2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,


 Magnus Newman
 4 years ago
 Views:
Transcription
1 3.4. KEPLER S LAWS Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects move aound in the wold is a diect consequence of these consevation laws athe than being the esult of some detailed mechanism. It is nice to give an example of how consevation of angula momentum has similaly poweful (and pehaps moe famous) consquences. We ecall that oughly 500 yeas ago, Keple made one of the geat beakthoughs (not just in physics, but in human thought), poviding evidence that planet motions as descibe by Tycho Bahe ae much moe simply descibed in a wold model with the sun (athe than the eath) at the cente. I don t think we can ovestate the impotance of ealizing that we ae not at the cente of the univese. Quantitatively, Keple noticed seveal things (Keple s laws): The obits of planets aound the sun ae elliptical, the peiods of the obits ae elated to thei adii, and as the obit poceeds it sweeps out equal aea in equal times. Of these, the equal aea law is the one which is elated to consevation of angula momentum. If the obits wee cicula it would be tivial that they sweep out aea at a constant ate. The equal aea law is, in a sense, all that is left of the pefection that people had sought with cicula obits. If we ae at a distance fom the cente of ou coodinate system (the sun), and we move by an angle θ, then fo small angles the aea that is swept out is A = 1 ( ) 1 dθ 2 2 θ = 2 t. (3.59) 2 The equal aea law is the statement that the tem in paentheses, da = 1 dθ 2 2, (3.60) is a constant, independent of time. We know that angula momentum is conseved, so let s see if this has something to do with the equal aea law. The vecto position of the planet can always be witten as = ˆ, whee ˆ is a unit vecto pointing outwad towad the cuent location. The velocity consists of components in the ˆ diection and in the ˆθ diection, aound the cuve, d = d dθ + ˆ ˆθ. (3.61)
2 146 CHAPTER 3. WE ARE NOT THE CENTER OF THE UNIVERSE Hence p m d = m d dθ + m ˆ ˆθ (3.62) ( L p = (ˆ ) m d ) ( ˆ +(ˆ ) m dθ ) ˆθ. (3.63) To finish the calculation we pull all the scalas out of the coss poducts, ( L = m d ) ( (ˆ ˆ )+ m 2 dθ ) (ˆ ˆθ), (3.64) and then we note that ˆ ˆ = 0, (3.65) ˆ ˆθ = ẑ. (3.66) Thus we find that the angula momentum is given by ( L = m 2 dθ ) ẑ. (3.67) Compaing Eq. (3.60) with Eq. (3.67), we see that da = 1 2m ( L ẑ ), (3.68) so that consevation of angula momentum ( L = constant) implies that da/ is a constant the equal aea law. To go futhe in deiving Keple s laws we need to know about the actual foces between the sun and the planets. You pobably know that one of Newton s geat tiumphs was to ealize that if gavity obeys the invese squae law, then the ate at which the moon is falling towad the eath as it obits is consistent with the ate at which objects we can hold in ou hands fall towad the gound. In moden language we say that the potential enegy fo two masses M and m sepaated by a distance is given by V () = GMm, (3.69) whee G is (appopiately enough) known as Newton s constant. We ae inteested in the case whee m is the mass of a planet and M is the mass of the sun. We choose a coodinate system in which the sun is fixed at the oigin. To undestand what happens it is useful to wite down the total enegy of the system. We have the potential enegy explicitly, so we need the kinetic
3 3.4. KEPLER S LAWS 147 enegy. We know that the velocity has two components, one in the adial diection and one in the angula diection, d = d dθ + ˆ ˆθ, (3.70) so that 1 2 mv2 1 2 m d 2 = 1 2 m [ (d ) 2 ( + dθ ) ] 2. (3.71) So the total enegy of the system, kinetic plus potential, is given by [ (d E = 1 ) 2 ( 2 m + dθ ) ] 2 GMm. (3.72) But we know that angula momentum is conseved, so we can say something about the tem that has dθ/ in it: L z = m 2 dθ (3.73) dθ = L z m 2. (3.74) Substituting into ou expession fo the total enegy this becomes [ (d E = 1 ) 2 ( 2 m + L ) ] 2 z m 2 GMm (3.75) = 1 ( ) d 2 2 m + L2 z 2m 2 GMm (3.76) = 1 ( ) d 2 2 m + V eff(), (3.77) whee in the last step we have intoduced an effective potential V eff () = L2 z 2m 2 GMm. (3.78) Notice that by doing this ou expession fo the total enegy comes to look like the enegy fo motion in one dimension (), with a potential enegy that has one pat fom gavity and one pat fom the indiect effect of the angula momentum. Notice that the contibution fom angula momentum is positive, and vaies as 1/ 2. This means that the coesponding foce F = V/
4 148 CHAPTER 3. WE ARE NOT THE CENTER OF THE UNIVERSE gavitational potential!!1/ centifugal potential! +1/ 2 total effective potential hamonic appoximation 40 potential V() 20 0!20!40!60!80! adius (abitay units) Figue 3.1: Effective potential enegy fo planetay motion, fom Eq (3.78).
5 3.4. KEPLER S LAWS 149 1/ is positive it pushes outwad along the adius. This foce is what we expeience when we sit in a ca going aound a cuve: the centifugal foce. Imagine that we tie a weight on the end of a sting and swing it in a cicle ove ou heads. The sting will stay taught, and this must be because thee is a foce pulling outwad; again this is the centifugal foce, and is geneated by this special tem in the effective potential. Notice that we have eliminated any mention of the angle θ, and in the pocess have changed the potential enegy fo motion along the adial diection. This is a much moe geneal idea. We often eliminate coodinates in the hope of simplifying things, and ty to take account of thei effects though an effective potential fo the coodinates that we do keep in ou desciption. This is vey impotant in big molecules, fo example, whee we don t want to keep tack of evey atom but hope that we can just think about a few things such as the distance between key esidues o the angle between two big ams of the molecule. It s not at all obvious that this should wok, even as an appoximation, although in the pesent case it s actually exact. Recall that the total enegy is the sum of kinetic and potential, and this total is conseved o constant ove time. Thee is a minimum effective potential enegy fo adial motion, as can be seen in Fig 3.1, If the total enegy is equal to this minimum, then thee can be no kinetic enegy associated with the coodinate, hence d/ = 0. Thus fo minimum enegy obits, the adius is constant the planet moves in a cicula obit. If we look at obits that have enegies just a bit lage than the minimum, we can appoximate V eff () as being like a hamonic oscillato. Then the adius should oscillate in time, but time is being maked by going aound the obit, so eally the adius will be a sine o cosine function of the angle, and this is the desciption of an ellipse if it is not too eccentic. In fact if you wok hade you can show that the obits ae exactly ellipses fo any value of the enegy up to some maximum. This is anothe of Keple s laws. Once you have the ellipse you can elate its size (the analog of adius fo a cicle) to the peiod of the obit, and this is the last of Keple s laws. Notice that if the enegy is positive then it is possible fo the planet to escape towad at finite velocity, and then the obit is not bound. But if the total enegy is negative, thee is no escape, and the adius moves between two limiting values, namely the points whee the total enegy intesects the effective potential. We eally should say moe about all this, but it is teated in many standad texts.
6 150 CHAPTER 3. WE ARE NOT THE CENTER OF THE UNIVERSE
Gravitation. AP Physics C
Gavitation AP Physics C Newton s Law of Gavitation What causes YOU to be pulled down? THE EARTH.o moe specifically the EARTH S MASS. Anything that has MASS has a gavitational pull towads it. F α Mm g What
More informationFXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it.
Candidates should be able to : Descibe how a mass ceates a gavitational field in the space aound it. Define gavitational field stength as foce pe unit mass. Define and use the peiod of an object descibing
More informationGravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2
F Gm Gavitation and Keple s Laws Newton s Law of Univesal Gavitation in vectoial fom: F 12 21 Gm 1 m 2 12 2 ˆ 12 whee the hat (ˆ) denotes a unit vecto as usual. Gavity obeys the supeposition pinciple,
More informationEpisode 401: Newton s law of universal gravitation
Episode 401: Newton s law of univesal gavitation This episode intoduces Newton s law of univesal gavitation fo point masses, and fo spheical masses, and gets students pactising calculations of the foce
More informationThe Role of Gravity in Orbital Motion
! The Role of Gavity in Obital Motion Pat of: Inquiy Science with Datmouth Developed by: Chistophe Caoll, Depatment of Physics & Astonomy, Datmouth College Adapted fom: How Gavity Affects Obits (Ohio State
More informationExam 3: Equation Summary
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics Physics 8.1 TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t= Exam 3: Equation Summay total = Impulse: I F( t ) = p Toque: τ = S S,P
More informationF G r. Don't confuse G with g: "Big G" and "little g" are totally different things.
G1 Gavity Newton's Univesal Law of Gavitation (fist stated by Newton): any two masses m 1 and m exet an attactive gavitational foce on each othe accoding to m m G 1 This applies to all masses, not just
More informationPhysics 235 Chapter 5. Chapter 5 Gravitation
Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus
More informationPHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013
PHYSICS 111 HOMEWORK SOLUTION #13 May 1, 2013 0.1 In intoductoy physics laboatoies, a typical Cavendish balance fo measuing the gavitational constant G uses lead sphees with masses of 2.10 kg and 21.0
More informationMechanics 1: Motion in a Central Force Field
Mechanics : Motion in a Cental Foce Field We now stud the popeties of a paticle of (constant) ass oving in a paticula tpe of foce field, a cental foce field. Cental foces ae ve ipotant in phsics and engineeing.
More informationChapter 17 The Kepler Problem: Planetary Mechanics and the Bohr Atom
Chapte 7 The Keple Poblem: Planetay Mechanics and the Boh Atom Keple s Laws: Each planet moves in an ellipse with the sun at one focus. The adius vecto fom the sun to a planet sweeps out equal aeas in
More information1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2
Chapte 5 Example The helium atom has 2 electonic enegy levels: E 3p = 23.1 ev and E 2s = 20.6 ev whee the gound state is E = 0. If an electon makes a tansition fom 3p to 2s, what is the wavelength of the
More information2. Orbital dynamics and tides
2. Obital dynamics and tides 2.1 The twobody poblem This efes to the mutual gavitational inteaction of two bodies. An exact mathematical solution is possible and staightfowad. In the case that one body
More informationDetermining solar characteristics using planetary data
Detemining sola chaacteistics using planetay data Intoduction The Sun is a G type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this inestigation
More informationMechanics 1: Work, Power and Kinetic Energy
Mechanics 1: Wok, Powe and Kinetic Eneg We fist intoduce the ideas of wok and powe. The notion of wok can be viewed as the bidge between Newton s second law, and eneg (which we have et to define and discuss).
More information12. Rolling, Torque, and Angular Momentum
12. olling, Toque, and Angula Momentum 1 olling Motion: A motion that is a combination of otational and tanslational motion, e.g. a wheel olling down the oad. Will only conside olling with out slipping.
More informationVoltage ( = Electric Potential )
V1 Voltage ( = Electic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage is
More informationPhysics HSC Course Stage 6. Space. Part 1: Earth s gravitational field
Physics HSC Couse Stage 6 Space Pat 1: Eath s gavitational field Contents Intoduction... Weight... 4 The value of g... 7 Measuing g...8 Vaiations in g...11 Calculating g and W...13 You weight on othe
More informationDeflection of Electrons by Electric and Magnetic Fields
Physics 233 Expeiment 42 Deflection of Electons by Electic and Magnetic Fields Refeences Loain, P. and D.R. Coson, Electomagnetism, Pinciples and Applications, 2nd ed., W.H. Feeman, 199. Intoduction An
More informationCoordinate Systems L. M. Kalnins, March 2009
Coodinate Sstems L. M. Kalnins, Mach 2009 Pupose of a Coodinate Sstem The pupose of a coodinate sstem is to uniquel detemine the position of an object o data point in space. B space we ma liteall mean
More informationCHAPTER 9 THE TWO BODY PROBLEM IN TWO DIMENSIONS
9. Intoduction CHAPTER 9 THE TWO BODY PROBLEM IN TWO DIMENSIONS In this chapte we show how Keple s laws can be deived fom Newton s laws of motion and gavitation, and consevation of angula momentum, and
More informationVector Calculus: Are you ready? Vectors in 2D and 3D Space: Review
Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.7. find the vecto defined
More informationThe force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges
The foce between electic chages Coulomb s Law Two chaged objects, of chage q and Q, sepaated by a distance, exet a foce on one anothe. The magnitude of this foce is given by: kqq Coulomb s Law: F whee
More informationGravity. A. Law of Gravity. Gravity. Physics: Mechanics. A. The Law of Gravity. Dr. Bill Pezzaglia. B. Gravitational Field. C.
Physics: Mechanics 1 Gavity D. Bill Pezzaglia A. The Law of Gavity Gavity B. Gavitational Field C. Tides Updated: 01Jul09 A. Law of Gavity 3 1a. Invese Squae Law 4 1. Invese Squae Law. Newton s 4 th law
More informationTORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION
MISN034 TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION shaft TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION by Kiby Mogan, Chalotte, Michigan 1. Intoduction..............................................
More informationChapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere.
Chapte.3 What is the magnitude of a point chage whose electic field 5 cm away has the magnitude of.n/c. E E 5.56 1 11 C.5 An atom of plutonium39 has a nuclea adius of 6.64 fm and atomic numbe Z94. Assuming
More informationMagnetic Field and Magnetic Forces. Young and Freedman Chapter 27
Magnetic Field and Magnetic Foces Young and Feedman Chapte 27 Intoduction Reiew  electic fields 1) A chage (o collection of chages) poduces an electic field in the space aound it. 2) The electic field
More informationPY1052 Problem Set 8 Autumn 2004 Solutions
PY052 Poblem Set 8 Autumn 2004 Solutions H h () A solid ball stats fom est at the uppe end of the tack shown and olls without slipping until it olls off the ighthand end. If H 6.0 m and h 2.0 m, what
More informationVoltage ( = Electric Potential )
V1 of 9 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage
More informationAnalytical Proof of Newton's Force Laws
Analytical Poof of Newton s Foce Laws Page 1 1 Intouction Analytical Poof of Newton's Foce Laws Many stuents intuitively assume that Newton's inetial an gavitational foce laws, F = ma an Mm F = G, ae tue
More informationFigure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360!
1. What ae angles? Last time, we looked at how the Geeks intepeted measument of lengths. Howeve, as fascinated as they wee with geomety, thee was a shape that was much moe enticing than any othe : the
More informationMultiple choice questions [60 points]
1 Multiple choice questions [60 points] Answe all o the ollowing questions. Read each question caeully. Fill the coect bubble on you scanton sheet. Each question has exactly one coect answe. All questions
More informationCarterPenrose diagrams and black holes
CatePenose diagams and black holes Ewa Felinska The basic intoduction to the method of building Penose diagams has been pesented, stating with obtaining a Penose diagam fom Minkowski space. An example
More information(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of
Homewok VI Ch. 7  Poblems 15, 19, 22, 25, 35, 43, 51. Poblem 15 (a) The centipetal acceleation of a point on the equato of the Eath is given by v2. The velocity of the eath can be found by taking the
More information7 Circular Motion. 71 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary
7 Cicula Motion 71 Centipetal Acceleation and Foce Peiod, Fequency, and Speed Vocabulay Vocabulay Peiod: he time it takes fo one full otation o evolution of an object. Fequency: he numbe of otations o
More informationGauss Law. Physics 231 Lecture 21
Gauss Law Physics 31 Lectue 1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing
More informationSpirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project
Spiotechnics! Septembe 7, 2011 Amanda Zeingue, Michael Spannuth and Amanda Zeingue Dieential Geomety Poject 1 The Beginning The geneal consensus of ou goup began with one thought: Spiogaphs ae awesome.
More informationClassical Mechanics (CM):
Classical Mechanics (CM): We ought to have some backgound to aeciate that QM eally does just use CM and makes one slight modification that then changes the natue of the oblem we need to solve but much
More informationSemipartial (Part) and Partial Correlation
Semipatial (Pat) and Patial Coelation his discussion boows heavily fom Applied Multiple egession/coelation Analysis fo the Behavioal Sciences, by Jacob and Paticia Cohen (975 edition; thee is also an updated
More informationSAMPLE CHAPTERS UNESCO EOLSS THE MOTION OF CELESTIAL BODIES. Kaare Aksnes Institute of Theoretical Astrophysics University of Oslo
THE MOTION OF CELESTIAL BODIES Kaae Aksnes Institute of Theoetical Astophysics Univesity of Oslo Keywods: celestial mechanics, twobody obits, theebody obits, petubations, tides, nongavitational foces,
More informationUNIT CIRCLE TRIGONOMETRY
UNIT CIRCLE TRIGONOMETRY The Unit Cicle is the cicle centeed at the oigin with adius unit (hence, the unit cicle. The equation of this cicle is + =. A diagam of the unit cicle is shown below: + =   
More informationFluids Lecture 15 Notes
Fluids Lectue 15 Notes 1. Unifom flow, Souces, Sinks, Doublets Reading: Andeson 3.9 3.12 Unifom Flow Definition A unifom flow consists of a velocit field whee V = uî + vĵ is a constant. In 2D, this velocit
More informationCHAPTER 5 GRAVITATIONAL FIELD AND POTENTIAL
CHATER 5 GRAVITATIONAL FIELD AND OTENTIAL 5. Intoduction. This chapte deals with the calculation of gavitational fields and potentials in the vicinity of vaious shapes and sizes of massive bodies. The
More informationChapter 30: Magnetic Fields Due to Currents
d Chapte 3: Magnetic Field Due to Cuent A moving electic chage ceate a magnetic field. One of the moe pactical way of geneating a lage magnetic field (.11 T) i to ue a lage cuent flowing though a wie.
More informationForces & Magnetic Dipoles. r r τ = μ B r
Foces & Magnetic Dipoles x θ F θ F. = AI τ = U = Fist electic moto invented by Faaday, 1821 Wie with cuent flow (in cup of Hg) otates aound a a magnet Faaday s moto Wie with cuent otates aound a Pemanent
More informationSkills Needed for Success in Calculus 1
Skills Needed fo Success in Calculus Thee is much appehension fom students taking Calculus. It seems that fo man people, "Calculus" is snonmous with "difficult." Howeve, an teache of Calculus will tell
More informationExperiment 6: Centripetal Force
Name Section Date Intoduction Expeiment 6: Centipetal oce This expeiment is concened with the foce necessay to keep an object moving in a constant cicula path. Accoding to Newton s fist law of motion thee
More informationDisplacement, Velocity And Acceleration
Displacement, Velocity And Acceleation Vectos and Scalas Position Vectos Displacement Speed and Velocity Acceleation Complete Motion Diagams Outline Scala vs. Vecto Scalas vs. vectos Scala : a eal numbe,
More informationSolutions for Physics 1301 Course Review (Problems 10 through 18)
Solutions fo Physics 1301 Couse Review (Poblems 10 though 18) 10) a) When the bicycle wheel comes into contact with the step, thee ae fou foces acting on it at that moment: its own weight, Mg ; the nomal
More informationExperiment MF Magnetic Force
Expeiment MF Magnetic Foce Intoduction The magnetic foce on a cuentcaying conducto is basic to evey electic moto  tuning the hands of electic watches and clocks, tanspoting tape in Walkmans, stating
More informationLab #7: Energy Conservation
Lab #7: Enegy Consevation Photo by Kallin http://www.bungeezone.com/pics/kallin.shtml Reading Assignment: Chapte 7 Sections 1,, 3, 5, 6 Chapte 8 Sections 14 Intoduction: Pehaps one of the most unusual
More informationGravitational Mechanics of the MarsPhobos System: Comparing Methods of Orbital Dynamics Modeling for Exploratory Mission Planning
Gavitational Mechanics of the MasPhobos System: Compaing Methods of Obital Dynamics Modeling fo Exploatoy Mission Planning Alfedo C. Itualde The Pennsylvania State Univesity, Univesity Pak, PA, 6802 This
More informationGravitation and Kepler s Laws
3 Gavitation and Keple s Laws In this chapte we will ecall the law of univesal gavitation and will then deive the esult that a spheically symmetic object acts gavitationally like a point mass at its cente
More informationLecture 16: Color and Intensity. and he made him a coat of many colours. Genesis 37:3
Lectue 16: Colo and Intensity and he made him a coat of many colous. Genesis 37:3 1. Intoduction To display a pictue using Compute Gaphics, we need to compute the colo and intensity of the light at each
More informationLab M4: The Torsional Pendulum and Moment of Inertia
M4.1 Lab M4: The Tosional Pendulum and Moment of netia ntoduction A tosional pendulum, o tosional oscillato, consists of a disklike mass suspended fom a thin od o wie. When the mass is twisted about the
More informationest using the formula I = Prt, where I is the interest earned, P is the principal, r is the interest rate, and t is the time in years.
9.2 Inteest Objectives 1. Undestand the simple inteest fomula. 2. Use the compound inteest fomula to find futue value. 3. Solve the compound inteest fomula fo diffeent unknowns, such as the pesent value,
More information12.1. FÖRSTER RESONANCE ENERGY TRANSFER
ndei Tokmakoff, MIT epatment of Chemisty, 3/5/8 11 1.1. FÖRSTER RESONNCE ENERGY TRNSFER Föste esonance enegy tansfe (FR) efes to the nonadiative tansfe of an electonic excitation fom a dono molecule to
More information4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first nonzero digit to
. Simplify: 0 4 ( 8) 0 64 ( 8) 0 ( 8) = (Ode of opeations fom left to ight: Paenthesis, Exponents, Multiplication, Division, Addition Subtaction). Simplify: (a 4) + (a ) (a+) = a 4 + a 0 a = a 7. Evaluate
More informationChapter 4: Fluid Kinematics
Oveview Fluid kinematics deals with the motion of fluids without consideing the foces and moments which ceate the motion. Items discussed in this Chapte. Mateial deivative and its elationship to Lagangian
More information2. TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES
. TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES In ode to etend the definitions of the si tigonometic functions to geneal angles, we shall make use of the following ideas: In a Catesian coodinate sstem, an
More informationA r. (Can you see that this just gives the formula we had above?)
241 (SJP, Phys 1120) lectic flux, and Gauss' law Finding the lectic field due to a bunch of chages is KY! Once you know, you know the foce on any chage you put down  you can pedict (o contol) motion
More informationIntroduction to Fluid Mechanics
Chapte 1 1 1.6. Solved Examples Example 1.1 Dimensions and Units A body weighs 1 Ibf when exposed to a standad eath gavity g = 3.174 ft/s. (a) What is its mass in kg? (b) What will the weight of this body
More informationLesson 7 Gauss s Law and Electric Fields
Lesson 7 Gauss s Law and Electic Fields Lawence B. Rees 7. You may make a single copy of this document fo pesonal use without witten pemission. 7. Intoduction While it is impotant to gain a solid conceptual
More informationSolution Derivations for Capa #8
Solution Deivations fo Capa #8 1) A ass spectoete applies a voltage of 2.00 kv to acceleate a singly chaged ion (+e). A 0.400 T field then bends the ion into a cicula path of adius 0.305. What is the ass
More informationPAN STABILITY TESTING OF DC CIRCUITS USING VARIATIONAL METHODS XVIII  SPETO  1995. pod patronatem. Summary
PCE SEMINIUM Z PODSTW ELEKTOTECHNIKI I TEOII OBWODÓW 8  TH SEMIN ON FUNDMENTLS OF ELECTOTECHNICS ND CICUIT THEOY ZDENĚK BIOLEK SPŠE OŽNO P.., CZECH EPUBLIC DLIBO BIOLEK MILITY CDEMY, BNO, CZECH EPUBLIC
More informationChapter 3 Savings, Present Value and Ricardian Equivalence
Chapte 3 Savings, Pesent Value and Ricadian Equivalence Chapte Oveview In the pevious chapte we studied the decision of households to supply hous to the labo maket. This decision was a static decision,
More informationExplicit, analytical solution of scaling quantum graphs. Abstract
Explicit, analytical solution of scaling quantum gaphs Yu. Dabaghian and R. Blümel Depatment of Physics, Wesleyan Univesity, Middletown, CT 064590155, USA Email: ydabaghian@wesleyan.edu (Januay 6, 2003)
More informationCHAPTER 10 Aggregate Demand I
CHAPTR 10 Aggegate Demand I Questions fo Review 1. The Keynesian coss tells us that fiscal policy has a multiplied effect on income. The eason is that accoding to the consumption function, highe income
More informationThe LCOE is defined as the energy price ($ per unit of energy output) for which the Net Present Value of the investment is zero.
Poject Decision Metics: Levelized Cost of Enegy (LCOE) Let s etun to ou wind powe and natual gas powe plant example fom ealie in this lesson. Suppose that both powe plants wee selling electicity into the
More informationThe Gravity Field of the Earth  Part 1 (Copyright 2002, David T. Sandwell)
1 The Gavity Field of the Eath  Pat 1 (Copyight 00, David T. Sandwell) This chapte coves physical geodesy  the shape of the Eath and its gavity field. This is just electostatic theoy applied to the Eath.
More informationCharges, Coulomb s Law, and Electric Fields
Q&E 1 Chages, Coulomb s Law, and Electic ields Some expeimental facts: Expeimental fact 1: Electic chage comes in two types, which we call (+) and ( ). An atom consists of a heavy (+) chaged nucleus suounded
More informationAP Physics Electromagnetic Wrap Up
AP Physics Electomagnetic Wap Up Hee ae the gloious equations fo this wondeful section. F qsin This is the equation fo the magnetic foce acting on a moing chaged paticle in a magnetic field. The angle
More informationAn Introduction to Omega
An Intoduction to Omega Con Keating and William F. Shadwick These distibutions have the same mean and vaiance. Ae you indiffeent to thei iskewad chaacteistics? The Finance Development Cente 2002 1 Fom
More informationThe Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = W/q 0 1V [Volt] =1 Nm/C
Geneal Physics  PH Winte 6 Bjoen Seipel The Electic Potential, Electic Potential Enegy and Enegy Consevation Electic Potential Enegy U is the enegy of a chaged object in an extenal electic field (Unit
More informationConverting knowledge Into Practice
Conveting knowledge Into Pactice Boke Nightmae srs Tend Ride By Vladimi Ribakov Ceato of Pips Caie 20 of June 2010 2 0 1 0 C o p y i g h t s V l a d i m i R i b a k o v 1 Disclaime and Risk Wanings Tading
More informationMoment and couple. In 3D, because the determination of the distance can be tedious, a vector approach becomes advantageous. r r
Moment and couple In 3D, because the detemination of the distance can be tedious, a vecto appoach becomes advantageous. o k j i M k j i M o ) ( ) ( ) ( + + M o M + + + + M M + O A Moment about an abita
More informationIlona V. Tregub, ScD., Professor
Investment Potfolio Fomation fo the Pension Fund of Russia Ilona V. egub, ScD., Pofesso Mathematical Modeling of Economic Pocesses Depatment he Financial Univesity unde the Govenment of the Russian Fedeation
More informationGraphs of Equations. A coordinate system is a way to graphically show the relationship between 2 quantities.
Gaphs of Equations CHAT PeCalculus A coodinate sstem is a wa to gaphicall show the elationship between quantities. Definition: A solution of an equation in two vaiables and is an odeed pai (a, b) such
More informationDYNAMICS AND STRUCTURAL LOADING IN WIND TURBINES
DYNAMIS AND STRUTURAL LOADING IN WIND TURBINES M. Ragheb 12/30/2008 INTRODUTION The loading egimes to which wind tubines ae subject to ae extemely complex equiing special attention in thei design, opeation
More informationStructure and evolution of circumstellar disks during the early phase of accretion from a parent cloud
Cente fo Tubulence Reseach Annual Reseach Biefs 2001 209 Stuctue and evolution of cicumstella disks duing the ealy phase of accetion fom a paent cloud By Olusola C. Idowu 1. Motivation and Backgound The
More informationThank you for participating in Teach It First!
Thank you fo paticipating in Teach It Fist! This Teach It Fist Kit contains a Common Coe Suppot Coach, Foundational Mathematics teache lesson followed by the coesponding student lesson. We ae confident
More informationarxiv:1012.5438v1 [astroph.ep] 24 Dec 2010
FistOde Special Relativistic Coections to Keple s Obits Tyle J. Lemmon and Antonio R. Mondagon Physics Depatment, Coloado College, Coloado Spings, Coloado 80903 (Dated: Decembe 30, 00) Abstact axiv:0.5438v
More information10. Collisions. Before During After
10. Collisions Use conseation of momentum and enegy and the cente of mass to undestand collisions between two objects. Duing a collision, two o moe objects exet a foce on one anothe fo a shot time: F(t)
More informationQuantity Formula Meaning of variables. 5 C 1 32 F 5 degrees Fahrenheit, 1 bh A 5 area, b 5 base, h 5 height. P 5 2l 1 2w
1.4 Rewite Fomulas and Equations Befoe You solved equations. Now You will ewite and evaluate fomulas and equations. Why? So you can apply geometic fomulas, as in Ex. 36. Key Vocabulay fomula solve fo a
More informationVISCOSITY OF BIODIESEL FUELS
VISCOSITY OF BIODIESEL FUELS One of the key assumptions fo ideal gases is that the motion of a given paticle is independent of any othe paticles in the system. With this assumption in place, one can use
More informationDefine What Type of Trader Are you?
Define What Type of Tade Ae you? Boke Nightmae srs Tend Ride By Vladimi Ribakov Ceato of Pips Caie 20 of June 2010 1 Disclaime and Risk Wanings Tading any financial maket involves isk. The content of this
More informationChapter 2. Electrostatics
Chapte. Electostatics.. The Electostatic Field To calculate the foce exeted by some electic chages,,, 3,... (the souce chages) on anothe chage Q (the test chage) we can use the pinciple of supeposition.
More informationSELFINDUCTANCE AND INDUCTORS
MISN0144 SELFINDUCTANCE AND INDUCTORS SELFINDUCTANCE AND INDUCTORS by Pete Signell Michigan State Univesity 1. Intoduction.............................................. 1 A 2. SelfInductance L.........................................
More informationMagnetic Bearing with Radial Magnetized Permanent Magnets
Wold Applied Sciences Jounal 23 (4): 495499, 2013 ISSN 18184952 IDOSI Publications, 2013 DOI: 10.5829/idosi.wasj.2013.23.04.23080 Magnetic eaing with Radial Magnetized Pemanent Magnets Vyacheslav Evgenevich
More informationContinuous Compounding and Annualization
Continuous Compounding and Annualization Philip A. Viton Januay 11, 2006 Contents 1 Intoduction 1 2 Continuous Compounding 2 3 Pesent Value with Continuous Compounding 4 4 Annualization 5 5 A Special Poblem
More informationRelativistic Quantum Mechanics
Chapte Relativistic Quantum Mechanics In this Chapte we will addess the issue that the laws of physics must be fomulated in a fom which is Loentz invaiant, i.e., the desciption should not allow one to
More informationNURBS Drawing Week 5, Lecture 10
CS 43/585 Compute Gaphics I NURBS Dawing Week 5, Lectue 1 David Been, William Regli and Maim Pesakhov Geometic and Intelligent Computing Laboato Depatment of Compute Science Deel Univesit http://gicl.cs.deel.edu
More informationThe Detection of Obstacles Using Features by the Horizon View Camera
The Detection of Obstacles Using Featues b the Hoizon View Camea Aami Iwata, Kunihito Kato, Kazuhiko Yamamoto Depatment of Infomation Science, Facult of Engineeing, Gifu Univesit aa@am.info.gifuu.ac.jp
More informationSTUDENT RESPONSE TO ANNUITY FORMULA DERIVATION
Page 1 STUDENT RESPONSE TO ANNUITY FORMULA DERIVATION C. Alan Blaylock, Hendeson State Univesity ABSTRACT This pape pesents an intuitive appoach to deiving annuity fomulas fo classoom use and attempts
More information3.02 Potential Theory and Static Gravity Field of the Earth
3.02 Potential Theoy and Static Gavity Field of the Eath C. Jekeli, The Ohio State Univesity, Columbus, OH, USA ª 2007 Elsevie B.V. All ights eseved. 3.02. Intoduction 2 3.02.. Histoical Notes 2 3.02..2
More informationComparing Availability of Various Rack Power Redundancy Configurations
Compaing Availability of Vaious Rack Powe Redundancy Configuations By Victo Avela White Pape #48 Executive Summay Tansfe switches and dualpath powe distibution to IT equipment ae used to enhance the availability
More informationSupplementary Material for EpiDiff
Supplementay Mateial fo EpiDiff Supplementay Text S1. Pocessing of aw chomatin modification data In ode to obtain the chomatin modification levels in each of the egions submitted by the use QDCMR module
More informationSymmetric polynomials and partitions Eugene Mukhin
Symmetic polynomials and patitions Eugene Mukhin. Symmetic polynomials.. Definition. We will conside polynomials in n vaiables x,..., x n and use the shotcut p(x) instead of p(x,..., x n ). A pemutation
More informationChapter 4: Fluid Kinematics
41 Lagangian g and Euleian Desciptions 42 Fundamentals of Flow Visualization 43 Kinematic Desciption 44 Reynolds Tanspot Theoem (RTT) 41 Lagangian and Euleian Desciptions (1) Lagangian desciption
More informationConcept and Experiences on using a Wikibased System for Softwarerelated Seminar Papers
Concept and Expeiences on using a Wikibased System fo Softwaeelated Semina Papes Dominik Fanke and Stefan Kowalewski RWTH Aachen Univesity, 52074 Aachen, Gemany, {fanke, kowalewski}@embedded.wthaachen.de,
More information