Need for Sampling. Very large populations Destructive testing Continuous production process
|
|
|
- Archibald Ward
- 10 years ago
- Views:
Transcription
1 Chapter 4 Sampling and Estimation
2 Need for Sampling Very large populations Destructive testing Continuous production process The objective of sampling is to draw a valid inference about a population. 4-
3 Sample Design Sampling Plan a description of the approach that will be used to obtain samples from a population Objectives Target population Population frame Method of sampling Operational procedures for data collection Statistical tools for analysis 4-3
4 Sampling Methods Subjective Judgment sampling Convenience sampling Probabilistic Simple random sampling every subset of a given size has an equal chance of being selected 4-4
5 Excel Data Analysis Tool Sampling Excel menu > Tools > Data Analysis > Sampling Specify input range of data Choose sampling method Select output option 4-5
6 Other Sampling Methods Systematic sampling Stratified sampling Cluster sampling Sampling from a continuous process 4-6
7 Errors in Sampling Nonsampling error Poor sample design Sampling (statistical) error Depends on sample size Tradeoff between cost of sampling and accuracy of estimates obtained by sampling 4-7
8 Estimation Estimation assessing the value of a population parameter using sample data. Point estimate a single number used to estimate a population parameter Confidence intervals a range of values between which a population parameter is believed to be along with the probability that the interval correctly estimates the true population parameter 4-8
9 Common Point Estimates 4-9
10 Example 4-10
11 Theoretical Issues Unbiased estimator one for which the expected value equals the population parameter it is intended to estimate The sample variance is an unbiased estimator for the population variance s n i1 x i x x n 1 n i1 i N 4-11
12 Interval Estimates Range within which we believe the true population parameter falls Example: Gallup poll percentage of voters favoring a candidate is 56% with a 3% margin of error. Interval estimate is [53%, 59%] 4-1
13 Confidence Intervals Confidence interval (CI) an interval estimated that specifies the likelihood that the interval contains the true population parameter Level of confidence (1 ) the probability that the CI contains the true population parameter, usually expressed as a percentage (90%, 95%, 99% are most common). 4-13
14 Sampling Distribution of the Mean Theory 4-14
15 Interval Estimate Containing the True Population Mean 4-15
16 Interval Estimate Not Containing the True Population Mean 4-16
17 Confidence Interval for the Mean Known A 100(1 )% CI is: x z / (/n) z / may be found from Table A.1 or using the Excel function NORMSINV(1-/) 4-17
18 Sampling From Finite Populations When n > 0.05N, use a correction factor in computing the standard error: x n N N n
19 Key Observations x z / (/n) As the confidence level (1 - ) increases, the width of the confidence interval also increases. As the sample size increases, the width of the confidence interval decreases. 4-19
20 Confidence Interval for the Mean, Unknown A 100(1 )% CI is: x t /,n-1 (s/n) t /,n-1 is the value from a t-distribution with n-1 degrees of freedom, from Table A. or the Excel function TINV(, n-1) 4-0
21 Relationship Between Normal Distribution and t-distribution The t-distribution yields larger confidence intervals for smaller sample sizes. 4-1
22 Data Analysis, Fall 014 Confidence Intervals for a Proportion Sample proportion: p= x/n x = number in sample having desired characteristic n = sample size The sampling distribution of p has mean and variance (1 )/n When n and n(1 ) are at least 5, the sampling distribution of p approach a normal distribution 4-
23 Data Analysis, Fall 014 Confidence Intervals for Proportions A 100(1 )% CI is: p z / p(1- n p) PHSta tool is available under Confidence Intervals option 4-3
24 Sampling Distribution of s The sample standard deviation, s, is a point estimate for the population standard deviation, The sampling distribution of s has a chi-square ( ) distribution with n-1 df See Table A.3 CHIDIST(x, deg_freedom) returns probability to the right of x CHIINV(probability, deg_freedom) returns the value of x for a specified right-tail probability 4-4
25 Confidence Intervals for the Variance A 100(1 )% CI is: ( n 1) s n1, /, ( n 1) s n1,1 / Note the difference in the denominators! 4-5
26 Confidence Intervals for Population Total s N n A 100(1 )% CI is: N x t n-1,/ N n N 1 4-6
27 Confidence Intervals and Decision Making Required weight for a soap product is 64 ounces. A sample of 30 boxes found a mean of 63.8 and standard deviation of A 95% CI is [63.43, 64.1]. What conclusion can you reach? What if the standard deviation was 0.46 and the CI is [64.65, 63.99]? 4-7
28 Confidence Intervals and Sample Size CI for the mean, known Sample size needed for half-width of at most E is n (z / ) ( )/E CI for a proportion Sample size needed for half-width of at most E is ( z / ) (1 ) n E Use p as an estimate of or 0.5 for the most conservative estimate 4-8
29 Additional Types of Confidence Intervals Difference in means Independent samples with unequal variances Independent samples with equal variances Paired samples Difference in proportions 4-9
30 Confidence Intervals for Differences Between Means Population 1 Population Mean 1 Standard deviation 1 Point estimate x 1 x Sample size n 1 n Point estimate for the difference in means, 1, is given by x 1 -x 4-30
31 Independent Samples With Unequal Variances 4-31 A 100(1 )% CI is: x 1 -x (t /, df* ) 1 1 n s n s 1 ) / ( 1 ) / ( n n s n n s n s n s df* = Fractional values rounded down
32 Example In the Accounting Professionals Excel file, find a 95 percent confidence interval for the difference in years of service between males and females. 4-3
33 Calculations s 1 = 4.39 and n 1 = 14 (females), s = 8.39 and n = 13 (males) df* = 17.81, so use 17 as the degrees of freedom or ,
34 Independent Samples With Equal Variances A 100(1 )% CI is: x 1 -x (t /, n1 + n ) s p 1 n 1 1 n s p ( n 1 1) s n 1 1 ( n n 1) s where s p is a common pooled standard deviation. Must assume the variances of the two populations are equal. 4-34
35 Example: Accounting Professionals Data s p or 14.87,
36 Paired Samples A 100(1 )% CI is: D (t n-1,/ ) s D /n D i = difference for each pair of observations D = average of differences s D n i1 ( D i n 1 D) PHSta tool available in the Confidence Intervals menu 4-36
37 Example Pile Foundation A 95% CI for the average difference between the actual and estimated pile lengths is 4-37
38 Calculations D = 6.38 s D = % CI is 6.38 ± 1.96(10.31/ 311) = 6.38 ± or [5.34, 7.56] 4-38
39 Data Analysis, Fall 014 Differences Between Proportions A 100(1 )% CI is: p 1 p z / p 1(1 p 1) p (1 p n n 1 ) Applies when n i p i and n i (1 p i ) are greater than
40 Example In the Accounting Professionals Excel file, the proportion of females having a CPA is 8/14 = 0.57, while the proportion of males having a CPA is 6/13 = A 95 percent confidence interval for the difference in proportions between females and males is 4-40
41 Probability Intervals A 100(1 )% probability interval for a random variable X is any interval [a,b] such that P(a X b) = 1 Do not confuse a confidence interval with a probability interval; confidence intervals are probability intervals for sampling distributions, not for the distribution of the random variable. 4-41
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.
5.1 Identifying the Target Parameter
University of California, Davis Department of Statistics Summer Session II Statistics 13 August 20, 2012 Date of latest update: August 20 Lecture 5: Estimation with Confidence intervals 5.1 Identifying
Confidence Intervals for the Difference Between Two Means
Chapter 47 Confidence Intervals for the Difference Between Two Means Introduction This procedure calculates the sample size necessary to achieve a specified distance from the difference in sample means
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) ±1.88 B) ±1.645 C) ±1.96 D) ±2.
Ch. 6 Confidence Intervals 6.1 Confidence Intervals for the Mean (Large Samples) 1 Find a Critical Value 1) Find the critical value zc that corresponds to a 94% confidence level. A) ±1.88 B) ±1.645 C)
Chapter 7 Notes - Inference for Single Samples. You know already for a large sample, you can invoke the CLT so:
Chapter 7 Notes - Inference for Single Samples You know already for a large sample, you can invoke the CLT so: X N(µ, ). Also for a large sample, you can replace an unknown σ by s. You know how to do a
Stats Review Chapters 9-10
Stats Review Chapters 9-10 Created by Teri Johnson Math Coordinator, Mary Stangler Center for Academic Success Examples are taken from Statistics 4 E by Michael Sullivan, III And the corresponding Test
Northumberland Knowledge
Northumberland Knowledge Know Guide How to Analyse Data - November 2012 - This page has been left blank 2 About this guide The Know Guides are a suite of documents that provide useful information about
Adverse Impact Ratio for Females (0/ 1) = 0 (5/ 17) = 0.2941 Adverse impact as defined by the 4/5ths rule was not found in the above data.
1 of 9 12/8/2014 12:57 PM (an On-Line Internet based application) Instructions: Please fill out the information into the form below. Once you have entered your data below, you may select the types of analysis
Confidence Intervals for Cp
Chapter 296 Confidence Intervals for Cp Introduction This routine calculates the sample size needed to obtain a specified width of a Cp confidence interval at a stated confidence level. Cp is a process
1. How different is the t distribution from the normal?
Statistics 101 106 Lecture 7 (20 October 98) c David Pollard Page 1 Read M&M 7.1 and 7.2, ignoring starred parts. Reread M&M 3.2. The effects of estimated variances on normal approximations. t-distributions.
Chapter 7 - Practice Problems 2
Chapter 7 - Practice Problems 2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the requested value. 1) A researcher for a car insurance company
Sampling. COUN 695 Experimental Design
Sampling COUN 695 Experimental Design Principles of Sampling Procedures are different for quantitative and qualitative research Sampling in quantitative research focuses on representativeness Sampling
Practice problems for Homework 12 - confidence intervals and hypothesis testing. Open the Homework Assignment 12 and solve the problems.
Practice problems for Homework 1 - confidence intervals and hypothesis testing. Read sections 10..3 and 10.3 of the text. Solve the practice problems below. Open the Homework Assignment 1 and solve the
Chapter Study Guide. Chapter 11 Confidence Intervals and Hypothesis Testing for Means
OPRE504 Chapter Study Guide Chapter 11 Confidence Intervals and Hypothesis Testing for Means I. Calculate Probability for A Sample Mean When Population σ Is Known 1. First of all, we need to find out the
Simple Linear Regression Inference
Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation
Lesson 17: Margin of Error When Estimating a Population Proportion
Margin of Error When Estimating a Population Proportion Classwork In this lesson, you will find and interpret the standard deviation of a simulated distribution for a sample proportion and use this information
3.4 Statistical inference for 2 populations based on two samples
3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted
Chapter 7 - Practice Problems 1
Chapter 7 - Practice Problems 1 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. 1) Define a point estimate. What is the
Chapter 8: Quantitative Sampling
Chapter 8: Quantitative Sampling I. Introduction to Sampling a. The primary goal of sampling is to get a representative sample, or a small collection of units or cases from a much larger collection or
How To Check For Differences In The One Way Anova
MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. One-Way
Unit 26 Estimation with Confidence Intervals
Unit 26 Estimation with Confidence Intervals Objectives: To see how confidence intervals are used to estimate a population proportion, a population mean, a difference in population proportions, or a difference
Statistical & Technical Team
Statistical & Technical Team A Practical Guide to Sampling This guide is brought to you by the Statistical and Technical Team, who form part of the VFM Development Team. They are responsible for advice
Statistical Methods for Sample Surveys (140.640)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this
HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...
HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men
Math 251, Review Questions for Test 3 Rough Answers
Math 251, Review Questions for Test 3 Rough Answers 1. (Review of some terminology from Section 7.1) In a state with 459,341 voters, a poll of 2300 voters finds that 45 percent support the Republican candidate,
Answers: a. 87.5325 to 92.4675 b. 87.06 to 92.94
1. The average monthly electric bill of a random sample of 256 residents of a city is $90 with a standard deviation of $24. a. Construct a 90% confidence interval for the mean monthly electric bills of
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
STT315 Practice Ch 5-7 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. 1) The length of time a traffic signal stays green (nicknamed
Point and Interval Estimates
Point and Interval Estimates Suppose we want to estimate a parameter, such as p or µ, based on a finite sample of data. There are two main methods: 1. Point estimate: Summarize the sample by a single number
Fairfield Public Schools
Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity
Independent t- Test (Comparing Two Means)
Independent t- Test (Comparing Two Means) The objectives of this lesson are to learn: the definition/purpose of independent t-test when to use the independent t-test the use of SPSS to complete an independent
Is it statistically significant? The chi-square test
UAS Conference Series 2013/14 Is it statistically significant? The chi-square test Dr Gosia Turner Student Data Management and Analysis 14 September 2010 Page 1 Why chi-square? Tests whether two categorical
9.07 Introduction to Statistical Methods Homework 4. Name:
1. Estimating the population standard deviation and variance. Homework #2 contained a problem (#4) on estimating the population standard deviation. In that problem, you showed that the method of estimating
BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394
BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394 1. Does vigorous exercise affect concentration? In general, the time needed for people to complete
Statistical Functions in Excel
Statistical Functions in Excel There are many statistical functions in Excel. Moreover, there are other functions that are not specified as statistical functions that are helpful in some statistical analyses.
Sampling Procedures Y520. Strategies for Educational Inquiry. Robert S Michael
Sampling Procedures Y520 Strategies for Educational Inquiry Robert S Michael RSMichael 2-1 Terms Population (or universe) The group to which inferences are made based on a sample drawn from the population.
Confidence Intervals for One Standard Deviation Using Standard Deviation
Chapter 640 Confidence Intervals for One Standard Deviation Using Standard Deviation Introduction This routine calculates the sample size necessary to achieve a specified interval width or distance from
An Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 10- TWO-SAMPLE TESTS
The Islamic University of Gaza Faculty of Commerce Department of Economics and Political Sciences An Introduction to Statistics Course (ECOE 130) Spring Semester 011 Chapter 10- TWO-SAMPLE TESTS Practice
HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...
HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men
Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means
Lesson : Comparison of Population Means Part c: Comparison of Two- Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis
THE FIRST SET OF EXAMPLES USE SUMMARY DATA... EXAMPLE 7.2, PAGE 227 DESCRIBES A PROBLEM AND A HYPOTHESIS TEST IS PERFORMED IN EXAMPLE 7.
THERE ARE TWO WAYS TO DO HYPOTHESIS TESTING WITH STATCRUNCH: WITH SUMMARY DATA (AS IN EXAMPLE 7.17, PAGE 236, IN ROSNER); WITH THE ORIGINAL DATA (AS IN EXAMPLE 8.5, PAGE 301 IN ROSNER THAT USES DATA FROM
The Margin of Error for Differences in Polls
The Margin of Error for Differences in Polls Charles H. Franklin University of Wisconsin, Madison October 27, 2002 (Revised, February 9, 2007) The margin of error for a poll is routinely reported. 1 But
Stat 411/511 THE RANDOMIZATION TEST. Charlotte Wickham. stat511.cwick.co.nz. Oct 16 2015
Stat 411/511 THE RANDOMIZATION TEST Oct 16 2015 Charlotte Wickham stat511.cwick.co.nz Today Review randomization model Conduct randomization test What about CIs? Using a t-distribution as an approximation
Confidence Intervals for Spearman s Rank Correlation
Chapter 808 Confidence Intervals for Spearman s Rank Correlation Introduction This routine calculates the sample size needed to obtain a specified width of Spearman s rank correlation coefficient confidence
Review #2. Statistics
Review #2 Statistics Find the mean of the given probability distribution. 1) x P(x) 0 0.19 1 0.37 2 0.16 3 0.26 4 0.02 A) 1.64 B) 1.45 C) 1.55 D) 1.74 2) The number of golf balls ordered by customers of
Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010
Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010 Week 1 Week 2 14.0 Students organize and describe distributions of data by using a number of different
Two-sample hypothesis testing, II 9.07 3/16/2004
Two-sample hypothesis testing, II 9.07 3/16/004 Small sample tests for the difference between two independent means For two-sample tests of the difference in mean, things get a little confusing, here,
Descriptive Methods Ch. 6 and 7
Descriptive Methods Ch. 6 and 7 Purpose of Descriptive Research Purely descriptive research describes the characteristics or behaviors of a given population in a systematic and accurate fashion. Correlational
ELEMENTARY STATISTICS IN CRIMINAL JUSTICE RESEARCH: THE ESSENTIALS
ELEMENTARY STATISTICS IN CRIMINAL JUSTICE RESEARCH: THE ESSENTIALS 2005 James A. Fox Jack Levin ISBN 0-205-42053-2 (Please use above number to order your exam copy.) Visit www.ablongman.com/replocator
t Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon
t-tests in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. [email protected] www.excelmasterseries.com
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Final Exam Review MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A researcher for an airline interviews all of the passengers on five randomly
Data Analysis Tools. Tools for Summarizing Data
Data Analysis Tools This section of the notes is meant to introduce you to many of the tools that are provided by Excel under the Tools/Data Analysis menu item. If your computer does not have that tool
One-Way ANOVA using SPSS 11.0. SPSS ANOVA procedures found in the Compare Means analyses. Specifically, we demonstrate
1 One-Way ANOVA using SPSS 11.0 This section covers steps for testing the difference between three or more group means using the SPSS ANOVA procedures found in the Compare Means analyses. Specifically,
Review. March 21, 2011. 155S7.1 2_3 Estimating a Population Proportion. Chapter 7 Estimates and Sample Sizes. Test 2 (Chapters 4, 5, & 6) Results
MAT 155 Statistical Analysis Dr. Claude Moore Cape Fear Community College Chapter 7 Estimates and Sample Sizes 7 1 Review and Preview 7 2 Estimating a Population Proportion 7 3 Estimating a Population
General Method: Difference of Means. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n 1, n 2 ) 1.
General Method: Difference of Means 1. Calculate x 1, x 2, SE 1, SE 2. 2. Combined SE = SE1 2 + SE2 2. ASSUMES INDEPENDENT SAMPLES. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n
Week 4: Standard Error and Confidence Intervals
Health Sciences M.Sc. Programme Applied Biostatistics Week 4: Standard Error and Confidence Intervals Sampling Most research data come from subjects we think of as samples drawn from a larger population.
Confidence Intervals for Cpk
Chapter 297 Confidence Intervals for Cpk Introduction This routine calculates the sample size needed to obtain a specified width of a Cpk confidence interval at a stated confidence level. Cpk is a process
Descriptive Statistics
Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize
Chapter 7 Section 7.1: Inference for the Mean of a Population
Chapter 7 Section 7.1: Inference for the Mean of a Population Now let s look at a similar situation Take an SRS of size n Normal Population : N(, ). Both and are unknown parameters. Unlike what we used
Online 12 - Sections 9.1 and 9.2-Doug Ensley
Student: Date: Instructor: Doug Ensley Course: MAT117 01 Applied Statistics - Ensley Assignment: Online 12 - Sections 9.1 and 9.2 1. Does a P-value of 0.001 give strong evidence or not especially strong
Lecture 8. Confidence intervals and the central limit theorem
Lecture 8. Confidence intervals and the central limit theorem Mathematical Statistics and Discrete Mathematics November 25th, 2015 1 / 15 Central limit theorem Let X 1, X 2,... X n be a random sample of
Data Collection and Sampling OPRE 6301
Data Collection and Sampling OPRE 6301 Recall... Statistics is a tool for converting data into information: Statistics Data Information But where then does data come from? How is it gathered? How do we
New SAS Procedures for Analysis of Sample Survey Data
New SAS Procedures for Analysis of Sample Survey Data Anthony An and Donna Watts, SAS Institute Inc, Cary, NC Abstract Researchers use sample surveys to obtain information on a wide variety of issues Many
Introduction. Hypothesis Testing. Hypothesis Testing. Significance Testing
Introduction Hypothesis Testing Mark Lunt Arthritis Research UK Centre for Ecellence in Epidemiology University of Manchester 13/10/2015 We saw last week that we can never know the population parameters
STAT 145 (Notes) Al Nosedal [email protected] Department of Mathematics and Statistics University of New Mexico. Fall 2013
STAT 145 (Notes) Al Nosedal [email protected] Department of Mathematics and Statistics University of New Mexico Fall 2013 CHAPTER 18 INFERENCE ABOUT A POPULATION MEAN. Conditions for Inference about mean
Introduction to Sampling. Dr. Safaa R. Amer. Overview. for Non-Statisticians. Part II. Part I. Sample Size. Introduction.
Introduction to Sampling for Non-Statisticians Dr. Safaa R. Amer Overview Part I Part II Introduction Census or Sample Sampling Frame Probability or non-probability sample Sampling with or without replacement
Sampling Probability and Inference
PART II Sampling Probability and Inference The second part of the book looks into the probabilistic foundation of statistical analysis, which originates in probabilistic sampling, and introduces the reader
Population Mean (Known Variance)
Confidence Intervals Solutions STAT-UB.0103 Statistics for Business Control and Regression Models Population Mean (Known Variance) 1. A random sample of n measurements was selected from a population with
Techniques for data collection
Techniques for data collection Technical workshop on survey methodology: Enabling environment for sustainable enterprises in Indonesia Hotel Ibis Tamarin, Jakarta 4-6 May 2011 Presentation by Mohammed
Calculating, Interpreting, and Reporting Estimates of Effect Size (Magnitude of an Effect or the Strength of a Relationship)
1 Calculating, Interpreting, and Reporting Estimates of Effect Size (Magnitude of an Effect or the Strength of a Relationship) I. Authors should report effect sizes in the manuscript and tables when reporting
Unit 27: Comparing Two Means
Unit 27: Comparing Two Means Prerequisites Students should have experience with one-sample t-procedures before they begin this unit. That material is covered in Unit 26, Small Sample Inference for One
Objectives. 6.1, 7.1 Estimating with confidence (CIS: Chapter 10) CI)
Objectives 6.1, 7.1 Estimating with confidence (CIS: Chapter 10) Statistical confidence (CIS gives a good explanation of a 95% CI) Confidence intervals. Further reading http://onlinestatbook.com/2/estimation/confidence.html
Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)
Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume
TImath.com. F Distributions. Statistics
F Distributions ID: 9780 Time required 30 minutes Activity Overview In this activity, students study the characteristics of the F distribution and discuss why the distribution is not symmetric (skewed
Confidence intervals
Confidence intervals Today, we re going to start talking about confidence intervals. We use confidence intervals as a tool in inferential statistics. What this means is that given some sample statistics,
AP STATISTICS (Warm-Up Exercises)
AP STATISTICS (Warm-Up Exercises) 1. Describe the distribution of ages in a city: 2. Graph a box plot on your calculator for the following test scores: {90, 80, 96, 54, 80, 95, 100, 75, 87, 62, 65, 85,
Audit Sampling for Tests of Controls and Substantive Tests of Transactions
Audit Sampling for Tests of Controls and Substantive Tests of Transactions Chapter 15 2008 Prentice Hall Business Publishing, Auditing 12/e, Arens/Beasley/Elder 15-1 Learning Objective 1 Explain the concept
Simulating Chi-Square Test Using Excel
Simulating Chi-Square Test Using Excel Leslie Chandrakantha John Jay College of Criminal Justice of CUNY Mathematics and Computer Science Department 524 West 59 th Street, New York, NY 10019 [email protected]
Simple Regression Theory II 2010 Samuel L. Baker
SIMPLE REGRESSION THEORY II 1 Simple Regression Theory II 2010 Samuel L. Baker Assessing how good the regression equation is likely to be Assignment 1A gets into drawing inferences about how close the
P(every one of the seven intervals covers the true mean yield at its location) = 3.
1 Let = number of locations at which the computed confidence interval for that location hits the true value of the mean yield at its location has a binomial(7,095) (a) P(every one of the seven intervals
A POPULATION MEAN, CONFIDENCE INTERVALS AND HYPOTHESIS TESTING
CHAPTER 5. A POPULATION MEAN, CONFIDENCE INTERVALS AND HYPOTHESIS TESTING 5.1 Concepts When a number of animals or plots are exposed to a certain treatment, we usually estimate the effect of the treatment
Introduction to Estimation
10. Estimation A. Introduction B. Degrees of Freedom C. Characteristics of Estimators D. Confidence Intervals 1. Introduction 2. Confidence Interval for the Mean 3. t distribution 4. Confidence Interval
Calculating P-Values. Parkland College. Isela Guerra Parkland College. Recommended Citation
Parkland College A with Honors Projects Honors Program 2014 Calculating P-Values Isela Guerra Parkland College Recommended Citation Guerra, Isela, "Calculating P-Values" (2014). A with Honors Projects.
Non-random/non-probability sampling designs in quantitative research
206 RESEARCH MET HODOLOGY Non-random/non-probability sampling designs in quantitative research N on-probability sampling designs do not follow the theory of probability in the choice of elements from the
Confidence Intervals in Public Health
Confidence Intervals in Public Health When public health practitioners use health statistics, sometimes they are interested in the actual number of health events, but more often they use the statistics
Practice Midterm Exam #2
The Islamic University of Gaza Faculty of Engineering Department of Civil Engineering 12/12/2009 Statistics and Probability for Engineering Applications 9.2 X is a binomial random variable, show that (
Introduction. Statistics Toolbox
Introduction A hypothesis test is a procedure for determining if an assertion about a characteristic of a population is reasonable. For example, suppose that someone says that the average price of a gallon
2 Sample t-test (unequal sample sizes and unequal variances)
Variations of the t-test: Sample tail Sample t-test (unequal sample sizes and unequal variances) Like the last example, below we have ceramic sherd thickness measurements (in cm) of two samples representing
Guide to Microsoft Excel for calculations, statistics, and plotting data
Page 1/47 Guide to Microsoft Excel for calculations, statistics, and plotting data Topic Page A. Writing equations and text 2 1. Writing equations with mathematical operations 2 2. Writing equations with
5/31/2013. Chapter 8 Hypothesis Testing. Hypothesis Testing. Hypothesis Testing. Outline. Objectives. Objectives
C H 8A P T E R Outline 8 1 Steps in Traditional Method 8 2 z Test for a Mean 8 3 t Test for a Mean 8 4 z Test for a Proportion 8 6 Confidence Intervals and Copyright 2013 The McGraw Hill Companies, Inc.
SAMPLING DISTRIBUTIONS
0009T_c07_308-352.qd 06/03/03 20:44 Page 308 7Chapter SAMPLING DISTRIBUTIONS 7.1 Population and Sampling Distributions 7.2 Sampling and Nonsampling Errors 7.3 Mean and Standard Deviation of 7.4 Shape of
Confidence Intervals
Section 6.1 75 Confidence Intervals Section 6.1 C H A P T E R 6 4 Example 4 (pg. 284) Constructing a Confidence Interval Enter the data from Example 1 on pg. 280 into L1. In this example, n > 0, so the
Annex 6 BEST PRACTICE EXAMPLES FOCUSING ON SAMPLE SIZE AND RELIABILITY CALCULATIONS AND SAMPLING FOR VALIDATION/VERIFICATION. (Version 01.
Page 1 BEST PRACTICE EXAMPLES FOCUSING ON SAMPLE SIZE AND RELIABILITY CALCULATIONS AND SAMPLING FOR VALIDATION/VERIFICATION (Version 01.1) I. Introduction 1. The clean development mechanism (CDM) Executive
