3. Convert a number from one number system to another
|
|
|
- Rolf Grant
- 9 years ago
- Views:
Transcription
1 3. Convert a number from one number system to another Conversion between number bases: Hexa (16) Decimal (10) Binary (2) Octal (8) More Interest Way we need conversion? We need decimal system for real world (for presentation and input): for example: we use 10-based numbering system for input and output in digital calculator. We need binary system inside calculator for calculation. Input Conversion 10-to-2 Digital System Conversion 2-to-10 Output
2 a) Binary to decimal conversions: Rule: any binary number can be converted to its decimal equivalent simply by summing together the weights of the various positions in the binary number which contains a 1. Example 1: Convert to its decimal equivalent = = Example 2: Convert to decimal equivalent = b) Decimal to binary conversions: There are two ways to convert a decimal number to its equivalent binary representation 1. The reverse of the binary-to-decimal conversion process (optional). The decimal number is simply expressed as a sum of powers of 2 and then 1 2 and 0 2 are written in the appropriate bit positions. Example 1:-Convert to binary number = = = (2) Example 2:-Convert to binary number = = = Repeated division: Repeating division the decimal number by 2 and writing down the remainder after each division until a quotient of 0 is obtained. Note: The binary result is obtained by writing the first remainder as the LSB and the last remainder as the MSB. General Rule 1: Conversion from decimal to other base 1. Divide decimal number by the base (2, 8, 16, ). 2. The remainder is the lowest-order digit. 3. Repeat first two steps unit no divisor remains.
3 General Rule 2: Decimal fraction conversion to anther base 1. Multiply decimal number by the base (2, 8, ). 2. The integer is the highest-order digit. 3. Repeat first two steps until fraction becomes zero. Example 1 Convert to binary number = 12 + remainder of 1 (LSB) = 6 + remainder of 0 = 3 + remainder of 0 = 1 + remainder of 1 = 0 + remainder of 1 (MSB) = Example 2 Convert to binary number Division by 2 Quotient integer remainder 6 1 (a 0 ) = 3 0 (a 1 ) 1 1 (a 2 ) 0 1 (a 3 ) Answer (13) 10 = (a 3 a 2 a 1 a 0 ) = (1101) 2
4 Example 3: Convert to binary number Multiply by 2 Integer Fraction coefficient 0.625*2 = a 1 = *2 = a 2 = *2 = 1 + 0(stop) a 3 = 1 Answer (0.625) 10 = (0.a 1 a 2 a 3 ) 2 = (0.101) 2 Correct order c) Octal-to-decimal To convert, we need to multiply each octal digit by its positional weight. Example (8) = (3*8 2 ) + (7*8 1 ) + (2*8 0 ) = (3*64) = Example = (2*8 1 ) + (4*8 0 ) + (6*8-1 ) = d) Decimal to octal Repeated division by 8. Example 1: Convert to octal number. = 33 + remainder of 2 (LSD) = 4 + remainder of 1 = 0 + remainder of = (8)
5 Example 2: Convert to octal number. Multiply by 8 Integer Fraction coefficient 0.35*8= a 1 = 2 Repeated stop 0.8*8 = a 2 = 6 0.4*8 = a 3 = 3 0.2*8 = a 4 =1 0.6*8 = a 5 =4 Answer (0.35) 10 = (0.a 1 a 2 a 3 a 4 a 5 ) 2 = ( ) 8 Correct order e) Hexa-to-decimal Example 1:-Convert 356 (16) to decimal: 356 (16) = (3*16 2 ) + (5*16 1 ) + (6*16 0 ) = 3* = 854 (10) Example 2:-Convert 2AF (16) to decimal: 2AF (16) = (2*16 2 ) + (10*16 1 ) + (15*16 0 ) = = 687 (10) f) Decimal-to-hexa:(using repeated division by 16) Example 1: Convert to hex number. = 26 + remainder of 7 (LSD) = 1 + remainder of 10 = 0 + remainder of = 1 A 7 (16)
6 g) Hexa-to-binary: Each hexa digit is converted to its four-bit binary equivalent: Example 1: Convert 9F2 (16) to its binary equivalent 9 F F2 (16) = (2) Example 2: Convert BA6 (16) to binary equivalent BA6 (16) = ( ) 2 h) Binary-to-hexa The binary numbers are grouped into groups of four bits and each group is converted to its equivalent hexa digit. Zeros are added as needed to complete a four-bit group. Example 1: Convert (2) to hexa equivalent Added zeros A (2) = 3A6 (16) Example 2: Convert to hexa equivalent = 15F (16) i) Octal to binary conversion: Conversion each octal digit to its three bit binary equivalent. Conversion Table Octal digit Binary equivalent
7 Using this table, we can convert any octal number to binary by individually converting each digit. Example 1: Convert 472 (8) to binary number (8)) = (2) Example 2: Convert 5431 (8) to binary number 5431 (8) = = (2) j) Binary to octal conversion: The bits of the binary number are grouped into group of 3 bits starting at the LSB, then each group is converted to its octal equivalent (see table). Example 1: Convert (2) to octal equivalent Added zero (2) = 326 (8) Note: Zero was placed to the left of the MSB to produce groups of 3 bits. General example: Convert to its eight-bit binary equivalent by first converting to octal.
8 = 22 + remainder of 1 (LSD) = 2 + remainder of 6 = 0 + remainder of = (8) Thus = 261 (8), now we can quickly convert this octal number to its binary equivalent to get eight bit representation. So: Important Note: this method of decimal-to-octal-to-binary conversion is often quicker than going directly from decimal to binary, especially for large numbers. 4. Advantage of octal and hexadecimal systems: 1. Hexa and octal number are used as a "short hand" way to represent stings of bits. 2. Error prone to write the binary number, in hex and octal less error. 3. The octal and hexadecimal number systems are both used (in memory addressing and microprocessor technology).
NUMBER SYSTEMS. 1.1 Introduction
NUMBER SYSTEMS 1.1 Introduction There are several number systems which we normally use, such as decimal, binary, octal, hexadecimal, etc. Amongst them we are most familiar with the decimal number system.
Lecture 11: Number Systems
Lecture 11: Number Systems Numeric Data Fixed point Integers (12, 345, 20567 etc) Real fractions (23.45, 23., 0.145 etc.) Floating point such as 23. 45 e 12 Basically an exponent representation Any number
Number Conversions Dr. Sarita Agarwal (Acharya Narendra Dev College,University of Delhi)
Conversions Dr. Sarita Agarwal (Acharya Narendra Dev College,University of Delhi) INTRODUCTION System- A number system defines a set of values to represent quantity. We talk about the number of people
Oct: 50 8 = 6 (r = 2) 6 8 = 0 (r = 6) Writing the remainders in reverse order we get: (50) 10 = (62) 8
ECE Department Summer LECTURE #5: Number Systems EEL : Digital Logic and Computer Systems Based on lecture notes by Dr. Eric M. Schwartz Decimal Number System: -Our standard number system is base, also
Base Conversion written by Cathy Saxton
Base Conversion written by Cathy Saxton 1. Base 10 In base 10, the digits, from right to left, specify the 1 s, 10 s, 100 s, 1000 s, etc. These are powers of 10 (10 x ): 10 0 = 1, 10 1 = 10, 10 2 = 100,
Useful Number Systems
Useful Number Systems Decimal Base = 10 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Binary Base = 2 Digit Set = {0, 1} Octal Base = 8 = 2 3 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7} Hexadecimal Base = 16 = 2
CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012
CDA 3200 Digital Systems Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 Outline Data Representation Binary Codes Why 6-3-1-1 and Excess-3? Data Representation (1/2) Each numbering
Goals. Unary Numbers. Decimal Numbers. 3,148 is. 1000 s 100 s 10 s 1 s. Number Bases 1/12/2009. COMP370 Intro to Computer Architecture 1
Number Bases //9 Goals Numbers Understand binary and hexadecimal numbers Be able to convert between number bases Understand binary fractions COMP37 Introduction to Computer Architecture Unary Numbers Decimal
CSI 333 Lecture 1 Number Systems
CSI 333 Lecture 1 Number Systems 1 1 / 23 Basics of Number Systems Ref: Appendix C of Deitel & Deitel. Weighted Positional Notation: 192 = 2 10 0 + 9 10 1 + 1 10 2 General: Digit sequence : d n 1 d n 2...
CPEN 214 - Digital Logic Design Binary Systems
CPEN 4 - Digital Logic Design Binary Systems C. Gerousis Digital Design 3 rd Ed., Mano Prentice Hall Digital vs. Analog An analog system has continuous range of values A mercury thermometer Vinyl records
LSN 2 Number Systems. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology
LSN 2 Number Systems Department of Engineering Technology LSN 2 Decimal Number System Decimal number system has 10 digits (0-9) Base 10 weighting system... 10 5 10 4 10 3 10 2 10 1 10 0. 10-1 10-2 10-3
THE BINARY NUMBER SYSTEM
THE BINARY NUMBER SYSTEM Dr. Robert P. Webber, Longwood University Our civilization uses the base 10 or decimal place value system. Each digit in a number represents a power of 10. For example, 365.42
2 Number Systems. Source: Foundations of Computer Science Cengage Learning. Objectives After studying this chapter, the student should be able to:
2 Number Systems 2.1 Source: Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: Understand the concept of number systems. Distinguish
Chapter 7 Lab - Decimal, Binary, Octal, Hexadecimal Numbering Systems
Chapter 7 Lab - Decimal, Binary, Octal, Hexadecimal Numbering Systems This assignment is designed to familiarize you with different numbering systems, specifically: binary, octal, hexadecimal (and decimal)
Decimal to Binary Conversion
Decimal to Binary Conversion A tool that makes the conversion of decimal values to binary values simple is the following table. The first row is created by counting right to left from one to eight, for
COMPSCI 210. Binary Fractions. Agenda & Reading
COMPSCI 21 Binary Fractions Agenda & Reading Topics: Fractions Binary Octal Hexadecimal Binary -> Octal, Hex Octal -> Binary, Hex Decimal -> Octal, Hex Hex -> Binary, Octal Animation: BinFrac.htm Example
Binary, Hexadecimal, Octal, and BCD Numbers
23CH_PHCalter_TMSETE_949118 23/2/2007 1:37 PM Page 1 Binary, Hexadecimal, Octal, and BCD Numbers OBJECTIVES When you have completed this chapter, you should be able to: Convert between binary and decimal
Machine Architecture and Number Systems. Major Computer Components. Schematic Diagram of a Computer. The CPU. The Bus. Main Memory.
1 Topics Machine Architecture and Number Systems Major Computer Components Bits, Bytes, and Words The Decimal Number System The Binary Number System Converting from Decimal to Binary Major Computer Components
Number and codes in digital systems
Number and codes in digital systems Decimal Numbers You are familiar with the decimal number system because you use them everyday. But their weighted structure is not understood. In the decimal number
Chapter 2. Binary Values and Number Systems
Chapter 2 Binary Values and Number Systems Numbers Natural numbers, a.k.a. positive integers Zero and any number obtained by repeatedly adding one to it. Examples: 100, 0, 45645, 32 Negative numbers A
Positional Numbering System
APPENDIX B Positional Numbering System A positional numbering system uses a set of symbols. The value that each symbol represents, however, depends on its face value and its place value, the value associated
Binary Numbers. Binary Octal Hexadecimal
Binary Numbers Binary Octal Hexadecimal Binary Numbers COUNTING SYSTEMS UNLIMITED... Since you have been using the 10 different digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 all your life, you may wonder how
COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012
Binary numbers The reason humans represent numbers using decimal (the ten digits from 0,1,... 9) is that we have ten fingers. There is no other reason than that. There is nothing special otherwise about
Binary Representation. Number Systems. Base 10, Base 2, Base 16. Positional Notation. Conversion of Any Base to Decimal.
Binary Representation The basis of all digital data is binary representation. Binary - means two 1, 0 True, False Hot, Cold On, Off We must be able to handle more than just values for real world problems
Digital System Design Prof. D Roychoudhry Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur
Digital System Design Prof. D Roychoudhry Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture - 04 Digital Logic II May, I before starting the today s lecture
Number Systems. Introduction / Number Systems
Number Systems Introduction / Number Systems Data Representation Data representation can be Digital or Analog In Analog representation values are represented over a continuous range In Digital representation
6 3 4 9 = 6 10 + 3 10 + 4 10 + 9 10
Lesson The Binary Number System. Why Binary? The number system that you are familiar with, that you use every day, is the decimal number system, also commonly referred to as the base- system. When you
2011, The McGraw-Hill Companies, Inc. Chapter 3
Chapter 3 3.1 Decimal System The radix or base of a number system determines the total number of different symbols or digits used by that system. The decimal system has a base of 10 with the digits 0 through
Binary Representation
Binary Representation The basis of all digital data is binary representation. Binary - means two 1, 0 True, False Hot, Cold On, Off We must tbe able to handle more than just values for real world problems
Section 1.4 Place Value Systems of Numeration in Other Bases
Section.4 Place Value Systems of Numeration in Other Bases Other Bases The Hindu-Arabic system that is used in most of the world today is a positional value system with a base of ten. The simplest reason
NUMBER SYSTEMS. William Stallings
NUMBER SYSTEMS William Stallings The Decimal System... The Binary System...3 Converting between Binary and Decimal...3 Integers...4 Fractions...5 Hexadecimal Notation...6 This document available at WilliamStallings.com/StudentSupport.html
A Step towards an Easy Interconversion of Various Number Systems
A towards an Easy Interconversion of Various Number Systems Shahid Latif, Rahat Ullah, Hamid Jan Department of Computer Science and Information Technology Sarhad University of Science and Information Technology
Numbering Systems. InThisAppendix...
G InThisAppendix... Introduction Binary Numbering System Hexadecimal Numbering System Octal Numbering System Binary Coded Decimal (BCD) Numbering System Real (Floating Point) Numbering System BCD/Binary/Decimal/Hex/Octal
Computer Science 281 Binary and Hexadecimal Review
Computer Science 281 Binary and Hexadecimal Review 1 The Binary Number System Computers store everything, both instructions and data, by using many, many transistors, each of which can be in one of two
plc numbers - 13.1 Encoded values; BCD and ASCII Error detection; parity, gray code and checksums
plc numbers - 3. Topics: Number bases; binary, octal, decimal, hexadecimal Binary calculations; s compliments, addition, subtraction and Boolean operations Encoded values; BCD and ASCII Error detection;
CS201: Architecture and Assembly Language
CS201: Architecture and Assembly Language Lecture Three Brendan Burns CS201: Lecture Three p.1/27 Arithmetic for computers Previously we saw how we could represent unsigned numbers in binary and how binary
EE 261 Introduction to Logic Circuits. Module #2 Number Systems
EE 261 Introduction to Logic Circuits Module #2 Number Systems Topics A. Number System Formation B. Base Conversions C. Binary Arithmetic D. Signed Numbers E. Signed Arithmetic F. Binary Codes Textbook
Digital codes. Resources and methods for learning about these subjects (list a few here, in preparation for your research):
Digital codes This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
Binary Number System. 16. Binary Numbers. Base 10 digits: 0 1 2 3 4 5 6 7 8 9. Base 2 digits: 0 1
Binary Number System 1 Base 10 digits: 0 1 2 3 4 5 6 7 8 9 Base 2 digits: 0 1 Recall that in base 10, the digits of a number are just coefficients of powers of the base (10): 417 = 4 * 10 2 + 1 * 10 1
The string of digits 101101 in the binary number system represents the quantity
Data Representation Section 3.1 Data Types Registers contain either data or control information Control information is a bit or group of bits used to specify the sequence of command signals needed for
Paramedic Program Pre-Admission Mathematics Test Study Guide
Paramedic Program Pre-Admission Mathematics Test Study Guide 05/13 1 Table of Contents Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 Page 9 Page 10 Page 11 Page 12 Page 13 Page 14 Page 15 Page
Digital Design. Assoc. Prof. Dr. Berna Örs Yalçın
Digital Design Assoc. Prof. Dr. Berna Örs Yalçın Istanbul Technical University Faculty of Electrical and Electronics Engineering Office Number: 2318 E-mail: [email protected] Grading 1st Midterm -
Number Representation
Number Representation CS10001: Programming & Data Structures Pallab Dasgupta Professor, Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur Topics to be Discussed How are numeric data
Lecture 2. Binary and Hexadecimal Numbers
Lecture 2 Binary and Hexadecimal Numbers Purpose: Review binary and hexadecimal number representations Convert directly from one base to another base Review addition and subtraction in binary representations
Systems I: Computer Organization and Architecture
Systems I: Computer Organization and Architecture Lecture 2: Number Systems and Arithmetic Number Systems - Base The number system that we use is base : 734 = + 7 + 3 + 4 = x + 7x + 3x + 4x = x 3 + 7x
Unsigned Conversions from Decimal or to Decimal and other Number Systems
Page 1 of 5 Unsigned Conversions from Decimal or to Decimal and other Number Systems In all digital design, analysis, troubleshooting, and repair you will be working with binary numbers (or base 2). It
Number Systems and Radix Conversion
Number Systems and Radix Conversion Sanjay Rajopadhye, Colorado State University 1 Introduction These notes for CS 270 describe polynomial number systems. The material is not in the textbook, but will
1. Give the 16 bit signed (twos complement) representation of the following decimal numbers, and convert to hexadecimal:
Exercises 1 - number representations Questions 1. Give the 16 bit signed (twos complement) representation of the following decimal numbers, and convert to hexadecimal: (a) 3012 (b) - 435 2. For each of
PROGRAMMABLE LOGIC CONTROLLERS Unit code: A/601/1625 QCF level: 4 Credit value: 15 TUTORIAL OUTCOME 2 Part 1
UNIT 22: PROGRAMMABLE LOGIC CONTROLLERS Unit code: A/601/1625 QCF level: 4 Credit value: 15 TUTORIAL OUTCOME 2 Part 1 This work covers part of outcome 2 of the Edexcel standard module. The material is
BINARY CODED DECIMAL: B.C.D.
BINARY CODED DECIMAL: B.C.D. ANOTHER METHOD TO REPRESENT DECIMAL NUMBERS USEFUL BECAUSE MANY DIGITAL DEVICES PROCESS + DISPLAY NUMBERS IN TENS IN BCD EACH NUMBER IS DEFINED BY A BINARY CODE OF 4 BITS.
To convert an arbitrary power of 2 into its English equivalent, remember the rules of exponential arithmetic:
Binary Numbers In computer science we deal almost exclusively with binary numbers. it will be very helpful to memorize some binary constants and their decimal and English equivalents. By English equivalents
Binary Division. Decimal Division. Hardware for Binary Division. Simple 16-bit Divider Circuit
Decimal Division Remember 4th grade long division? 43 // quotient 12 521 // divisor dividend -480 41-36 5 // remainder Shift divisor left (multiply by 10) until MSB lines up with dividend s Repeat until
YOU MUST BE ABLE TO DO THE FOLLOWING PROBLEMS WITHOUT A CALCULATOR!
DETAILED SOLUTIONS AND CONCEPTS - DECIMALS AND WHOLE NUMBERS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to [email protected]. Thank you! YOU MUST
Numeral Systems. The number twenty-five can be represented in many ways: Decimal system (base 10): 25 Roman numerals:
Numeral Systems Which number is larger? 25 8 We need to distinguish between numbers and the symbols that represent them, called numerals. The number 25 is larger than 8, but the numeral 8 above is larger
Divide: Paper & Pencil. Computer Architecture ALU Design : Division and Floating Point. Divide algorithm. DIVIDE HARDWARE Version 1
Divide: Paper & Pencil Computer Architecture ALU Design : Division and Floating Point 1001 Quotient Divisor 1000 1001010 Dividend 1000 10 101 1010 1000 10 (or Modulo result) See how big a number can be
Lecture 8: Binary Multiplication & Division
Lecture 8: Binary Multiplication & Division Today s topics: Addition/Subtraction Multiplication Division Reminder: get started early on assignment 3 1 2 s Complement Signed Numbers two = 0 ten 0001 two
Recall the process used for adding decimal numbers. 1. Place the numbers to be added in vertical format, aligning the decimal points.
2 MODULE 4. DECIMALS 4a Decimal Arithmetic Adding Decimals Recall the process used for adding decimal numbers. Adding Decimals. To add decimal numbers, proceed as follows: 1. Place the numbers to be added
ADDITION. Children should extend the carrying method to numbers with at least four digits.
Y5 AND Y6 ADDITION Children should extend the carrying method to numbers with at least four digits. 587 3587 + 475 + 675 1062 4262 1 1 1 1 1 Using similar methods, children will: add several numbers with
Chapter Binary, Octal, Decimal, and Hexadecimal Calculations
Chapter 5 Binary, Octal, Decimal, and Hexadecimal Calculations This calculator is capable of performing the following operations involving different number systems. Number system conversion Arithmetic
Chapter 1: Digital Systems and Binary Numbers
Chapter 1: Digital Systems and Binary Numbers Digital age and information age Digital computers general purposes many scientific, industrial and commercial applications Digital systems telephone switching
Today. Binary addition Representing negative numbers. Andrew H. Fagg: Embedded Real- Time Systems: Binary Arithmetic
Today Binary addition Representing negative numbers 2 Binary Addition Consider the following binary numbers: 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 1 How do we add these numbers? 3 Binary Addition 0 0 1 0 0 1 1
PREPARATION FOR MATH TESTING at CityLab Academy
PREPARATION FOR MATH TESTING at CityLab Academy compiled by Gloria Vachino, M.S. Refresh your math skills with a MATH REVIEW and find out if you are ready for the math entrance test by taking a PRE-TEST
COMBINATIONAL CIRCUITS
COMBINATIONAL CIRCUITS http://www.tutorialspoint.com/computer_logical_organization/combinational_circuits.htm Copyright tutorialspoint.com Combinational circuit is a circuit in which we combine the different
CS101 Lecture 11: Number Systems and Binary Numbers. Aaron Stevens 14 February 2011
CS101 Lecture 11: Number Systems and Binary Numbers Aaron Stevens 14 February 2011 1 2 1 3!!! MATH WARNING!!! TODAY S LECTURE CONTAINS TRACE AMOUNTS OF ARITHMETIC AND ALGEBRA PLEASE BE ADVISED THAT CALCULTORS
Solution Guide Chapter 14 Mixing Fractions, Decimals, and Percents Together
Solution Guide Chapter 4 Mixing Fractions, Decimals, and Percents Together Doing the Math from p. 80 2. 0.72 9 =? 0.08 To change it to decimal, we can tip it over and divide: 9 0.72 To make 0.72 into a
MATH-0910 Review Concepts (Haugen)
Unit 1 Whole Numbers and Fractions MATH-0910 Review Concepts (Haugen) Exam 1 Sections 1.5, 1.6, 1.7, 1.8, 2.1, 2.2, 2.3, 2.4, and 2.5 Dividing Whole Numbers Equivalent ways of expressing division: a b,
Solution for Homework 2
Solution for Homework 2 Problem 1 a. What is the minimum number of bits that are required to uniquely represent the characters of English alphabet? (Consider upper case characters alone) The number of
Decimals Adding and Subtracting
1 Decimals Adding and Subtracting Decimals are a group of digits, which express numbers or measurements in units, tens, and multiples of 10. The digits for units and multiples of 10 are followed by a decimal
Everything you wanted to know about using Hexadecimal and Octal Numbers in Visual Basic 6
Everything you wanted to know about using Hexadecimal and Octal Numbers in Visual Basic 6 Number Systems No course on programming would be complete without a discussion of the Hexadecimal (Hex) number
INTRODUCTION TO FRACTIONS
Tallahassee Community College 16 INTRODUCTION TO FRACTIONS Figure A (Use for 1 5) 1. How many parts are there in this circle?. How many parts of the circle are shaded?. What fractional part of the circle
Number of bits needed to address hosts 8
Advanced Subnetting Example 1: Your ISP has assigned you a Class C network address of 198.47.212.0. You have 3 networks in your company with the largest containing 134 hosts. You need to figure out if
Subnetting Examples. There are three types of subnetting examples I will show in this document:
Subnetting Examples There are three types of subnetting examples I will show in this document: 1) Subnetting when given a required number of networks 2) Subnetting when given a required number of clients
Fractions to decimals
Worksheet.4 Fractions and Decimals Section Fractions to decimals The most common method of converting fractions to decimals is to use a calculator. A fraction represents a division so is another way of
Logic Reference Guide
Logic eference Guide Advanced Micro evices INTOUCTION Throughout this data book and design guide we have assumed that you have a good working knowledge of logic. Unfortunately, there always comes a time
Math Circle Beginners Group October 18, 2015
Math Circle Beginners Group October 18, 2015 Warm-up problem 1. Let n be a (positive) integer. Prove that if n 2 is odd, then n is also odd. (Hint: Use a proof by contradiction.) Suppose that n 2 is odd
Addition Methods. Methods Jottings Expanded Compact Examples 8 + 7 = 15
Addition Methods Methods Jottings Expanded Compact Examples 8 + 7 = 15 48 + 36 = 84 or: Write the numbers in columns. Adding the tens first: 47 + 76 110 13 123 Adding the units first: 47 + 76 13 110 123
Chapter 4 -- Decimals
Chapter 4 -- Decimals $34.99 decimal notation ex. The cost of an object. ex. The balance of your bank account ex The amount owed ex. The tax on a purchase. Just like Whole Numbers Place Value - 1.23456789
CS321. Introduction to Numerical Methods
CS3 Introduction to Numerical Methods Lecture Number Representations and Errors Professor Jun Zhang Department of Computer Science University of Kentucky Lexington, KY 40506-0633 August 7, 05 Number in
2010/9/19. Binary number system. Binary numbers. Outline. Binary to decimal
2/9/9 Binary number system Computer (electronic) systems prefer binary numbers Binary number: represent a number in base-2 Binary numbers 2 3 + 7 + 5 Some terminology Bit: a binary digit ( or ) Hexadecimal
MACM 101 Discrete Mathematics I
MACM 101 Discrete Mathematics I Exercises on Combinatorics, Probability, Languages and Integers. Due: Tuesday, November 2th (at the beginning of the class) Reminder: the work you submit must be your own.
DIVISION OF DECIMALS. 1503 9. We then we multiply by the
Tallahassee Community College 0 DIVISION OF DECIMALS To divide 9, we write these fractions: reciprocal of the divisor 0 9. We then we multiply by the 0 67 67 = = 9 67 67 The decimal equivalent of is. 67.
Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:
Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than
6 The Hindu-Arabic System (800 BC)
6 The Hindu-Arabic System (800 BC) Today the most universally used system of numeration is the Hindu-Arabic system, also known as the decimal system or base ten system. The system was named for the Indian
Partial Fractions. p(x) q(x)
Partial Fractions Introduction to Partial Fractions Given a rational function of the form p(x) q(x) where the degree of p(x) is less than the degree of q(x), the method of partial fractions seeks to break
APPENDIX B. Routers route based on the network number. The router that delivers the data packet to the correct destination host uses the host ID.
APPENDIX B IP Subnetting IP Addressing Routers route based on the network number. The router that delivers the data packet to the correct destination host uses the host ID. IP Classes An IP address is
Activity 1: Using base ten blocks to model operations on decimals
Rational Numbers 9: Decimal Form of Rational Numbers Objectives To use base ten blocks to model operations on decimal numbers To review the algorithms for addition, subtraction, multiplication and division
Verilog - Representation of Number Literals
Verilog - Representation of Number Literals... And here there be monsters! (Capt. Barbossa) Numbers are represented as: value ( indicates optional part) size The number of binary
Cyber Security Workshop Encryption Reference Manual
Cyber Security Workshop Encryption Reference Manual May 2015 Basic Concepts in Encoding and Encryption Binary Encoding Examples Encryption Cipher Examples 1 P a g e Encoding Concepts Binary Encoding Basics
Sequential Skills. Strands and Major Topics
Sequential Skills This set of charts lists, by strand, the skills that are assessed, taught, and practiced in the Skills Tutorial program. Each Strand ends with a Mastery Test. You can enter correlating
3.4 Multiplication and Division of Rational Numbers
3.4 Multiplication and Division of Rational Numbers We now turn our attention to multiplication and division with both fractions and decimals. Consider the multiplication problem: 8 12 2 One approach is
3 cups ¾ ½ ¼ 2 cups ¾ ½ ¼. 1 cup ¾ ½ ¼. 1 cup. 1 cup ¾ ½ ¼ ¾ ½ ¼. 1 cup. 1 cup ¾ ½ ¼ ¾ ½ ¼
cups cups cup Fractions are a form of division. When I ask what is / I am asking How big will each part be if I break into equal parts? The answer is. This a fraction. A fraction is part of a whole. The
Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.
Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}
Session 29 Scientific Notation and Laws of Exponents. If you have ever taken a Chemistry class, you may have encountered the following numbers:
Session 9 Scientific Notation and Laws of Exponents If you have ever taken a Chemistry class, you may have encountered the following numbers: There are approximately 60,4,79,00,000,000,000,000 molecules
DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION
DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION Introduction The outputs from sensors and communications receivers are analogue signals that have continuously varying amplitudes. In many systems
Pre-Calculus II Factoring and Operations on Polynomials
Factoring... 1 Polynomials...1 Addition of Polynomials... 1 Subtraction of Polynomials...1 Multiplication of Polynomials... Multiplying a monomial by a monomial... Multiplying a monomial by a polynomial...
Playing with Numbers
PLAYING WITH NUMBERS 249 Playing with Numbers CHAPTER 16 16.1 Introduction You have studied various types of numbers such as natural numbers, whole numbers, integers and rational numbers. You have also
The Euclidean Algorithm
The Euclidean Algorithm A METHOD FOR FINDING THE GREATEST COMMON DIVISOR FOR TWO LARGE NUMBERS To be successful using this method you have got to know how to divide. If this is something that you have
Math Workshop October 2010 Fractions and Repeating Decimals
Math Workshop October 2010 Fractions and Repeating Decimals This evening we will investigate the patterns that arise when converting fractions to decimals. As an example of what we will be looking at,
Counting in base 10, 2 and 16
Counting in base 10, 2 and 16 1. Binary Numbers A super-important fact: (Nearly all) Computers store all information in the form of binary numbers. Numbers, characters, images, music files --- all of these
ELEG3924 Microprocessor Ch.7 Programming In C
Department of Electrical Engineering University of Arkansas ELEG3924 Microprocessor Ch.7 Programming In C Dr. Jingxian Wu [email protected] OUTLINE 2 Data types and time delay I/O programming and Logic operations
