another. For now, the word prediction will mean update the probabilities of events regarding the
Methods Used for Counting
COUNTING METHODS From our preliminary work in probability, we often found ourselves wondering how many different scenarios there were in a given situation. In the beginning of that chapter, we merely tried
On an anti-ramsey type result
On an anti-ramsey type result Noga Alon, Hanno Lefmann and Vojtĕch Rödl Abstract We consider anti-ramsey type results. For a given coloring of the k-element subsets of an n-element set X, where two k-element
1 Combinations, Permutations, and Elementary Probability
1 Combinations, Permutations, and Elementary Probability Roughly speaking, Permutations are ways of grouping things where the order is important. Combinations are ways of grouping things where the order
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Practice Test Chapter 9 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the odds. ) Two dice are rolled. What are the odds against a sum
(Refer Slide Time: 01.26)
Discrete Mathematical Structures Dr. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras Lecture # 27 Pigeonhole Principle In the next few lectures
Probability: The Study of Randomness Randomness and Probability Models. IPS Chapters 4 Sections 4.1 4.2
Probability: The Study of Randomness Randomness and Probability Models IPS Chapters 4 Sections 4.1 4.2 Chapter 4 Overview Key Concepts Random Experiment/Process Sample Space Events Probability Models Probability
Texas Hold em. From highest to lowest, the possible five card hands in poker are ranked as follows:
Texas Hold em Poker is one of the most popular card games, especially among betting games. While poker is played in a multitude of variations, Texas Hold em is the version played most often at casinos
Elements of probability theory
2 Elements of probability theory Probability theory provides mathematical models for random phenomena, that is, phenomena which under repeated observations yield di erent outcomes that cannot be predicted
6.042/18.062J Mathematics for Computer Science. Expected Value I
6.42/8.62J Mathematics for Computer Science Srini Devadas and Eric Lehman May 3, 25 Lecture otes Expected Value I The expectation or expected value of a random variable is a single number that tells you
E3: PROBABILITY AND STATISTICS lecture notes
E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................
Unit 19: Probability Models
Unit 19: Probability Models Summary of Video Probability is the language of uncertainty. Using statistics, we can better predict the outcomes of random phenomena over the long term from the very complex,
Acing Math (One Deck At A Time!): A Collection of Math Games. Table of Contents
Table of Contents Introduction to Acing Math page 5 Card Sort (Grades K - 3) page 8 Greater or Less Than (Grades K - 3) page 9 Number Battle (Grades K - 3) page 10 Place Value Number Battle (Grades 1-6)
Discrete Mathematics
Discrete Mathematics Lecture Notes, Yale University, Spring 1999 L. Lovász and K. Vesztergombi Parts of these lecture notes are based on L. Lovász J. Pelikán K. Vesztergombi: Kombinatorika (Tankönyvkiadó,
About the inverse football pool problem for 9 games 1
Seventh International Workshop on Optimal Codes and Related Topics September 6-1, 013, Albena, Bulgaria pp. 15-133 About the inverse football pool problem for 9 games 1 Emil Kolev Tsonka Baicheva Institute
Mathematics for Algorithm and System Analysis
Mathematics for Algorithm and System Analysis for students of computer and computational science Edward A. Bender S. Gill Williamson c Edward A. Bender & S. Gill Williamson 2005. All rights reserved. Preface
Cardinality. The set of all finite strings over the alphabet of lowercase letters is countable. The set of real numbers R is an uncountable set.
Section 2.5 Cardinality (another) Definition: The cardinality of a set A is equal to the cardinality of a set B, denoted A = B, if and only if there is a bijection from A to B. If there is an injection
Section 6-5 Sample Spaces and Probability
492 6 SEQUENCES, SERIES, AND PROBABILITY 52. How many committees of 4 people are possible from a group of 9 people if (A) There are no restrictions? (B) Both Juan and Mary must be on the committee? (C)
Conditional Probability, Independence and Bayes Theorem Class 3, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom
Conditional Probability, Independence and Bayes Theorem Class 3, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Know the definitions of conditional probability and independence
Introduction to Probability
Massachusetts Institute of Technology Course Notes 0 6.04J/8.06J, Fall 0: Mathematics for Computer Science November 4 Professor Albert Meyer and Dr. Radhika Nagpal revised November 6, 00, 57 minutes Introduction
4/1/2017. PS. Sequences and Series FROM 9.2 AND 9.3 IN THE BOOK AS WELL AS FROM OTHER SOURCES. TODAY IS NATIONAL MANATEE APPRECIATION DAY
PS. Sequences and Series FROM 9.2 AND 9.3 IN THE BOOK AS WELL AS FROM OTHER SOURCES. TODAY IS NATIONAL MANATEE APPRECIATION DAY 1 Oh the things you should learn How to recognize and write arithmetic sequences
Math 3C Homework 3 Solutions
Math 3C Homework 3 s Ilhwan Jo and Akemi Kashiwada [email protected], [email protected] Assignment: Section 2.3 Problems 2, 7, 8, 9,, 3, 5, 8, 2, 22, 29, 3, 32 2. You draw three cards from a standard
Sums of Independent Random Variables
Chapter 7 Sums of Independent Random Variables 7.1 Sums of Discrete Random Variables In this chapter we turn to the important question of determining the distribution of a sum of independent random variables
Section 6.2 Definition of Probability
Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability that it will
Statistics 100A Homework 2 Solutions
Statistics Homework Solutions Ryan Rosario Chapter 9. retail establishment accepts either the merican Express or the VIS credit card. total of percent of its customers carry an merican Express card, 6
Mathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
Discrete Mathematics Problems
Discrete Mathematics Problems William F. Klostermeyer School of Computing University of North Florida Jacksonville, FL 32224 E-mail: [email protected] Contents 0 Preface 3 1 Logic 5 1.1 Basics...............................
$2 4 40 + ( $1) = 40
THE EXPECTED VALUE FOR THE SUM OF THE DRAWS In the game of Keno there are 80 balls, numbered 1 through 80. On each play, the casino chooses 20 balls at random without replacement. Suppose you bet on the
Consolidation of Grade 3 EQAO Questions Data Management & Probability
Consolidation of Grade 3 EQAO Questions Data Management & Probability Compiled by Devika William-Yu (SE2 Math Coach) GRADE THREE EQAO QUESTIONS: Data Management and Probability Overall Expectations DV1
STATISTICS 230 COURSE NOTES. Chris Springer, revised by Jerry Lawless and Don McLeish
STATISTICS 230 COURSE NOTES Chris Springer, revised by Jerry Lawless and Don McLeish JANUARY 2006 Contents 1. Introduction to Probability 1 2. Mathematical Probability Models 5 2.1 SampleSpacesandProbability...
The 2010 British Informatics Olympiad
Time allowed: 3 hours The 2010 British Informatics Olympiad Instructions You should write a program for part (a) of each question, and produce written answers to the remaining parts. Programs may be used
Third Grade Math Games
Third Grade Math Games Unit 1 Lesson Less than You! 1.3 Addition Top-It 1.4 Name That Number 1.6 Beat the Calculator (Addition) 1.8 Buyer & Vendor Game 1.9 Tic-Tac-Toe Addition 1.11 Unit 2 What s My Rule?
Lecture 16 : Relations and Functions DRAFT
CS/Math 240: Introduction to Discrete Mathematics 3/29/2011 Lecture 16 : Relations and Functions Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT In Lecture 3, we described a correspondence
Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay
Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 17 Shannon-Fano-Elias Coding and Introduction to Arithmetic Coding
Random variables, probability distributions, binomial random variable
Week 4 lecture notes. WEEK 4 page 1 Random variables, probability distributions, binomial random variable Eample 1 : Consider the eperiment of flipping a fair coin three times. The number of tails that
Fifth Grade Physical Education Activities
Fifth Grade Physical Education Activities 89 Inclement Weather PASS AND COUNT RESOURCE Indoor Action Games for Elementary Children, pg. 129 DESCRIPTION In this game, students will be ordering whole numbers.
LEARNING OBJECTIVES FOR THIS CHAPTER
CHAPTER 2 American mathematician Paul Halmos (1916 2006), who in 1942 published the first modern linear algebra book. The title of Halmos s book was the same as the title of this chapter. Finite-Dimensional
FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL
FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL STATIsTICs 4 IV. RANDOm VECTORs 1. JOINTLY DIsTRIBUTED RANDOm VARIABLEs If are two rom variables defined on the same sample space we define the joint
2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways.
Math 142 September 27, 2011 1. How many ways can 9 people be arranged in order? 9! = 362,880 ways 2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways. 3. The letters in MATH are
Complement. If A is an event, then the complement of A, written A c, means all the possible outcomes that are not in A.
Complement If A is an event, then the complement of A, written A c, means all the possible outcomes that are not in A. For example, if A is the event UNC wins at least 5 football games, then A c is the
Math 202-0 Quizzes Winter 2009
Quiz : Basic Probability Ten Scrabble tiles are placed in a bag Four of the tiles have the letter printed on them, and there are two tiles each with the letters B, C and D on them (a) Suppose one tile
1(a). How many ways are there to rearrange the letters in the word COMPUTER?
CS 280 Solution Guide Homework 5 by Tze Kiat Tan 1(a). How many ways are there to rearrange the letters in the word COMPUTER? There are 8 distinct letters in the word COMPUTER. Therefore, the number of
ACL Soccer 4 v 4 Small Sided Games (SSG s)
KEY TO THE DIAGRAMS Introduction In recent years, the 4v4 method has rapidly increased in popularity however this method is certainly not a new one. The method was introduced by the Dutch Football Association
Lesson 1. Basics of Probability. Principles of Mathematics 12: Explained! www.math12.com 314
Lesson 1 Basics of Probability www.math12.com 314 Sample Spaces: Probability Lesson 1 Part I: Basic Elements of Probability Consider the following situation: A six sided die is rolled The sample space
Answer: (a) Since we cannot repeat men on the committee, and the order we select them in does not matter, ( )
1. (Chapter 1 supplementary, problem 7): There are 12 men at a dance. (a) In how many ways can eight of them be selected to form a cleanup crew? (b) How many ways are there to pair off eight women at the
Probability. Section 9. Probability. Probability of A = Number of outcomes for which A happens Total number of outcomes (sample space)
Probability Section 9 Probability Probability of A = Number of outcomes for which A happens Total number of outcomes (sample space) In this section we summarise the key issues in the basic probability
Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom
Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Know the definitions of sample space, event and probability function. 2. Be able to
REPEATED TRIALS. The probability of winning those k chosen times and losing the other times is then p k q n k.
REPEATED TRIALS Suppose you toss a fair coin one time. Let E be the event that the coin lands heads. We know from basic counting that p(e) = 1 since n(e) = 1 and 2 n(s) = 2. Now suppose we play a game
Fundamentals of Probability
Fundamentals of Probability Introduction Probability is the likelihood that an event will occur under a set of given conditions. The probability of an event occurring has a value between 0 and 1. An impossible
Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability
Math/Stats 425 Introduction to Probability 1. Uncertainty and the axioms of probability Processes in the real world are random if outcomes cannot be predicted with certainty. Example: coin tossing, stock
CHAPTER 1 COUNTING. shirt slot
page 1 of Section 1.1 CHAPTER 1 COUNTING SECTION 1.1 THE MULTIPLICATION RULE the multiplication rule Suppose you have 3 shirts (blue, red, green) and 2 pairs of pants (checked, striped). The problem is
Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution
Recall: Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution A variable is a characteristic or attribute that can assume different values. o Various letters of the alphabet (e.g.
Automata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi
Automata Theory Automata theory is the study of abstract computing devices. A. M. Turing studied an abstract machine that had all the capabilities of today s computers. Turing s goal was to describe the
n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +...
6 Series We call a normed space (X, ) a Banach space provided that every Cauchy sequence (x n ) in X converges. For example, R with the norm = is an example of Banach space. Now let (x n ) be a sequence
Sue Fine Linn Maskell
FUN + GAMES = MATHS Sue Fine Linn Maskell Teachers are often concerned that there isn t enough time to play games in maths classes. But actually there is time to play games and we need to make sure that
What s New? THE DICE & HOW TO MOVE On your turn, roll all THREE dice: the two white dice plus the new SPEED DIE.
? What s New?? In Monopoly : The Mega Edition? MONEY Each player begins with $2500, including a crisp new $1000 bill, in addition to the standard five each $1 s, $5 s, $10 s, six each $20 s, and two each
Statistics 100A Homework 1 Solutions
Chapter 1 tatistics 100A Homework 1 olutions Ryan Rosario 1. (a) How many different 7-place license plates are possible if the first 2 places are for letters and the other 5 for numbers? The first two
Sample Induction Proofs
Math 3 Worksheet: Induction Proofs III, Sample Proofs A.J. Hildebrand Sample Induction Proofs Below are model solutions to some of the practice problems on the induction worksheets. The solutions given
Discrete Math in Computer Science Homework 7 Solutions (Max Points: 80)
Discrete Math in Computer Science Homework 7 Solutions (Max Points: 80) CS 30, Winter 2016 by Prasad Jayanti 1. (10 points) Here is the famous Monty Hall Puzzle. Suppose you are on a game show, and you
Section 1.3 P 1 = 1 2. = 1 4 2 8. P n = 1 P 3 = Continuing in this fashion, it should seem reasonable that, for any n = 1, 2, 3,..., = 1 2 4.
Difference Equations to Differential Equations Section. The Sum of a Sequence This section considers the problem of adding together the terms of a sequence. Of course, this is a problem only if more than
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete
PROBABILITY SECOND EDITION
PROBABILITY SECOND EDITION Table of Contents How to Use This Series........................................... v Foreword..................................................... vi Basics 1. Probability All
