Complexity Theory. Jörg Kreiker. Summer term Chair for Theoretical Computer Science Prof. Esparza TU München
|
|
|
- Jasper Crawford
- 9 years ago
- Views:
Transcription
1 Complexity Theory Jörg Kreiker Chair for Theoretical Computer Science Prof. Esparza TU München Summer term 2010
2 Lecture 8 PSPACE
3 3 Intro Agenda Wrap-up Ladner proof and time vs. space succinctness QBF and GG PSPACE completeness QBF is PSPACE-complete Savitch s theorem
4 4 Intro Comments about previous lecture Enumeration of languages in P: enumerate pairs M i, p j i enumerates all TMs, j all polynomials run M i for p j steps Time vs Space based on configuration graphs one can also show DTIME(s(n)) NTIME(s(n)) SPACE(s(n)) if configurations include a counter over all possible choices
5 5 Succinctness Succinctness vs Expressiveness Some intuition: 5 5 is more succinct than multiplication allows for more succinct representation of arithmetic expressions but it is not more expressive regular expressions regular expressions with squaring are more succinct than without example: strings over {1} with length divisible by 16 ((((00) 2 ) 2 ) 2 ) versus ( ) but obviously squaring does not add expressiveness
6 6 Succinctness More succinct means more difficult to handle Non-deterministic finite automata NFAs can be exponentially more succinct than DFAs but equally expressive example: k-last symbol is 1 complementation, equivalence are polynomial for DFAs and exponential for NFAs
7 7 Succinctness Succinct Boolean formulas Consider the following formula where ψ = x y z (x y ψ) (x y ψ) (x y ψ) (x y ψ) Formula is satisfiable iff z x y.ψ is true, where variables range over {0, 1}. Quantified Boolean Formulas
8 Problems in PSPACE QBF Quantified Boolean Formulas Definition (QBF) A quantified Boolean formula is a formula of the form Q 1 x 1 Q 2 x 2... Q n x n ϕ(x 1,..., x n ) where each Q i {, } each x i ranges over {0, 1} ϕ is quantifier-free wlog we can assume prenex form formulas are closed, ie. each QBF is true or false QBF = {ϕ ϕ is a true QBF} if all Q i =, we obtain SAT as a special case if all Q i =, we obtain Tautology as a special case 8
9 Problems in PSPACE QBF QBF is in PSPACE Polynomial space algorithm to decide QBF qbfsolve(ψ) if ψ is quantifier-free return evaluation of ψ if ψ = Qx.ψ if Q = if qbfsolve(ψ [x 0]) return true if qbfsolve(ψ [x 1]) return true if Q = b 1 = qbfsolve(ψ [x 0]) b 2 = qbfsolve(ψ [x 1]) return b 1 b 2 return false each recursive call can re-use same space! qbsolve uses at most O( ψ 2 ) space 9
10 10 Problems in PSPACE GG Generalized Geography children s game, where people take turn naming cities next city must start with previous city s final letter as in München Nürnberg no repetitions lost if no more choices left Formalization Given a graph and a node, players take turns choosing an unvisited adjacent node until no longer possible. GG = { G, u player 1 has winning strategy from node u in G}
11 Problems in PSPACE GG GG PSPACE and here is the algorithm to prove it: ggsolve(g, u) if u has no outgoing edge return false remove u and its adjacent edges from G to obtain G for each u i adjacent to u b i = ggsolve(g, u i ) return i b i stack depth 1 for recursion implies polynomial space QBF p GG (see transparency)
12 Problems in PSPACE GG Agenda Wrap-up Ladner proof and time vs. space succinctness QBF and GG PSPACE completeness QBF is PSPACE-complete Savitch s theorem
13 13 PSPACE completeness PSPACE-completness Definition (PSPACE-completeness) Language L is PSPACE-hard if for every L PSPACE L p L. L is PSPACE-complete if L PSPACE and L is PSPACE-hard.
14 PSPACE completeness QBF is PSPACE-complete Theorem QBF is PSPACE-complete. have already shown that QBF PSPACE need to show that every problem L PSPACE is polynomial-time reducible to QBF
15 15 PSPACE completeness Proof let L PSPACE arbitrary L SPACE(s(n)) for polynomial s m O(s(n)): bits needed to encode configuration C exists Boolean formula ϕ M,x with size O(m) such that ϕ M,x (C, C ) = 1 iff C, C {0, 1} m encode adjacent configurations; see Cook-Levin define QBF ψ such that ψ(c, C ) is true iff there is a path in G(M, x) from C to C ψ(c start, C accept ) is true iff M accepts x
16 16 PSPACE completeness Proof cont d Define ψ inductively! ψ i (C, C ): there is a path of length at most 2 i from C to C ψ = ψ m and ψ 0 = ϕ M,x ψ i (C, C ) = C.ψ i 1 (C, C ) ψ i 1 (C, C ) might be exponential size, therefore use equivalent ψ i (C, C ) = C. D 1. D 2. ((D 1 = C D 2 = C ) (D 1 = C D 2 = C )) ψ i 1 (D 1, D 2 )
17 17 PSPACE completeness Size of ψ ψ i (C, C ) = C. D 1. D 2. ((D 1 = C D 2 = C ) (D 1 = C D 2 = C )) ψ i 1 (D 1, D 2 ) C stands for m variables ψ i = ψ i 1 + O(m) ψ O(m 2 )
18 18 PSPACE completeness Observations and consequences GG is PSPACE-complete if PSPACE NP then QBF and GG have no short certificates note: proof does not make use of outdegree of G(M, x) QBF is NPSPACE-complete NPSPACE = PSPACE! in fact, the same reasoning can be used to prove a stronger result
19 19 Savitch s Theorem Savitch s Theorem Theorem (Savitch) For every space-constructible s : N N with s(n) log n NSPACE(s(n)) SPACE(s(n) 2 ).
20 20 Savitch s Theorem Proof Let M be a NDTM accepting L. Let G(M, x) be its configuration graph of size mo(2 s(n) ) such that each node is represented using log m space. M accepts x iff there is a path of length at most m from C start to C accept. Consider the following algorithm reach(u,v,i) to determine whether there is a path from u to v of length at most 2 i. for each node z of M b 1 = reach(u, z, i 1) b 2 = reach(z, v, i 1) return b 1 b 2 reach(c start, C accept, m) takes space O((log m) 2 ) = O(s(n) 2 )!
21 Conclusion Further Reading L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time. Proceedings of the 5th Symposium on Theory of Computing, pages 1-9, 1973 contains the original proof of PSPACE completeness of QBF PSPACE-completeness of NFA equivalence regular expression equivalence with squaring is EXPSPACE-complete: Gilbert, Lengauer, Tarjan The Pebbling Problem is Complete in Polynomial Space. SIAM Journal on Computing, Volume 9, Issue 3, 1980, pages tools (solvers) many QBF models from verification, games, planning competitions PSPACE-completeness of Hex, Atomix, Gobang, Chess W.J.Savitch Relationship between nondeterministic and 21
22 Conclusion What have we learnt succinctness leads to more difficult problems PSPACE: computable in polynomial space (deterministically) PSPACE-completeness defined in terms of polynomial Karp reductions canonical PSPACE-complete problem: QBF generalizes SAT other complete problems: generalized geography, chess, Hex, Sokoban, Reversi, NFA equivalence, regular expressions equivalence PSPACE winning strategies in games rather than short certificates PSPACE = NPSPACE Savitch: non-deterministic space can be simulated by deterministic space with quadratic overhead (by path enumeration in configuration graph) Up next: NL
Welcome to... Problem Analysis and Complexity Theory 716.054, 3 VU
Welcome to... Problem Analysis and Complexity Theory 716.054, 3 VU Birgit Vogtenhuber Institute for Software Technology email: [email protected] office hour: Tuesday 10:30 11:30 slides: http://www.ist.tugraz.at/pact.html
Lecture 1: Oracle Turing Machines
Computational Complexity Theory, Fall 2008 September 10 Lecture 1: Oracle Turing Machines Lecturer: Kristoffer Arnsfelt Hansen Scribe: Casper Kejlberg-Rasmussen Oracle TM Definition 1 Let A Σ. Then a Oracle
Introduction to Logic in Computer Science: Autumn 2006
Introduction to Logic in Computer Science: Autumn 2006 Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam Ulle Endriss 1 Plan for Today Now that we have a basic understanding
MATHEMATICS: CONCEPTS, AND FOUNDATIONS Vol. III - Logic and Computer Science - Phokion G. Kolaitis
LOGIC AND COMPUTER SCIENCE Phokion G. Kolaitis Computer Science Department, University of California, Santa Cruz, CA 95064, USA Keywords: algorithm, Armstrong s axioms, complete problem, complexity class,
Lecture 2: Universality
CS 710: Complexity Theory 1/21/2010 Lecture 2: Universality Instructor: Dieter van Melkebeek Scribe: Tyson Williams In this lecture, we introduce the notion of a universal machine, develop efficient universal
Diagonalization. Ahto Buldas. Lecture 3 of Complexity Theory October 8, 2009. Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach.
Diagonalization Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach. Ahto Buldas [email protected] Background One basic goal in complexity theory is to separate interesting complexity
1. Nondeterministically guess a solution (called a certificate) 2. Check whether the solution solves the problem (called verification)
Some N P problems Computer scientists have studied many N P problems, that is, problems that can be solved nondeterministically in polynomial time. Traditionally complexity question are studied as languages:
Tetris is Hard: An Introduction to P vs NP
Tetris is Hard: An Introduction to P vs NP Based on Tetris is Hard, Even to Approximate in COCOON 2003 by Erik D. Demaine (MIT) Susan Hohenberger (JHU) David Liben-Nowell (Carleton) What s Your Problem?
OHJ-2306 Introduction to Theoretical Computer Science, Fall 2012 8.11.2012
276 The P vs. NP problem is a major unsolved problem in computer science It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a $ 1,000,000 prize for the
NP-complete? NP-hard? Some Foundations of Complexity. Prof. Sven Hartmann Clausthal University of Technology Department of Informatics
NP-complete? NP-hard? Some Foundations of Complexity Prof. Sven Hartmann Clausthal University of Technology Department of Informatics Tractability of Problems Some problems are undecidable: no computer
The Classes P and NP
The Classes P and NP We now shift gears slightly and restrict our attention to the examination of two families of problems which are very important to computer scientists. These families constitute the
CS154. Turing Machines. Turing Machine. Turing Machines versus DFAs FINITE STATE CONTROL AI N P U T INFINITE TAPE. read write move.
CS54 Turing Machines Turing Machine q 0 AI N P U T IN TAPE read write move read write move Language = {0} q This Turing machine recognizes the language {0} Turing Machines versus DFAs TM can both write
P versus NP, and More
1 P versus NP, and More Great Ideas in Theoretical Computer Science Saarland University, Summer 2014 If you have tried to solve a crossword puzzle, you know that it is much harder to solve it than to verify
Theoretical Computer Science (Bridging Course) Complexity
Theoretical Computer Science (Bridging Course) Complexity Gian Diego Tipaldi A scenario You are a programmer working for a logistics company Your boss asks you to implement a program that optimizes the
Lecture 7: NP-Complete Problems
IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Basic Course on Computational Complexity Lecture 7: NP-Complete Problems David Mix Barrington and Alexis Maciel July 25, 2000 1. Circuit
Introduction to Algorithms. Part 3: P, NP Hard Problems
Introduction to Algorithms Part 3: P, NP Hard Problems 1) Polynomial Time: P and NP 2) NP-Completeness 3) Dealing with Hard Problems 4) Lower Bounds 5) Books c Wayne Goddard, Clemson University, 2004 Chapter
ω-automata Automata that accept (or reject) words of infinite length. Languages of infinite words appear:
ω-automata ω-automata Automata that accept (or reject) words of infinite length. Languages of infinite words appear: in verification, as encodings of non-terminating executions of a program. in arithmetic,
Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits
Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique
Bounded-width QBF is PSPACE-complete
Bounded-width QBF is PSPACE-complete Albert Atserias 1 and Sergi Oliva 2 1 Universitat Politècnica de Catalunya Barcelona, Spain [email protected] 2 Universitat Politècnica de Catalunya Barcelona, Spain
6.080/6.089 GITCS Feb 12, 2008. Lecture 3
6.8/6.89 GITCS Feb 2, 28 Lecturer: Scott Aaronson Lecture 3 Scribe: Adam Rogal Administrivia. Scribe notes The purpose of scribe notes is to transcribe our lectures. Although I have formal notes of my
Computer Algorithms. NP-Complete Problems. CISC 4080 Yanjun Li
Computer Algorithms NP-Complete Problems NP-completeness The quest for efficient algorithms is about finding clever ways to bypass the process of exhaustive search, using clues from the input in order
Quantum and Non-deterministic computers facing NP-completeness
Quantum and Non-deterministic computers facing NP-completeness Thibaut University of Vienna Dept. of Business Administration Austria Vienna January 29th, 2013 Some pictures come from Wikipedia Introduction
Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs
CSE599s: Extremal Combinatorics November 21, 2011 Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs Lecturer: Anup Rao 1 An Arithmetic Circuit Lower Bound An arithmetic circuit is just like
Notes on Complexity Theory Last updated: August, 2011. Lecture 1
Notes on Complexity Theory Last updated: August, 2011 Jonathan Katz Lecture 1 1 Turing Machines I assume that most students have encountered Turing machines before. (Students who have not may want to look
Introduction to computer science
Introduction to computer science Michael A. Nielsen University of Queensland Goals: 1. Introduce the notion of the computational complexity of a problem, and define the major computational complexity classes.
Why? A central concept in Computer Science. Algorithms are ubiquitous.
Analysis of Algorithms: A Brief Introduction Why? A central concept in Computer Science. Algorithms are ubiquitous. Using the Internet (sending email, transferring files, use of search engines, online
Lecture summary for Theory of Computation
Lecture summary for Theory of Computation Sandeep Sen 1 January 8, 2015 1 Department of Computer Science and Engineering, IIT Delhi, New Delhi 110016, India. E- mail:[email protected] Contents 1 The
Complexity Classes P and NP
Complexity Classes P and NP MATH 3220 Supplemental Presentation by John Aleshunas The cure for boredom is curiosity. There is no cure for curiosity Dorothy Parker Computational Complexity Theory In computer
Lecture 2: Complexity Theory Review and Interactive Proofs
600.641 Special Topics in Theoretical Cryptography January 23, 2007 Lecture 2: Complexity Theory Review and Interactive Proofs Instructor: Susan Hohenberger Scribe: Karyn Benson 1 Introduction to Cryptography
CSE 135: Introduction to Theory of Computation Decidability and Recognizability
CSE 135: Introduction to Theory of Computation Decidability and Recognizability Sungjin Im University of California, Merced 04-28, 30-2014 High-Level Descriptions of Computation Instead of giving a Turing
NP-Completeness and Cook s Theorem
NP-Completeness and Cook s Theorem Lecture notes for COM3412 Logic and Computation 15th January 2002 1 NP decision problems The decision problem D L for a formal language L Σ is the computational task:
Boulder Dash is NP hard
Boulder Dash is NP hard Marzio De Biasi marziodebiasi [at] gmail [dot] com December 2011 Version 0.01:... now the difficult part: is it NP? Abstract Boulder Dash is a videogame created by Peter Liepa and
A Working Knowledge of Computational Complexity for an Optimizer
A Working Knowledge of Computational Complexity for an Optimizer ORF 363/COS 323 Instructor: Amir Ali Ahmadi TAs: Y. Chen, G. Hall, J. Ye Fall 2014 1 Why computational complexity? What is computational
Fixed-Point Logics and Computation
1 Fixed-Point Logics and Computation Symposium on the Unusual Effectiveness of Logic in Computer Science University of Cambridge 2 Mathematical Logic Mathematical logic seeks to formalise the process of
(67902) Topics in Theory and Complexity Nov 2, 2006. Lecture 7
(67902) Topics in Theory and Complexity Nov 2, 2006 Lecturer: Irit Dinur Lecture 7 Scribe: Rani Lekach 1 Lecture overview This Lecture consists of two parts In the first part we will refresh the definition
3515ICT Theory of Computation Turing Machines
Griffith University 3515ICT Theory of Computation Turing Machines (Based loosely on slides by Harald Søndergaard of The University of Melbourne) 9-0 Overview Turing machines: a general model of computation
NP-Completeness I. Lecture 19. 19.1 Overview. 19.2 Introduction: Reduction and Expressiveness
Lecture 19 NP-Completeness I 19.1 Overview In the past few lectures we have looked at increasingly more expressive problems that we were able to solve using efficient algorithms. In this lecture we introduce
CoNP and Function Problems
CoNP and Function Problems conp By definition, conp is the class of problems whose complement is in NP. NP is the class of problems that have succinct certificates. conp is therefore the class of problems
Analysis of Boolean Programs
Analysis of Boolean Programs Patrice Godefroid 1 Mihalis Yannakakis 2 1 Microsoft Research, [email protected] 2 Columbia University, [email protected] Abstract. Boolean programs are a popular abstract
6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010. Class 4 Nancy Lynch
6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010 Class 4 Nancy Lynch Today Two more models of computation: Nondeterministic Finite Automata (NFAs)
Notes on Complexity Theory Last updated: August, 2011. Lecture 1
Notes on Complexity Theory Last updated: August, 2011 Jonathan Katz Lecture 1 1 Turing Machines I assume that most students have encountered Turing machines before. (Students who have not may want to look
Lecture 1: Course overview, circuits, and formulas
Lecture 1: Course overview, circuits, and formulas Topics in Complexity Theory and Pseudorandomness (Spring 2013) Rutgers University Swastik Kopparty Scribes: John Kim, Ben Lund 1 Course Information Swastik
Chapter. NP-Completeness. Contents
Chapter 13 NP-Completeness Contents 13.1 P and NP......................... 593 13.1.1 Defining the Complexity Classes P and NP...594 13.1.2 Some Interesting Problems in NP.......... 597 13.2 NP-Completeness....................
! X is a set of strings. ! Instance: string s. ! Algorithm A solves problem X: A(s) = yes iff s! X.
Decision Problems 8.2 Definition of NP Decision problem. X is a set of strings. Instance: string s. Algorithm A solves problem X: A(s) = yes iff s X. Polynomial time. Algorithm A runs in polytime if for
2.1 Complexity Classes
15-859(M): Randomized Algorithms Lecturer: Shuchi Chawla Topic: Complexity classes, Identity checking Date: September 15, 2004 Scribe: Andrew Gilpin 2.1 Complexity Classes In this lecture we will look
Reminder: Complexity (1) Parallel Complexity Theory. Reminder: Complexity (2) Complexity-new
Reminder: Complexity (1) Parallel Complexity Theory Lecture 6 Number of steps or memory units required to compute some result In terms of input size Using a single processor O(1) says that regardless of
CSC 373: Algorithm Design and Analysis Lecture 16
CSC 373: Algorithm Design and Analysis Lecture 16 Allan Borodin February 25, 2013 Some materials are from Stephen Cook s IIT talk and Keven Wayne s slides. 1 / 17 Announcements and Outline Announcements
Page 1. CSCE 310J Data Structures & Algorithms. CSCE 310J Data Structures & Algorithms. P, NP, and NP-Complete. Polynomial-Time Algorithms
CSCE 310J Data Structures & Algorithms P, NP, and NP-Complete Dr. Steve Goddard [email protected] CSCE 310J Data Structures & Algorithms Giving credit where credit is due:» Most of the lecture notes
Introduction to NP-Completeness Written and copyright c by Jie Wang 1
91.502 Foundations of Comuter Science 1 Introduction to Written and coyright c by Jie Wang 1 We use time-bounded (deterministic and nondeterministic) Turing machines to study comutational comlexity of
Outline Introduction Circuits PRGs Uniform Derandomization Refs. Derandomization. A Basic Introduction. Antonis Antonopoulos.
Derandomization A Basic Introduction Antonis Antonopoulos CoReLab Seminar National Technical University of Athens 21/3/2011 1 Introduction History & Frame Basic Results 2 Circuits Definitions Basic Properties
On the Relationship between Classes P and NP
Journal of Computer Science 8 (7): 1036-1040, 2012 ISSN 1549-3636 2012 Science Publications On the Relationship between Classes P and NP Anatoly D. Plotnikov Department of Computer Systems and Networks,
Algebraic Computation Models. Algebraic Computation Models
Algebraic Computation Models Ζυγομήτρος Ευάγγελος ΜΠΛΑ 201118 Φεβρουάριος, 2013 Reasons for using algebraic models of computation The Turing machine model captures computations on bits. Many algorithms
Turing Machines and Understanding Computational Complexity
Turing Machines and Understanding Computational Complexity Paul M.B.Vitányi CWI, Science Park 123, 1098XG Amsterdam The Netherlands 1. Introduction A Turing machine refers to a hypothetical machine proposed
Generating models of a matched formula with a polynomial delay
Generating models of a matched formula with a polynomial delay Petr Savicky Institute of Computer Science, Academy of Sciences of Czech Republic, Pod Vodárenskou Věží 2, 182 07 Praha 8, Czech Republic
Tutorial 8. NP-Complete Problems
Tutorial 8 NP-Complete Problems Decision Problem Statement of a decision problem Part 1: instance description defining the input Part 2: question stating the actual yesor-no question A decision problem
Automata and Computability. Solutions to Exercises
Automata and Computability Solutions to Exercises Fall 25 Alexis Maciel Department of Computer Science Clarkson University Copyright c 25 Alexis Maciel ii Contents Preface vii Introduction 2 Finite Automata
Prime Numbers. Difficulties in Factoring a Number: from the Perspective of Computation. Computation Theory. Turing Machine 電 腦 安 全
Prime Numbers Difficulties in Factoring a Number: from the Perspective of Computation 電 腦 安 全 海 洋 大 學 資 訊 工 程 系 丁 培 毅 Prime number: an integer p> that is divisible only by and itself, ex., 3, 5, 7,, 3,
Course Manual Automata & Complexity 2015
Course Manual Automata & Complexity 2015 Course code: Course homepage: Coordinator: Teachers lectures: Teacher exercise classes: Credits: X_401049 http://www.cs.vu.nl/~tcs/ac prof. dr. W.J. Fokkink home:
2048 is NP-Complete. Ahmed Abdelkader Aditya Acharya Philip Dasler. Theorem 1 2048-GAME is NP-Complete.
CG:YRF, Eindhoven, The Netherlands, June 22-25, 2015 2048 is NP-Complete Ahmed Abdelkader Aditya Acharya Philip Dasler Abstract 2048 is a single-player online puzzle game that went viral in March 2014.
Computational Complexity: A Modern Approach. Draft of a book: Dated January 2007 Comments welcome!
i Computational Complexity: A Modern Approach Draft of a book: Dated January 2007 Comments welcome! Sanjeev Arora and Boaz Barak Princeton University [email protected] Not to be reproduced or distributed
Regular Expressions and Automata using Haskell
Regular Expressions and Automata using Haskell Simon Thompson Computing Laboratory University of Kent at Canterbury January 2000 Contents 1 Introduction 2 2 Regular Expressions 2 3 Matching regular expressions
Factoring & Primality
Factoring & Primality Lecturer: Dimitris Papadopoulos In this lecture we will discuss the problem of integer factorization and primality testing, two problems that have been the focus of a great amount
Satisfiability Checking
Satisfiability Checking SAT-Solving Prof. Dr. Erika Ábrahám Theory of Hybrid Systems Informatik 2 WS 10/11 Prof. Dr. Erika Ábrahám - Satisfiability Checking 1 / 40 A basic SAT algorithm Assume the CNF
The Halting Problem is Undecidable
185 Corollary G = { M, w w L(M) } is not Turing-recognizable. Proof. = ERR, where ERR is the easy to decide language: ERR = { x { 0, 1 }* x does not have a prefix that is a valid code for a Turing machine
Quantum Computability and Complexity and the Limits of Quantum Computation
Quantum Computability and Complexity and the Limits of Quantum Computation Eric Benjamin, Kenny Huang, Amir Kamil, Jimmy Kittiyachavalit University of California, Berkeley December 7, 2003 This paper will
Model Checking: An Introduction
Announcements Model Checking: An Introduction Meeting 2 Office hours M 1:30pm-2:30pm W 5:30pm-6:30pm (after class) and by appointment ECOT 621 Moodle problems? Fundamentals of Programming Languages CSCI
tutorial: hardware and software model checking
tutorial: hardware and software model checking gerard holzmann and anuj puri { gerard anuj } @research.bell-labs.com Bell Labs, USA outline introduction (15 mins) theory and algorithms system modeling
CMPSCI611: Approximating MAX-CUT Lecture 20
CMPSCI611: Approximating MAX-CUT Lecture 20 For the next two lectures we ll be seeing examples of approximation algorithms for interesting NP-hard problems. Today we consider MAX-CUT, which we proved to
Theory of Computation Chapter 2: Turing Machines
Theory of Computation Chapter 2: Turing Machines Guan-Shieng Huang Feb. 24, 2003 Feb. 19, 2006 0-0 Turing Machine δ K 0111000a 01bb 1 Definition of TMs A Turing Machine is a quadruple M = (K, Σ, δ, s),
Complexity Theory. IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar
Complexity Theory IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar Outline Goals Computation of Problems Concepts and Definitions Complexity Classes and Problems Polynomial Time Reductions Examples
Testing LTL Formula Translation into Büchi Automata
Testing LTL Formula Translation into Büchi Automata Heikki Tauriainen and Keijo Heljanko Helsinki University of Technology, Laboratory for Theoretical Computer Science, P. O. Box 5400, FIN-02015 HUT, Finland
6.852: Distributed Algorithms Fall, 2009. Class 2
.8: Distributed Algorithms Fall, 009 Class Today s plan Leader election in a synchronous ring: Lower bound for comparison-based algorithms. Basic computation in general synchronous networks: Leader election
5.1 Bipartite Matching
CS787: Advanced Algorithms Lecture 5: Applications of Network Flow In the last lecture, we looked at the problem of finding the maximum flow in a graph, and how it can be efficiently solved using the Ford-Fulkerson
T-79.186 Reactive Systems: Introduction and Finite State Automata
T-79.186 Reactive Systems: Introduction and Finite State Automata Timo Latvala 14.1.2004 Reactive Systems: Introduction and Finite State Automata 1-1 Reactive Systems Reactive systems are a class of software
The Model Checker SPIN
The Model Checker SPIN Author: Gerard J. Holzmann Presented By: Maulik Patel Outline Introduction Structure Foundation Algorithms Memory management Example/Demo SPIN-Introduction Introduction SPIN (Simple(
8.1 Min Degree Spanning Tree
CS880: Approximations Algorithms Scribe: Siddharth Barman Lecturer: Shuchi Chawla Topic: Min Degree Spanning Tree Date: 02/15/07 In this lecture we give a local search based algorithm for the Min Degree
Two Way F finite Automata and Three Ways to Solve Them
An Exponential Gap between LasVegas and Deterministic Sweeping Finite Automata Christos Kapoutsis, Richard Královič, and Tobias Mömke Department of Computer Science, ETH Zürich Abstract. A two-way finite
Notes on NP Completeness
Notes on NP Completeness Rich Schwartz November 10, 2013 1 Overview Here are some notes which I wrote to try to understand what NP completeness means. Most of these notes are taken from Appendix B in Douglas
(IALC, Chapters 8 and 9) Introduction to Turing s life, Turing machines, universal machines, unsolvable problems.
3130CIT: Theory of Computation Turing machines and undecidability (IALC, Chapters 8 and 9) Introduction to Turing s life, Turing machines, universal machines, unsolvable problems. An undecidable problem
Finite Automata. Reading: Chapter 2
Finite Automata Reading: Chapter 2 1 Finite Automaton (FA) Informally, a state diagram that comprehensively captures all possible states and transitions that a machine can take while responding to a stream
Informatique Fondamentale IMA S8
Informatique Fondamentale IMA S8 Cours 1 - Intro + schedule + finite state machines Laure Gonnord http://laure.gonnord.org/pro/teaching/ [email protected] Université Lille 1 - Polytech Lille
ON THE COMPLEXITY OF THE GAME OF SET. {kamalika,pbg,dratajcz,hoeteck}@cs.berkeley.edu
ON THE COMPLEXITY OF THE GAME OF SET KAMALIKA CHAUDHURI, BRIGHTEN GODFREY, DAVID RATAJCZAK, AND HOETECK WEE {kamalika,pbg,dratajcz,hoeteck}@cs.berkeley.edu ABSTRACT. Set R is a card game played with a
Introduction to Automata Theory. Reading: Chapter 1
Introduction to Automata Theory Reading: Chapter 1 1 What is Automata Theory? Study of abstract computing devices, or machines Automaton = an abstract computing device Note: A device need not even be a
Computational complexity theory
Computational complexity theory Goal: A general theory of the resources needed to solve computational problems What types of resources? Time What types of computational problems? decision problem Decision
Competitive Analysis of On line Randomized Call Control in Cellular Networks
Competitive Analysis of On line Randomized Call Control in Cellular Networks Ioannis Caragiannis Christos Kaklamanis Evi Papaioannou Abstract In this paper we address an important communication issue arising
SPARQL: Un Lenguaje de Consulta para la Web
SPARQL: Un Lenguaje de Consulta para la Web Semántica Marcelo Arenas Pontificia Universidad Católica de Chile y Centro de Investigación de la Web M. Arenas SPARQL: Un Lenguaje de Consulta para la Web Semántica
SIMS 255 Foundations of Software Design. Complexity and NP-completeness
SIMS 255 Foundations of Software Design Complexity and NP-completeness Matt Welsh November 29, 2001 [email protected] 1 Outline Complexity of algorithms Space and time complexity ``Big O'' notation Complexity
Finite Automata. Reading: Chapter 2
Finite Automata Reading: Chapter 2 1 Finite Automata Informally, a state machine that comprehensively captures all possible states and transitions that a machine can take while responding to a stream (or
The Optimum One-Pass Strategy for Juliet
Master s Thesis One-Pass Strategies for Context-Free Games Christian Cöster August 2015 Examiners: Prof. Dr. Thomas Schwentick Prof. Dr. Christoph Buchheim Technische Universität Dortmund Fakultät für
Algorithmic Software Verification
Algorithmic Software Verification (LTL Model Checking) Azadeh Farzan What is Verification Anyway? Proving (in a formal way) that program satisfies a specification written in a logical language. Formal
Logic Synthesis in a Nutshell
Logic Synthesis in a Nutshell Jie-Hong Roland Jiang National Taiwan University, Taipei, Taiwan Srinivas Devadas Massachusetts Institute of Technology, Cambridge, Massachusetts October 16, 2008 About This
NP-Completeness. CptS 223 Advanced Data Structures. Larry Holder School of Electrical Engineering and Computer Science Washington State University
NP-Completeness CptS 223 Advanced Data Structures Larry Holder School of Electrical Engineering and Computer Science Washington State University 1 Hard Graph Problems Hard means no known solutions with
o-minimality and Uniformity in n 1 Graphs
o-minimality and Uniformity in n 1 Graphs Reid Dale July 10, 2013 Contents 1 Introduction 2 2 Languages and Structures 2 3 Definability and Tame Geometry 4 4 Applications to n 1 Graphs 6 5 Further Directions
