Section 0.3 Power and exponential functions

Size: px
Start display at page:

Download "Section 0.3 Power and exponential functions"

Transcription

1 Section 0.3 Power and eponential functions (5/6/07) Overview: As we will see in later chapters, man mathematical models use power functions = n and eponential functions =. The definitions and asic properties of these functions, which are studied in precalculus courses, are reviewed in this section. We will discuss applications of these functions in later chapters, eginning with Chapter, where we stud their derivatives. We also descrie here how formulas for functions can e modified to translate, reflect, epand, and contract their graphs, The section closes with notes on the histor of analtic geometr. Topics: Power functions = n and their graphs Vertical and horizontal translation Reflection, magnification, and contraction Eponential functions = and their graphs Laws of eponents Historical notes Power functions A power function is a function of the form = n, where is the variale and n is a constant. If n is a positive integer, then n equals the product of n s, as in the formula 3 =. If n is a positive fraction, p/q, then n = p/q is the qth root of the pth power of, which also equals the pth power of the qth root of. In the case of n = 3 5, for eample, we have n = 5/3 = 3 5 = [ 3 ] 5. If n is a negative integer or fraction, so that n = m with m a positive integer or fraction, then n equals / m, as in the formulas 3 = 3 = 5/3 = 5/3 = 3 5 = [ 3 ] 5. all. To have formulas and identities involving n appl with zero eponents, 0 is defined to e for If n is not an integer or a fraction, it is irrational and has an infinite decimal epansion, which is used to define n for positive. The irrational numer, for eample, has the decimal epansion = , and if we want to define 0, we let n =. e the numer otained taking onl one digit after the decimal point in the epansion of, let n =. e the numer otained taking two digits after the decimal point, and so forth. This gives us an infinite string of rational numers n, n,n 3,... that approaches. We sa that is the limit of the numers n, n,n 3,... The numers 0 n, 0 n, 0 n 3,... are defined ecause the eponents n, n,n 3,... are rational. And, just as the numers n,n, n 3,... approach their limit, the numers 0 n,0 n,0 n 3,... approach their limit, which is defined to e 0. The first seven of the numers 0 n j are calculated in the net question. We will discuss limits in Chapter.

2 p. (5/6/07) Section 0.3, Power and eponential functions Question The following tale gives the first seven of numers n, n,n 3,... that approach = Use a calculator or computer to complete the second row of include approimate decimal values of 0 n, 0 n, 0 n 3,...,0 n 7. j 3 n j n j. = The same procedure is used to define n for an irrational n and positive. We let n j denote the rational numer otained taking j digits after the decimal point in the decimal epansion of n. Then the numers n j approach n and the numers n j approach n. The epression n is defined unless it involves dividing zero, taking an even root of a negative numer, or taking an irrational power of a negative numer. Consequentl, = n is defined for all with three eceptions: it is not defined at 0 if n is negative; it is not defined for negative if n is a fraction with an even denominator, and it is not defined for negative is n is irrational. The graphs of = n Figures through show four curves = n with odd integers n. The curve = with n = in Figure is a line through the origin. The shapes of the other curves are analzed in the following questions. = FIGURE Question (a) Wh does = 3 in Figure pass through the origin and wh is it aove the -ais for > 0 and elow the -ais for < 0? () Use the formula 3 = to eplain wh = 3 is much closer to the -ais than = for nonzero ver close to 0 and is much farther from the -ais than = for ver far from 0. = 3 = = /3 = = FIGURE FIGURE 3 FIGURE Notice that the curve = 3 in Figure gets steeper as moves awa from 0.

3 Section 0.3, Power and eponential functions p. 3 (5/6/07) Question 3 Question (a) Wh does = /3 in Figure 3 pass through the origin and wh is it aove the -ais for > 0 and elow the -ais for < 0? () Use the formula = /3 /3 to eplain wh = is closer to the -ais than = /3 for < < 0 and 0 < < and is farther from the -ais than = /3 for < and >. Notice that the curve = /3 in Figure 3 gets less steep as moves awa from 0. Eplain wh = in Figure (a) does not intersect the -ais and is aove it for > 0 and elow it for < 0, () is far from the -ais for small positive and small negative, and (c) is close to the -ais for large positive and large negative. The reasoning in Questions through can e used to show that, for an constant n not equal to 0 or, the portion of = n for positive is similar to the portion of one of the curves in Figures through for positive. For n > (Figure 5), the curve = n, like = 3 in Figure, curves up to the right from the origin. For 0 < n < (Figure 6), the curve = n, like = /3 in Figure 3, rises up from the origin ut gets less steep as moves to the right. For n < 0 (Figure 7), the curve = n, like = in Figure, comes down to the right of the -ais and approaches the -ais as moves to the right. = n (n > ) = n (0 < n < ) = n (n < 0) FIGURE 5 FIGURE 6 FIGURE 7 The nature of the graph = n for < 0 depends on the value of n. There are three possiilities: = n is either an odd function, is an even function, or is not defined for negative. We are using here the following definition. Definition A function = f() is even if f( ) = f() for all in its domain and is odd if f( ) = f() for all in its domain. The graphs of odd functions are smmetric aout the origin; the graphs of even functions are smmetric aout the -ais. The functions = 3, = /3, and = of Figures through are odd ecause ( ) 3 = and ( ) /3 = /3 for all and ( ) = for 0. Their graphs are smmetric aout the origin. The functions =, = /3, and = of Figures 8 through 0 are even ecause ( ) = and ( ) /3 = /3 for all and ( ) = for 0. Their graphs are smmetric aout the -ais. The functions = 5/, = /, and = / of Figures through are not defined for negative ecause the involve the square root / =. Consequentl, their graphs do not etend to the left of the -ais.

4 p. (5/6/07) Section 0.3, Power and eponential functions 3 = = /3 3 = FIGURE 8 FIGURE 9 FIGURE 0 = 5/ 3 = / = / 3 FIGURE FIGURE FIGURE 3 Eample Match the functions (a) =, () = 5, and (c) = / to their graphs in Figures through 6. 3 FIGURE FIGURE 5 FIGURE 6 Solution (a) Here the power n = is a negative numer. Consequentl, = is similar to = for positive. The function = is even, so its graph is smmetric aout the -ais and is in Figure 5. () The power 5 in this case is greater than, so = 5 is similar to = 3 for 0. The function = 5 is odd, so its graph is smmetric aout the origin and is in Figure 6. (c) Because n = is a fraction etween 0 and, = / is similar to = /3 for 0, ut since n = has an even denominator, the function is not defined for 0, and its graph is in Figure.

5 Section 0.3, Power and eponential functions p. 5 (5/6/07) Vertical and horizontal translation If we add a positive constant to a function = f(), we otain the function = f()+k, whose graph is otained from the graph of f raising it k units. Sutracting a positive constant k ields = f() k, whose graph is otained lowering the graph of = f() k units (Figure 7). The raising or lowering of a graph is called vertical translation. = f() + k k k = f() = f() k = f( + k) = f() = f( k) k k FIGURE 7 FIGURE 8 If, on the other hand, we add a positive constant k to the variale in the formula = f(), we otain = f( + k), whose value at 0 k is f (( 0 k) + k) = f( 0 ), which is the value of = f() at 0. Consequentl, = f( + k) is otained shifting the graph of f to the left k units, as shown in Figure 8. This action is called horizontal translation. Sutracting a positive constant k from the variale gives = f( k), whose value at 0 + k is f (( 0 + k) k) = f( 0 ), which is the value of = f() at 0. Hence, = f( k) is the curve = f() shifted k units to the right, as is also shown in Figure 8. Eample Solution Sketch the graph of the function = + 3 completing the square. We complete the square in the formula = + 3 adding and sutracting the square of half the coefficient of. This gives = ( +) +3 or = ( ) +. Its graph in Figure 9 is the curve = translated up units and unit to the right. 6 = ( ) + FIGURE 9 3 Reflection Multipling a function = f() gives the function = f() whose value at is the negative of the value of = f(). Its graph is the mirror image of = f() relative to the -ais. Multipling the variale gives the function = f( ) whose value at is the value of = f() at. Its graph is the mirror image of = f() relative to the -ais (Figure 0). Read this paragraph carefull: = f( + k) is = f() shifted k units to the left, not to the right.

6 p. 6 (5/6/07) Section 0.3, Power and eponential functions = f( ) = f() = f() FIGURE 0 Question 5 Draw the graph of = f( ), where f is the function whose graph is in Figure 0. Eample 3 Solution Sketch the graphs of (a) = and () =. (a) The graph of = in Figure is the mirror image relative to the -ais of the curve = in Figure. () The graph of = in Figure is the mirror image relative to the -ais of =. = = 3 3 FIGURE FIGURE Magnification and contraction If we multipl a function = f() a constant k >, we otain the function = kf(), whose graph is otained from = f() multipling the -coordinate of ever point on it k. This magnifies the curve verticall, as shown the middle and upper curves in Figure 3. Similarl, if we divide the function k >, we otain = f(), whose graph is otained from = f() dividing the -coordinate of k each point k. This contracts the curve verticall, as shown the lower curve in Figure 3. (k > ) = kf() (k > ) = f(k) = f() = f() = k f() = f(/k) FIGURE 3 FIGURE

7 Section 0.3, Power and eponential functions p. 7 (5/6/07) Multipling the variale a constant k > contracts the graph horizontall since = f(k) for positive k has the same value f (k( 0 /k)) = f( 0 ) at 0 /k as = f() has at 0. Similarl, dividing the variale k > magnifies the graph horizontall (Figure ). Eample The curve drawn with a heav line in Figure 5 is the graph of = G(). Is the other curve the graph of = G(), = G( ), = G(), or = G()? = G() FIGURE Solution The second curve in Figure 5 has the equation = G() ecause it is otained magnifing = G() a factor of verticall and contracting it a factor of horizontall. Eponential functions An eponential function is a function of the form =, where the eponent is the variale and is a positive constant, called the ase. All eponential functions are defined and positive for all, and their graphs pass through the point (0, ) since 0 = for an positive. If =, then is the constant function = (Figure 6). If is greater than, then the graph approaches the -ais on the left and curves up on the right (Figure 7). If 0 < <, then the graph approaches the -ais on the right and curves up on the left (Figure 8). 6 = ( = ) = ( > ) 6 6 = (0 < < ) FIGURE 6 FIGURE 7 FIGURE 8 Notice that the function = with positive is neither even or odd; its graph is not smmetric aout the -ais nor aout the origin. Read this paragraph carefull: for k > 0, = f(k) is = f() contracted a factor of k, not epanded a factor of k.

8 p. 8 (5/6/07) Section 0.3, Power and eponential functions Eample 5 Draw the curve = 5 + 3( ). Solution The curve = 5 + 3( ) is = magnified verticall a factor of 3 and then translated up 5 units. It is drawn in Figure 9, where the values (0) = 5 + 3( 0 ) = = 8 and () = 5 + 3( ) = 5 + = 7 on it have een plotted. The curve has = 5 as a horizontal asmptote. = 5 + 3( ) = 5 FIGURE 9 Question 6 Draw the curve = 5 3( ). Eample 6 A sample of radioactive radium-66 has mass M(t) = 6 ( ) t/60 grams at time t (ears). (a) What is the mass of the sample at t = 0, t = 60, and t = 30 ears and how are these numers related? () Draw the graph of M = M(t) in a tm-plane. Solution (a) The formula M(t) = 6 ( ) t/60 gives M(0) = 6 ( ) 0 = 6, M(60) = 6 ( ) = 8, and M(30) = 6 ( ) =. Consequentl, M(60) is half of M(0) and M(30) is half of M(60). (These calculations illustrate the fact that the halflife of radium is 60 ears.) () The graph of M = M(t) in Figure 30 is otained plotting the values from part (a). 6 8 M (grams) M = 6 ( ) t/60 FIGURE t (ears)

9 Section 0.3, Power and eponential functions p. 9 (5/6/07) The natural eponential function As we will see later, the most useful eponential function in calculus is the natural eponential function = e, whose ase is an irrational numer e = that will e defined in Chapter. The graph of = e is shown in Figure 3. = e FIGURE 3 Laws of eponents The following rules for working with eponents are valid for an numers and if is positive. If is negative, the hold for all values of and such that all epressions involved are defined. = + () ( ) = () (c) = c (3) = () The advantage of using eponential notation and these rules is illustrated in the net eample. Eample 7 (a) Simplif the formula = 3 without using fractional or negative eponents taking the sith power of oth sides, simplifing, and taking the sith root. () Simplif = 3 using fractional and negative eponents and rules () through (). Solution (a) Taking sith powers of oth sides of = ( ) 6 6 = ( 3 ) 6 = 3 gives ( )( )( ) ( )( ) = =. Then taking sith roots ields = 6 since > 0. () Fractional eponents enale us to make a more direct calculation: = 3 = / /3 = / /3 = /6 = 6.

10 p. 0 (5/6/07) Section 0.3, Power and eponential functions Historical notes General algeraic equations were first studied in the siteenth centur, ut without the modern convention of using a single letter for the unknown. The Italian phsician and algeraist Gerolamo Cardano (50 57), for eample, used the Latin sentence, Cuus p 6 reus aequalis 0, for the equation that we would write = 0. In Cardano s sentence, the word cuus denotes the cue of the unknown, p stands for plus, reus denotes the unknown, and aequalis means equals. The use of a single letter for the unknown and of eponents for positive integer powers was popularized a treatise La Géométrie, written in 637 the French philosopher Réné Descartes ( ) as an appendi to a work on the philosoph of science. Réné Descartes Pierre Fermat ( ) (60 665) Descartes and a French lawer Pierre Fermat (60 665) are considered the inventors of analtic geometr as a tool for giving geometric meaning to aspects of algera and calculus. Greek mathematicians, including Euclid (ca. 300 BC), Archimedes (87 BC), and Apollonius (ca. 5 BC), used the equivalent of coordinate sstems with the theor of proportions for studing geometric figures, and algera was emploed in the siteenth centur to solve geometric prolems. It was Descartes and Fermat, however, who first studied curves defined equations as well as their geometric properties and who made etensive use of the association etween the algera of equations and the geometr of curves. Fermat s work was not pulished until after his death, more than fort ears after the pulication of Descartes La Géométrie, so Descartes often receives more credit for creating what now is known as analtic or cartesian geometr. Fermat and Decartes generall used onl positive coordinates. Negative coordinates were first used sstematicall Isaac Newton (6 77) in his Enumeration of Curves of Third Degree (676). Fermat s name has een in the news in recent ears ecause his famous last theorem, that n + n = z n has no nonzero integer solutions,, and z for integers n >, has finall een proved. Responses 0.3 Response The tale is completed elow. (Notice that all of the values of 0 n j egin with 5, the last five egin with 5.95, and the last two egin with This illustrates that the numers approach the infinite decimal 5.95 = 0.) j j j. =

11 Section 0.3, Power and eponential functions p. (5/6/07) Response (a) = 3 passes through the origin ecause 0 3 = 0, is aove the -ais for > 0 ecause 3 is positive for > 0, and is elow the -ais for < 0 ecause 3 is negative for < 0. () = 3 is much closer to the -ais than = for ver small nonzero and is much farther from the -ais than = for large positive or negative ecause 3 = equals multiplied a ver small positive numer for small nonzero and multiplied a large positive numer for large positive or negative. Response 3 Response Response 5 (a) = /3 passes through the origin ecause 0 /3 = 0 and is aove the -ais for positive and elow the -ais for negative ecause /3 is positive for positive and negative for negative. () = is closer to the -ais than = /3 for < < 0 and 0 < < and is farther from the -ais than = /3 for < and > ecause = /3 /3 equals /3 multiplied a positive numer less than if < < 0 or 0 < < and equals /3 multiplied a numer greater than if < or >. (a) = does not intersect the -ais ecause = / is not defined at = 0. () = is far from the -ais for ver small close to zero ecause = / is ver large when is ver small. (c) = is close to the -ais if is a large positive or negative numer ecause then = / is ver small. = f( ) is = f() reflected aout the -ais and aout the -ais. Figure R5 = f( ) 5 = 5 3( ) = 5 5 Figure R5 Figure R6 Response 6 = 5 3( ) is = 5 + 3( ) (Figure 9) reflected aout the - and -aes. Figure R6

12 p. (5/6/07) Section 0.3, Power and eponential functions Interactive Eamples 0.3 Interactive solutions are on the we page http// ashenk/.. Solve the equations (a) 3/ = 8 and () /3 = 6 for.. The curve in Figure 3 has the equation = a with constants a and. What are those constants? 8 6 FIGURE Do the two curves in Figure 33 have the equations = 5 + e, = 5 e, = 5 + e, or = 5 e? 5 0 FIGURE 33. Solve the equation 93 9 = 3 for using the fact that if = with a positive, then =. 5. (a) Determine the general shape of the curve = 3 / without generating it on a calculator or computer. () Sketch the curve plotting at least one point on it. 6. (a) Determine the general shape of the curve = + without generating it on a calculator or computer. () Sketch the curve plotting at least one point on it. In the pulished tet the interactive solutions of these eamples will e on an accompaning CD disk which can e run an computer rowser without using an internet connection.

13 Section 0.3, Power and eponential functions p. 3 (5/6/07) 7. Figure 3 shows the graph of a function = P() and the curves = P() and = P() +. Which curve is which? 3 FIGURE The curve drawn with a fine line in Figure 35 is the graph of = H(). (a) Is the other curve aove the -ais the graph of = H() or of = H(/)? () Give equations in terms of H for the two curves elow the -ais. = H() FIGURE 35 Eercises 0.3 A Answer provided. O Outline of solution provided. C Graphing calculator or computer required. CONCEPTS: C. Generate the curves = and = together in the window.5.5, and cop them on our paper. Then use the equation = ( ) to eplain wh = is elow = for some values of and aove it for others. C. Generate the curves = and = together in the window.5.5, and cop them on our paper. Then use the equation = ( ) to eplain wh = is elow = for some values of and aove it for others. 3. Derive the identit = + for a positive constant in the case of = and = 3 writing = and 3 =.. Derive the identit ( ) = for a positive constant in the case of = and = 3 writing ( ) 3 as ( ) ( ) ( ) and then writing for. 5. How can the function z = e either a power function or an eponential function?

14 p. (5/6/07) Section 0.3, Power and eponential functions BASICS: 6. Find all real solutions of (a) = k +, () = k 3, and (c) = k + 0. Here k is a positive constant. 7. Solve the following equations for recognizing powers of and 0 and using the fact that if = with positive, then =. (a) = 8 () = 8 (c) 0 = 0.00 (d) 0 0 = 00 (e) (0 ) = 00 (f) 6 = 6 8. The middle curve in Figure 36 is = 5 =. Which is which? + (/) 5 +. The other curves are = 5 + () and 6 FIGURE 36 In Eercises 9 through solve the equations for. 9. O 3 = 5 0. A 3. 5 = 6 = 0. ( ) 3 =. In Eercises 3 through 9 solve the equations for using the fact that if = with positive, then =. /3 3. O 3 = O 7 = (7 ) 0. 5 = 8 7. A 3 = 9(3 ) ( 5. A ) = 8. ( ) = = 7 What are the domains of the functions in Eeercises 0 through 3? 0. O = /3. A = / 3. = 3/. =

15 Section 0.3, Power and eponential functions p. 5 (5/6/07) Determine the general shapes of the curves in Eercises through 3 without generating them on our calculator or computer analzing their equations. Then sketch them plotting at least one point on each.. A = 5/ 5. = 0 + 5/ 6. O = 5 /( + ) 8. = + ( ) 3 9. O = 30. A = 0 e 7. A = + 3. = 0e /0 3. The lower curve in Figure 37 is = P() and the upper curve is = A + P(B) with constants A and B. What are A and B? 3 = A + P(B) = P() FIGURE Figure 38 shows the curves = L(+k) and = L( k) for a function = L() and a positive constant k. (a) Which is which and what is the value of k? () Draw the graph of = L(). FIGURE A According to Newton s law of gravit, an oject that weighs one pound on the surface of the earth weighs w = 6r pounds when it is r thousand miles from the center of the earth. (The radius of the earth is thousand miles.) Sketch the portion of w = 6r for r in an rw-plane. 35. A A o throws a all straight up in the air at time t = (seconds) and catches it at t =. Because there is no air resistance, the all is h = 6 6t feet aove his hand for t. Sketch the portion of h = 6 6t for t in a th-plane 36. A It costs a factor 5 dollars to manufacture each pint of a chemical, plus an overhead of 00 on each atch produced. The cost for a atch of pints is therefore dollars, and the average cost of a atch of pints is A = = dollars per pint. Draw the portion of A = for > 0 in an A-plane. 37. A culture of acteria contains 500 acteria initialll and, ecause the numer doules ever 3 das, the culture contains N = 500( t/3 ) acteria t das later. Draw the graph of this function in a tn-plane.

16 p. 6 (5/6/07) Section 0.3, Power and eponential functions 38. When air pressure is measured in atmospheres, the air pressure at the surface of the earth is atmosphere. At an altitude h < 80 kilometers aove the surface of the earth, the air pressure is P = ( ) h/5.8. Draw the graph of this function in an hp-plane. EXPLORATION: 0. O (5 )(5 ) = 5 3 for.. A Solve (5 )(5 ) = 5 for.. A The curve = () can e otained from = contracting it horizontall or magnifing it verticall. Eplain. 3. The curve = e + can e otained from = e horizonta translation or vertical magnification. Eplain.. A Which of the curves in Figures 39 through is the graph of = a + / with a > 0? Is positive or negative? Give our reasoning. FIGURE 39 FIGURE 0 FIGURE FIGURE FIGURE 3 FIGURE 5. Which of the curves in Figures 39 through is the graph of = a + 3 for constants a and? Is a positive or negative? Is positive or negative? Give our reasoning. 6. Which of the curves in Figures 39 through is the graph of = a + / for some constants a and? Is a positive or negative? Is positive or negative? Give our reasoning. 7. Which of the curves in Figure 5 has the equation = + a (a) with 0 < a <, () with + 0 < < a, and (c) with a < 0 and > 0? Give our reasoning.

17 Section 0.3, Power and eponential functions p. 7 (5/6/07) I II III FIGURE 5 C 8. Generate = + a on our calculator or computer in the window, 5, first for a = 0, and, and then for a = 0,, and. Eplain how changing a changes the graph and wh. C 9. How does changing change the curve = and wh? (Generate the curve for sample values of in the window, with -scale = 0.) 50. The curve = M() is shown in Figure 6. Draw the curves (a) = M(/), () = M(), (c) = M(), (d) = M()/, (e) = M()+, (f) = M( ), and (g) = M(/). 6 = M() FIGURE Figure 7 shows the graphs of =.5, = e, and = 6. (a) Which is the upper curve, which is the middle curve, and which is the lower curve for > 0? () Which is the upper curve, which is the middle curve, and which is the lower curve for < 0? 3 FIGURE 7 5. Find constants and C such that E() = C has the values in the following tale: 0 3 E()

18 p. 8 (5/6/07) Section 0.3, Power and eponential functions 53. Figure 8 shows the curve = with constant > and the mirror image of this curve aout the origin. What is the equation of the second curve? FIGURE 8 C 5. Generate the curves = and = in the window.5 6,.5 5 to see that the equation = has two positive solutions and one negative solution. Find the positive solutions trial and error and use a calculator or computer to find the approimate value of the negative solution. 55. Give a formula for the surface area A = A(V ) (square meters) of a cue as a function of its volume V (cuic meters) and draw the graph of this function. (End of Section 0.3)

Exponential equations will be written as, where a =. Example 1: Determine a formula for the exponential function whose graph is shown below.

Exponential equations will be written as, where a =. Example 1: Determine a formula for the exponential function whose graph is shown below. .1 Eponential and Logistic Functions PreCalculus.1 EXPONENTIAL AND LOGISTIC FUNCTIONS 1. Recognize eponential growth and deca functions 2. Write an eponential function given the -intercept and another

More information

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review D0 APPENDIX D Precalculus Review SECTION D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane An ordered pair, of real numbers has as its

More information

Zero and Negative Exponents and Scientific Notation. a a n a m n. Now, suppose that we allow m to equal n. We then have. a am m a 0 (1) a m

Zero and Negative Exponents and Scientific Notation. a a n a m n. Now, suppose that we allow m to equal n. We then have. a am m a 0 (1) a m 0. E a m p l e 666SECTION 0. OBJECTIVES. Define the zero eponent. Simplif epressions with negative eponents. Write a number in scientific notation. Solve an application of scientific notation We must have

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Chapter 6 Eponential and Logarithmic Functions Section summaries Section 6.1 Composite Functions Some functions are constructed in several steps, where each of the individual steps is a function. For eample,

More information

REVIEW OF ANALYTIC GEOMETRY

REVIEW OF ANALYTIC GEOMETRY REVIEW OF ANALYTIC GEOMETRY The points in a plane can be identified with ordered pairs of real numbers. We start b drawing two perpendicular coordinate lines that intersect at the origin O on each line.

More information

LESSON EIII.E EXPONENTS AND LOGARITHMS

LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS OVERVIEW Here s what ou ll learn in this lesson: Eponential Functions a. Graphing eponential functions b. Applications of eponential

More information

INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1

INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1 Chapter 1 INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4 This opening section introduces the students to man of the big ideas of Algebra 2, as well as different was of thinking and various problem solving strategies.

More information

Zeros of Polynomial Functions. The Fundamental Theorem of Algebra. The Fundamental Theorem of Algebra. zero in the complex number system.

Zeros of Polynomial Functions. The Fundamental Theorem of Algebra. The Fundamental Theorem of Algebra. zero in the complex number system. _.qd /7/ 9:6 AM Page 69 Section. Zeros of Polnomial Functions 69. Zeros of Polnomial Functions What ou should learn Use the Fundamental Theorem of Algebra to determine the number of zeros of polnomial

More information

Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form

Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form SECTION 11.3 Solving Quadratic Equations b Graphing 11.3 OBJECTIVES 1. Find an ais of smmetr 2. Find a verte 3. Graph a parabola 4. Solve quadratic equations b graphing 5. Solve an application involving

More information

5.3 Graphing Cubic Functions

5.3 Graphing Cubic Functions Name Class Date 5.3 Graphing Cubic Functions Essential Question: How are the graphs of f () = a ( - h) 3 + k and f () = ( 1_ related to the graph of f () = 3? b ( - h) 3 ) + k Resource Locker Eplore 1

More information

THE POWER RULES. Raising an Exponential Expression to a Power

THE POWER RULES. Raising an Exponential Expression to a Power 8 (5-) Chapter 5 Eponents and Polnomials 5. THE POWER RULES In this section Raising an Eponential Epression to a Power Raising a Product to a Power Raising a Quotient to a Power Variable Eponents Summar

More information

D.3. Angles and Degree Measure. Review of Trigonometric Functions

D.3. Angles and Degree Measure. Review of Trigonometric Functions APPENDIX D Precalculus Review D7 SECTION D. Review of Trigonometric Functions Angles and Degree Measure Radian Measure The Trigonometric Functions Evaluating Trigonometric Functions Solving Trigonometric

More information

SLOPE OF A LINE 3.2. section. helpful. hint. Slope Using Coordinates to Find 6% GRADE 6 100 SLOW VEHICLES KEEP RIGHT

SLOPE OF A LINE 3.2. section. helpful. hint. Slope Using Coordinates to Find 6% GRADE 6 100 SLOW VEHICLES KEEP RIGHT . Slope of a Line (-) 67. 600 68. 00. SLOPE OF A LINE In this section In Section. we saw some equations whose graphs were straight lines. In this section we look at graphs of straight lines in more detail

More information

DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS

DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS a p p e n d i g DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS DISTANCE BETWEEN TWO POINTS IN THE PLANE Suppose that we are interested in finding the distance d between two points P (, ) and P (, ) in the

More information

Functions and Graphs CHAPTER INTRODUCTION. The function concept is one of the most important ideas in mathematics. The study

Functions and Graphs CHAPTER INTRODUCTION. The function concept is one of the most important ideas in mathematics. The study Functions and Graphs CHAPTER 2 INTRODUCTION The function concept is one of the most important ideas in mathematics. The stud 2-1 Functions 2-2 Elementar Functions: Graphs and Transformations 2-3 Quadratic

More information

SAMPLE. Polynomial functions

SAMPLE. Polynomial functions Objectives C H A P T E R 4 Polnomial functions To be able to use the technique of equating coefficients. To introduce the functions of the form f () = a( + h) n + k and to sketch graphs of this form through

More information

5.2 Inverse Functions

5.2 Inverse Functions 78 Further Topics in Functions. Inverse Functions Thinking of a function as a process like we did in Section., in this section we seek another function which might reverse that process. As in real life,

More information

1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model

1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model . Piecewise Functions YOU WILL NEED graph paper graphing calculator GOAL Understand, interpret, and graph situations that are described b piecewise functions. LEARN ABOUT the Math A cit parking lot uses

More information

Substitute 4 for x in the function, Simplify.

Substitute 4 for x in the function, Simplify. Page 1 of 19 Review of Eponential and Logarithmic Functions An eponential function is a function in the form of f ( ) = for a fied ase, where > 0 and 1. is called the ase of the eponential function. The

More information

The numerical values that you find are called the solutions of the equation.

The numerical values that you find are called the solutions of the equation. Appendi F: Solving Equations The goal of solving equations When you are trying to solve an equation like: = 4, you are trying to determine all of the numerical values of that you could plug into that equation.

More information

Downloaded from www.heinemann.co.uk/ib. equations. 2.4 The reciprocal function x 1 x

Downloaded from www.heinemann.co.uk/ib. equations. 2.4 The reciprocal function x 1 x Functions and equations Assessment statements. Concept of function f : f (); domain, range, image (value). Composite functions (f g); identit function. Inverse function f.. The graph of a function; its

More information

Graphing Linear Equations

Graphing Linear Equations 6.3 Graphing Linear Equations 6.3 OBJECTIVES 1. Graph a linear equation b plotting points 2. Graph a linear equation b the intercept method 3. Graph a linear equation b solving the equation for We are

More information

Use order of operations to simplify. Show all steps in the space provided below each problem. INTEGER OPERATIONS

Use order of operations to simplify. Show all steps in the space provided below each problem. INTEGER OPERATIONS ORDER OF OPERATIONS In the following order: 1) Work inside the grouping smbols such as parenthesis and brackets. ) Evaluate the powers. 3) Do the multiplication and/or division in order from left to right.

More information

Negative Integral Exponents. If x is nonzero, the reciprocal of x is written as 1 x. For example, the reciprocal of 23 is written as 2

Negative Integral Exponents. If x is nonzero, the reciprocal of x is written as 1 x. For example, the reciprocal of 23 is written as 2 4 (4-) Chapter 4 Polynomials and Eponents P( r) 0 ( r) dollars. Which law of eponents can be used to simplify the last epression? Simplify it. P( r) 7. CD rollover. Ronnie invested P dollars in a -year

More information

SECTION 5-1 Exponential Functions

SECTION 5-1 Exponential Functions 354 5 Eponential and Logarithmic Functions Most of the functions we have considered so far have been polnomial and rational functions, with a few others involving roots or powers of polnomial or rational

More information

Chapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs

Chapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs Chapter 4. Polynomial and Rational Functions 4.1 Polynomial Functions and Their Graphs A polynomial function of degree n is a function of the form P = a n n + a n 1 n 1 + + a 2 2 + a 1 + a 0 Where a s

More information

9.3 OPERATIONS WITH RADICALS

9.3 OPERATIONS WITH RADICALS 9. Operations with Radicals (9 1) 87 9. OPERATIONS WITH RADICALS In this section Adding and Subtracting Radicals Multiplying Radicals Conjugates In this section we will use the ideas of Section 9.1 in

More information

C3: Functions. Learning objectives

C3: Functions. Learning objectives CHAPTER C3: Functions Learning objectives After studing this chapter ou should: be familiar with the terms one-one and man-one mappings understand the terms domain and range for a mapping understand the

More information

I think that starting

I think that starting . Graphs of Functions 69. GRAPHS OF FUNCTIONS One can envisage that mathematical theor will go on being elaborated and etended indefinitel. How strange that the results of just the first few centuries

More information

QUADRATIC EQUATIONS EXPECTED BACKGROUND KNOWLEDGE

QUADRATIC EQUATIONS EXPECTED BACKGROUND KNOWLEDGE MODULE - 1 Quadratic Equations 6 QUADRATIC EQUATIONS In this lesson, you will study aout quadratic equations. You will learn to identify quadratic equations from a collection of given equations and write

More information

MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60

MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60 MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60 A Summar of Concepts Needed to be Successful in Mathematics The following sheets list the ke concepts which are taught in the specified math course. The sheets

More information

Shake, Rattle and Roll

Shake, Rattle and Roll 00 College Board. All rights reserved. 00 College Board. All rights reserved. SUGGESTED LEARNING STRATEGIES: Shared Reading, Marking the Tet, Visualization, Interactive Word Wall Roller coasters are scar

More information

1. a. standard form of a parabola with. 2 b 1 2 horizontal axis of symmetry 2. x 2 y 2 r 2 o. standard form of an ellipse centered

1. a. standard form of a parabola with. 2 b 1 2 horizontal axis of symmetry 2. x 2 y 2 r 2 o. standard form of an ellipse centered Conic Sections. Distance Formula and Circles. More on the Parabola. The Ellipse and Hperbola. Nonlinear Sstems of Equations in Two Variables. Nonlinear Inequalities and Sstems of Inequalities In Chapter,

More information

Polynomials. Jackie Nicholas Jacquie Hargreaves Janet Hunter

Polynomials. Jackie Nicholas Jacquie Hargreaves Janet Hunter Mathematics Learning Centre Polnomials Jackie Nicholas Jacquie Hargreaves Janet Hunter c 26 Universit of Sdne Mathematics Learning Centre, Universit of Sdne 1 1 Polnomials Man of the functions we will

More information

6. The given function is only drawn for x > 0. Complete the function for x < 0 with the following conditions:

6. The given function is only drawn for x > 0. Complete the function for x < 0 with the following conditions: Precalculus Worksheet 1. Da 1 1. The relation described b the set of points {(-, 5 ),( 0, 5 ),(,8 ),(, 9) } is NOT a function. Eplain wh. For questions - 4, use the graph at the right.. Eplain wh the graph

More information

PROPERTIES OF ELLIPTIC CURVES AND THEIR USE IN FACTORING LARGE NUMBERS

PROPERTIES OF ELLIPTIC CURVES AND THEIR USE IN FACTORING LARGE NUMBERS PROPERTIES OF ELLIPTIC CURVES AND THEIR USE IN FACTORING LARGE NUMBERS A ver important set of curves which has received considerabl attention in recent ears in connection with the factoring of large numbers

More information

POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

More information

ax 2 by 2 cxy dx ey f 0 The Distance Formula The distance d between two points (x 1, y 1 ) and (x 2, y 2 ) is given by d (x 2 x 1 )

ax 2 by 2 cxy dx ey f 0 The Distance Formula The distance d between two points (x 1, y 1 ) and (x 2, y 2 ) is given by d (x 2 x 1 ) SECTION 1. The Circle 1. OBJECTIVES The second conic section we look at is the circle. The circle can be described b using the standard form for a conic section, 1. Identif the graph of an equation as

More information

Linear Equations in Two Variables

Linear Equations in Two Variables Section. Sets of Numbers and Interval Notation 0 Linear Equations in Two Variables. The Rectangular Coordinate Sstem and Midpoint Formula. Linear Equations in Two Variables. Slope of a Line. Equations

More information

MPE Review Section III: Logarithmic & Exponential Functions

MPE Review Section III: Logarithmic & Exponential Functions MPE Review Section III: Logarithmic & Eponential Functions FUNCTIONS AND GRAPHS To specify a function y f (, one must give a collection of numbers D, called the domain of the function, and a procedure

More information

Graphing Quadratic Equations

Graphing Quadratic Equations .4 Graphing Quadratic Equations.4 OBJECTIVE. Graph a quadratic equation b plotting points In Section 6.3 ou learned to graph first-degree equations. Similar methods will allow ou to graph quadratic equations

More information

SECTION P.5 Factoring Polynomials

SECTION P.5 Factoring Polynomials BLITMCPB.QXP.0599_48-74 /0/0 0:4 AM Page 48 48 Chapter P Prerequisites: Fundamental Concepts of Algebra Technology Eercises Critical Thinking Eercises 98. The common cold is caused by a rhinovirus. The

More information

Probability, Mean and Median

Probability, Mean and Median Proaility, Mean and Median In the last section, we considered (proaility) density functions. We went on to discuss their relationship with cumulative distriution functions. The goal of this section is

More information

SECTION 2.2. Distance and Midpoint Formulas; Circles

SECTION 2.2. Distance and Midpoint Formulas; Circles SECTION. Objectives. Find the distance between two points.. Find the midpoint of a line segment.. Write the standard form of a circle s equation.. Give the center and radius of a circle whose equation

More information

STRAND: ALGEBRA Unit 3 Solving Equations

STRAND: ALGEBRA Unit 3 Solving Equations CMM Subject Support Strand: ALGEBRA Unit Solving Equations: Tet STRAND: ALGEBRA Unit Solving Equations TEXT Contents Section. Algebraic Fractions. Algebraic Fractions and Quadratic Equations. Algebraic

More information

Math 152, Intermediate Algebra Practice Problems #1

Math 152, Intermediate Algebra Practice Problems #1 Math 152, Intermediate Algebra Practice Problems 1 Instructions: These problems are intended to give ou practice with the tpes Joseph Krause and level of problems that I epect ou to be able to do. Work

More information

Non-Linear Regression 2006-2008 Samuel L. Baker

Non-Linear Regression 2006-2008 Samuel L. Baker NON-LINEAR REGRESSION 1 Non-Linear Regression 2006-2008 Samuel L. Baker The linear least squares method that you have een using fits a straight line or a flat plane to a unch of data points. Sometimes

More information

Algebra 2 Unit 8 (Chapter 7) CALCULATORS ARE NOT ALLOWED

Algebra 2 Unit 8 (Chapter 7) CALCULATORS ARE NOT ALLOWED Algebra Unit 8 (Chapter 7) CALCULATORS ARE NOT ALLOWED. Graph eponential functions. (Sections 7., 7.) Worksheet 6. Solve eponential growth and eponential decay problems. (Sections 7., 7.) Worksheet 8.

More information

10.1 Systems of Linear Equations: Substitution and Elimination

10.1 Systems of Linear Equations: Substitution and Elimination 726 CHAPTER 10 Systems of Equations and Inequalities 10.1 Systems of Linear Equations: Sustitution and Elimination PREPARING FOR THIS SECTION Before getting started, review the following: Linear Equations

More information

Indiana University Purdue University Indianapolis. Marvin L. Bittinger. Indiana University Purdue University Indianapolis. Judith A.

Indiana University Purdue University Indianapolis. Marvin L. Bittinger. Indiana University Purdue University Indianapolis. Judith A. STUDENT S SOLUTIONS MANUAL JUDITH A. PENNA Indiana Universit Purdue Universit Indianapolis COLLEGE ALGEBRA: GRAPHS AND MODELS FIFTH EDITION Marvin L. Bittinger Indiana Universit Purdue Universit Indianapolis

More information

Core Maths C3. Revision Notes

Core Maths C3. Revision Notes Core Maths C Revision Notes October 0 Core Maths C Algebraic fractions... Cancelling common factors... Multipling and dividing fractions... Adding and subtracting fractions... Equations... 4 Functions...

More information

135 Final Review. Determine whether the graph is symmetric with respect to the x-axis, the y-axis, and/or the origin.

135 Final Review. Determine whether the graph is symmetric with respect to the x-axis, the y-axis, and/or the origin. 13 Final Review Find the distance d(p1, P2) between the points P1 and P2. 1) P1 = (, -6); P2 = (7, -2) 2 12 2 12 3 Determine whether the graph is smmetric with respect to the -ais, the -ais, and/or the

More information

Connecting Transformational Geometry and Transformations of Functions

Connecting Transformational Geometry and Transformations of Functions Connecting Transformational Geometr and Transformations of Functions Introductor Statements and Assumptions Isometries are rigid transformations that preserve distance and angles and therefore shapes.

More information

Quadratic Equations and Functions

Quadratic Equations and Functions Quadratic Equations and Functions. Square Root Propert and Completing the Square. Quadratic Formula. Equations in Quadratic Form. Graphs of Quadratic Functions. Verte of a Parabola and Applications In

More information

SUNY ECC. ACCUPLACER Preparation Workshop. Algebra Skills

SUNY ECC. ACCUPLACER Preparation Workshop. Algebra Skills SUNY ECC ACCUPLACER Preparation Workshop Algebra Skills Gail A. Butler Ph.D. Evaluating Algebraic Epressions Substitute the value (#) in place of the letter (variable). Follow order of operations!!! E)

More information

FINAL EXAM REVIEW MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

FINAL EXAM REVIEW MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. FINAL EXAM REVIEW MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine whether or not the relationship shown in the table is a function. 1) -

More information

Chapter 6 Quadratic Functions

Chapter 6 Quadratic Functions Chapter 6 Quadratic Functions Determine the characteristics of quadratic functions Sketch Quadratics Solve problems modelled b Quadratics 6.1Quadratic Functions A quadratic function is of the form where

More information

Exponential Functions: Differentiation and Integration. The Natural Exponential Function

Exponential Functions: Differentiation and Integration. The Natural Exponential Function 46_54.q //4 :59 PM Page 5 5 CHAPTER 5 Logarithmic, Eponential, an Other Transcenental Functions Section 5.4 f () = e f() = ln The inverse function of the natural logarithmic function is the natural eponential

More information

In this this review we turn our attention to the square root function, the function defined by the equation. f(x) = x. (5.1)

In this this review we turn our attention to the square root function, the function defined by the equation. f(x) = x. (5.1) Section 5.2 The Square Root 1 5.2 The Square Root In this this review we turn our attention to the square root function, the function defined b the equation f() =. (5.1) We can determine the domain and

More information

Why should we learn this? One real-world connection is to find the rate of change in an airplane s altitude. The Slope of a Line VOCABULARY

Why should we learn this? One real-world connection is to find the rate of change in an airplane s altitude. The Slope of a Line VOCABULARY Wh should we learn this? The Slope of a Line Objectives: To find slope of a line given two points, and to graph a line using the slope and the -intercept. One real-world connection is to find the rate

More information

Ax 2 Cy 2 Dx Ey F 0. Here we show that the general second-degree equation. Ax 2 Bxy Cy 2 Dx Ey F 0. y X sin Y cos P(X, Y) X

Ax 2 Cy 2 Dx Ey F 0. Here we show that the general second-degree equation. Ax 2 Bxy Cy 2 Dx Ey F 0. y X sin Y cos P(X, Y) X Rotation of Aes ROTATION OF AES Rotation of Aes For a discussion of conic sections, see Calculus, Fourth Edition, Section 11.6 Calculus, Earl Transcendentals, Fourth Edition, Section 1.6 In precalculus

More information

The Distance Formula and the Circle

The Distance Formula and the Circle 10.2 The Distance Formula and the Circle 10.2 OBJECTIVES 1. Given a center and radius, find the equation of a circle 2. Given an equation for a circle, find the center and radius 3. Given an equation,

More information

2.6. The Circle. Introduction. Prerequisites. Learning Outcomes

2.6. The Circle. Introduction. Prerequisites. Learning Outcomes The Circle 2.6 Introduction A circle is one of the most familiar geometrical figures and has been around a long time! In this brief Section we discuss the basic coordinate geometr of a circle - in particular

More information

Partial Fractions. and Logistic Growth. Section 6.2. Partial Fractions

Partial Fractions. and Logistic Growth. Section 6.2. Partial Fractions SECTION 6. Partial Fractions and Logistic Growth 9 Section 6. Partial Fractions and Logistic Growth Use partial fractions to find indefinite integrals. Use logistic growth functions to model real-life

More information

To Be or Not To Be a Linear Equation: That Is the Question

To Be or Not To Be a Linear Equation: That Is the Question To Be or Not To Be a Linear Equation: That Is the Question Linear Equation in Two Variables A linear equation in two variables is an equation that can be written in the form A + B C where A and B are not

More information

Exponents. Learning Objectives 4-1

Exponents. Learning Objectives 4-1 Eponents -1 to - Learning Objectives -1 The product rule for eponents The quotient rule for eponents The power rule for eponents Power rules for products and quotient We can simplify by combining the like

More information

Exponential Functions. Exponential Functions and Their Graphs. Example 2. Example 1. Example 3. Graphs of Exponential Functions 9/17/2014

Exponential Functions. Exponential Functions and Their Graphs. Example 2. Example 1. Example 3. Graphs of Exponential Functions 9/17/2014 Eponential Functions Eponential Functions and Their Graphs Precalculus.1 Eample 1 Use a calculator to evaluate each function at the indicated value of. a) f ( ) 8 = Eample In the same coordinate place,

More information

Core Maths C2. Revision Notes

Core Maths C2. Revision Notes Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...

More information

ACT Math Vocabulary. Altitude The height of a triangle that makes a 90-degree angle with the base of the triangle. Altitude

ACT Math Vocabulary. Altitude The height of a triangle that makes a 90-degree angle with the base of the triangle. Altitude ACT Math Vocabular Acute When referring to an angle acute means less than 90 degrees. When referring to a triangle, acute means that all angles are less than 90 degrees. For eample: Altitude The height

More information

Exponential Functions, Logarithms, and e

Exponential Functions, Logarithms, and e chapter 3 Starry Night, painted by Vincent Van Gogh in 889. The brightness of a star as seen from Earth is measured using a logarithmic scale. Eponential Functions, Logarithms, and e This chapter focuses

More information

More Equations and Inequalities

More Equations and Inequalities Section. Sets of Numbers and Interval Notation 9 More Equations and Inequalities 9 9. Compound Inequalities 9. Polnomial and Rational Inequalities 9. Absolute Value Equations 9. Absolute Value Inequalities

More information

Lesson 9.1 Solving Quadratic Equations

Lesson 9.1 Solving Quadratic Equations Lesson 9.1 Solving Quadratic Equations 1. Sketch the graph of a quadratic equation with a. One -intercept and all nonnegative y-values. b. The verte in the third quadrant and no -intercepts. c. The verte

More information

Colegio del mundo IB. Programa Diploma REPASO 2. 1. The mass m kg of a radio-active substance at time t hours is given by. m = 4e 0.2t.

Colegio del mundo IB. Programa Diploma REPASO 2. 1. The mass m kg of a radio-active substance at time t hours is given by. m = 4e 0.2t. REPASO. The mass m kg of a radio-active substance at time t hours is given b m = 4e 0.t. Write down the initial mass. The mass is reduced to.5 kg. How long does this take?. The function f is given b f()

More information

Exponential, Logistic, and Logarithmic Functions

Exponential, Logistic, and Logarithmic Functions 5144_Demana_Ch03pp275-348 1/13/06 12:19 PM Page 275 CHAPTER 3 Eponential, Logistic, and Logarithmic Functions 3.1 Eponential and Logistic Functions 3.2 Eponential and Logistic Modeling 3.3 Logarithmic

More information

6.3 PARTIAL FRACTIONS AND LOGISTIC GROWTH

6.3 PARTIAL FRACTIONS AND LOGISTIC GROWTH 6 CHAPTER 6 Techniques of Integration 6. PARTIAL FRACTIONS AND LOGISTIC GROWTH Use partial fractions to find indefinite integrals. Use logistic growth functions to model real-life situations. Partial Fractions

More information

North Carolina Community College System Diagnostic and Placement Test Sample Questions

North Carolina Community College System Diagnostic and Placement Test Sample Questions North Carolina Communit College Sstem Diagnostic and Placement Test Sample Questions 0 The College Board. College Board, ACCUPLACER, WritePlacer and the acorn logo are registered trademarks of the College

More information

2.3 TRANSFORMATIONS OF GRAPHS

2.3 TRANSFORMATIONS OF GRAPHS 78 Chapter Functions 7. Overtime Pa A carpenter earns $0 per hour when he works 0 hours or fewer per week, and time-and-ahalf for the number of hours he works above 0. Let denote the number of hours he

More information

SECTION 7-4 Algebraic Vectors

SECTION 7-4 Algebraic Vectors 7-4 lgebraic Vectors 531 SECTIN 7-4 lgebraic Vectors From Geometric Vectors to lgebraic Vectors Vector ddition and Scalar Multiplication Unit Vectors lgebraic Properties Static Equilibrium Geometric vectors

More information

Polynomial and Synthetic Division. Long Division of Polynomials. Example 1. 6x 2 7x 2 x 2) 19x 2 16x 4 6x3 12x 2 7x 2 16x 7x 2 14x. 2x 4.

Polynomial and Synthetic Division. Long Division of Polynomials. Example 1. 6x 2 7x 2 x 2) 19x 2 16x 4 6x3 12x 2 7x 2 16x 7x 2 14x. 2x 4. _.qd /7/5 9: AM Page 5 Section.. Polynomial and Synthetic Division 5 Polynomial and Synthetic Division What you should learn Use long division to divide polynomials by other polynomials. Use synthetic

More information

Chapter 4: Exponential and Logarithmic Functions

Chapter 4: Exponential and Logarithmic Functions Chapter 4: Eponential and Logarithmic Functions Section 4.1 Eponential Functions... 15 Section 4. Graphs of Eponential Functions... 3 Section 4.3 Logarithmic Functions... 4 Section 4.4 Logarithmic Properties...

More information

SECTION 2-2 Straight Lines

SECTION 2-2 Straight Lines - Straight Lines 11 94. Engineering. The cross section of a rivet has a top that is an arc of a circle (see the figure). If the ends of the arc are 1 millimeters apart and the top is 4 millimeters above

More information

f x a 0 n 1 a 0 a 1 cos x a 2 cos 2x a 3 cos 3x b 1 sin x b 2 sin 2x b 3 sin 3x a n cos nx b n sin nx n 1 f x dx y

f x a 0 n 1 a 0 a 1 cos x a 2 cos 2x a 3 cos 3x b 1 sin x b 2 sin 2x b 3 sin 3x a n cos nx b n sin nx n 1 f x dx y Fourier Series When the French mathematician Joseph Fourier (768 83) was tring to solve a problem in heat conduction, he needed to epress a function f as an infinite series of sine and cosine functions:

More information

9.5 CALCULUS AND POLAR COORDINATES

9.5 CALCULUS AND POLAR COORDINATES smi9885_ch09b.qd 5/7/0 :5 PM Page 760 760 Chapter 9 Parametric Equations and Polar Coordinates 9.5 CALCULUS AND POLAR COORDINATES Now that we have introduced ou to polar coordinates and looked at a variet

More information

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED CONDENSED L E S S O N 10.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations

More information

2.6. The Circle. Introduction. Prerequisites. Learning Outcomes

2.6. The Circle. Introduction. Prerequisites. Learning Outcomes The Circle 2.6 Introduction A circle is one of the most familiar geometrical figures. In this brief Section we discuss the basic coordinate geometr of a circle - in particular the basic equation representing

More information

Section 3-3 Approximating Real Zeros of Polynomials

Section 3-3 Approximating Real Zeros of Polynomials - Approimating Real Zeros of Polynomials 9 Section - Approimating Real Zeros of Polynomials Locating Real Zeros The Bisection Method Approimating Multiple Zeros Application The methods for finding zeros

More information

Complex Numbers. (x 1) (4x 8) n 2 4 x 1 2 23 No real-number solutions. From the definition, it follows that i 2 1.

Complex Numbers. (x 1) (4x 8) n 2 4 x 1 2 23 No real-number solutions. From the definition, it follows that i 2 1. 7_Ch09_online 7// 0:7 AM Page 9-9. Comple Numbers 9- SECTION 9. OBJECTIVES Epress square roots of negative numbers in terms of i. Write comple numbers in a bi form. Add and subtract comple numbers. Multipl

More information

Fluid Pressure and Fluid Force

Fluid Pressure and Fluid Force 0_0707.q //0 : PM Page 07 SECTION 7.7 Section 7.7 Flui Pressure an Flui Force 07 Flui Pressure an Flui Force Fin flui pressure an flui force. Flui Pressure an Flui Force Swimmers know that the eeper an

More information

When I was 3.1 POLYNOMIAL FUNCTIONS

When I was 3.1 POLYNOMIAL FUNCTIONS 146 Chapter 3 Polnomial and Rational Functions Section 3.1 begins with basic definitions and graphical concepts and gives an overview of ke properties of polnomial functions. In Sections 3.2 and 3.3 we

More information

Section 1-4 Functions: Graphs and Properties

Section 1-4 Functions: Graphs and Properties 44 1 FUNCTIONS AND GRAPHS I(r). 2.7r where r represents R & D ependitures. (A) Complete the following table. Round values of I(r) to one decimal place. r (R & D) Net income I(r).66 1.2.7 1..8 1.8.99 2.1

More information

Linear Inequality in Two Variables

Linear Inequality in Two Variables 90 (7-) Chapter 7 Sstems of Linear Equations and Inequalities In this section 7.4 GRAPHING LINEAR INEQUALITIES IN TWO VARIABLES You studied linear equations and inequalities in one variable in Chapter.

More information

2.3 Quadratic Functions

2.3 Quadratic Functions 88 Linear and Quadratic Functions. Quadratic Functions You ma recall studing quadratic equations in Intermediate Algebra. In this section, we review those equations in the contet of our net famil of functions:

More information

15.1. Exact Differential Equations. Exact First-Order Equations. Exact Differential Equations Integrating Factors

15.1. Exact Differential Equations. Exact First-Order Equations. Exact Differential Equations Integrating Factors SECTION 5. Eact First-Order Equations 09 SECTION 5. Eact First-Order Equations Eact Differential Equations Integrating Factors Eact Differential Equations In Section 5.6, ou studied applications of differential

More information

M122 College Algebra Review for Final Exam

M122 College Algebra Review for Final Exam M122 College Algebra Review for Final Eam Revised Fall 2007 for College Algebra in Contet All answers should include our work (this could be a written eplanation of the result, a graph with the relevant

More information

THE PARABOLA 13.2. section

THE PARABOLA 13.2. section 698 (3 0) Chapter 3 Nonlinear Sstems and the Conic Sections 49. Fencing a rectangle. If 34 ft of fencing are used to enclose a rectangular area of 72 ft 2, then what are the dimensions of the area? 50.

More information

EQUATIONS OF LINES IN SLOPE- INTERCEPT AND STANDARD FORM

EQUATIONS OF LINES IN SLOPE- INTERCEPT AND STANDARD FORM . Equations of Lines in Slope-Intercept and Standard Form ( ) 8 In this Slope-Intercept Form Standard Form section Using Slope-Intercept Form for Graphing Writing the Equation for a Line Applications (0,

More information

2.5 Library of Functions; Piecewise-defined Functions

2.5 Library of Functions; Piecewise-defined Functions SECTION.5 Librar of Functions; Piecewise-defined Functions 07.5 Librar of Functions; Piecewise-defined Functions PREPARING FOR THIS SECTION Before getting started, review the following: Intercepts (Section.,

More information

2.7 Applications of Derivatives to Business

2.7 Applications of Derivatives to Business 80 CHAPTER 2 Applications of the Derivative 2.7 Applications of Derivatives to Business and Economics Cost = C() In recent ears, economic decision making has become more and more mathematicall oriented.

More information

Mathematics 31 Pre-calculus and Limits

Mathematics 31 Pre-calculus and Limits Mathematics 31 Pre-calculus and Limits Overview After completing this section, students will be epected to have acquired reliability and fluency in the algebraic skills of factoring, operations with radicals

More information

Business and Economic Applications

Business and Economic Applications Appendi F Business and Economic Applications F1 F Business and Economic Applications Understand basic business terms and formulas, determine marginal revenues, costs and profits, find demand functions,

More information