CONFLUENT HYPERGEOMETRIC FUNCTIONS

Size: px
Start display at page:

Download "CONFLUENT HYPERGEOMETRIC FUNCTIONS"

Transcription

1 CONFLUENT HYPERGEOMETRIC FUNCTIONS BY L. J. SLATER, D.LIT., PH.D. Formerly Bateson Research Fellow Newnham College, Cambridge Institut fur theoretssche Physfk Technische Hochschule Darmstadt CAMBRIDGE AT THE UNIVERSITY i960 PRESS Sweaterft*.B ^ 8 9

2 CONTENTS PREFACE poge xi CHAPTER I DIFFERENTIAL EQUATIONS SATISFIED BY CONFLUENT HYPERGEOMETRIC FUNCTIONS 1.1 Introduction i I.I.I Generalized hypergeometric functions i 1.2 Two solutions of Kummer's equation Two further solutions of Kummer's equation The second form of solutions of Kummer's equation Kummer's first theorem The first logarithmic solutions when b is an integer The second logarithmic solutions when b is an integer Whittaker's normalized equation An alternative solution for Whittaker's equation ' The logarithmic solutions of Whittaker's equation when zm is an integer Kummer's second theorem Bessel functions as special cases of confluent hypergeometric functions Relations between Kummer's functions and Whittaker's functions 13 CHAPTER 2 DIFFERENTIAL PROPERTIES 2.1 The differentiation of Kummer's function The derivatives of U(a; b; x) The Wronskians of Kummer's equation Recurrence relations for ±F X [a; b; x] Recurrence relations for U(a; b; x) Continuation formulae for U(a; b; x) Addition theorems for ji^fa; b; x] Addition theorems for U(a; b; x) 22

3 vi CONTENTS Multiplication theorems for xf-^a; b; x] page Multiplication theorems for U(a; b; x) The derivatives of M kim (x) The derivatives of W km (x) The Wronskians of Whittaker's equation Recurrence relations for M k>m (x) Recurrence relations for W km (x) Continuation formulae for Whittaker's functions Addition theorems for M km (x) Addition theorems for W km (x) Multiplication theorems for M kjm (x) Multiplication theorems for W km (x) Expansions in series of Bessel functions An elementary proof of the 4F 3 [i] summation theorem ~ Expansion of Kummer's function in terms of I n (x) Some further expansions 32 CHAPTER 3 INTEGRAL PROPERTIES 3.1 Elementary integrals for Kummer's function Barnes's integral for Kummer's function "Barnes and Euler type integrals for U(a; b; x) Pochhammer's contour integrals for Kummer's function The Pochhammer integrals for U{a; b; x) Elementary indefinite integrals The Laplace transforms of ji^a; b; x] The inverse Laplace transform The Laplace transform of U(a; b; x) Mellin transforms of ^[a; b; x\ Mellin transforms of U{a\ b; x) The Hankel transforms 49

4 CONTENTS Vll 3.5 Elementary integrals for the Whittaker functions page Barnes type integrals for the Whittaker functions Pochhammer contour integrals for the Whittaker functions The Laplace transforms of the Whittaker functions Integrals involving pairs of Kummer's functions Integrals involving pairs of Whittaker functions Some expansions in series 56 CHAPTER 4 ASYMPTOTIC EXPANSIONS 4.1 Introduction ' The asymptotic expansions in x for Kummer's function The asymptotic expansions in x for U(a; b; x) The asymptotic expansions in x for Whittaker's functions ~ Converging factors for Kummer's functions Converging factors for Whittaker's functions Approximations when b is large Approximations for Whittaker's functions when m is large Bessel functions as limiting cases of Kummer functions Approximations in terms of Bessel functions when a is large Bessel functions as limiting cases of Whittaker functions Approximations for Whittaker functions in terms of Bessel functions, when k is large Approximations when a and x are real, \x> \b a Approximations when \b a ~ \x Approximations when \b a > \x Whittaker functions when k and x are large Olver's theorems Asymptotic expansions when a is large Asymptotic expansions when k and x are large Asymptotic expansions when 4^ 4= x Asymptotic expansions when \k = x 86

5 Vlll CONTENTS CHAPTER 5 RELATED DIFFERENTIAL EQUATIONS AND PARTICULAR CASES OF THE FUNCTIONS 5.1 General transforms of Kummer's equation p#g e Kummer's second theorem and the connection with Bessel functions The Coulomb wave equation Further forms of Whittaker's equation Watson's fourth-order equation The Laguerre polynomials The incomplete gamma functions Transformations of Kummer's equation when m = The Poiseuille functions The Schrodinger equation Kamke's equation 101 CHAPTER 6 DESCRIPTIVE PROPERTIES 6.1 The distribution of the zeros The curves of zeros The zeros of U(a; b; x) ~ Approximations to the zeros Expansions for the zeros Nesting processes no 6.4 Zeros in 'a' no 6.5 The zeros in ' b' The tabulation of zeros in x The numerical evaluation of Kummer's function Exponential and oscillatory regions The Sonine-Polya theorem Graphing Kummer's function 120

6 CONTENTS IX REFERENCES page 121 Table of the smallest positive zeros of xi b o-i (0-1)2-5 Table of ^[a; b; x] over the range APPENDIX I [a; b; x] over the range a = 4-0(0-1) o-i, APPENDIX II a = I-O(O-I) i-o, b = o-i (o-i) i-o, x = o-i (o-i) io-o Table of JF-^a; b; 1] over the range APPENDIX III a 11-0(0-2)2-0, b = 4-0(0-2) i-o, x = SYMBOLIC INDEX OF DEFINITIONS 244 GENERAL INDEX 245

FRACTIONAL INTEGRALS AND DERIVATIVES. Theory and Applications

FRACTIONAL INTEGRALS AND DERIVATIVES. Theory and Applications FRACTIONAL INTEGRALS AND DERIVATIVES Theory and Applications Stefan G. Samko Rostov State University, Russia Anatoly A. Kilbas Belorussian State University, Minsk, Belarus Oleg I. Marichev Belorussian

More information

Complex Function Theory. Second Edition. Donald Sarason >AMS AMERICAN MATHEMATICAL SOCIETY

Complex Function Theory. Second Edition. Donald Sarason >AMS AMERICAN MATHEMATICAL SOCIETY Complex Function Theory Second Edition Donald Sarason >AMS AMERICAN MATHEMATICAL SOCIETY Contents Preface to the Second Edition Preface to the First Edition ix xi Chapter I. Complex Numbers 1 1.1. Definition

More information

Dynamics at the Horsetooth, Volume 2A, Focussed Issue: Asymptotics and Perturbations

Dynamics at the Horsetooth, Volume 2A, Focussed Issue: Asymptotics and Perturbations Dynamics at the Horsetooth, Volume A, Focussed Issue: Asymptotics and Perturbations Asymptotic Expansion of Bessel Functions; Applications to Electromagnetics Department of Electrical Engineering Colorado

More information

About the Gamma Function

About the Gamma Function About the Gamma Function Notes for Honors Calculus II, Originally Prepared in Spring 995 Basic Facts about the Gamma Function The Gamma function is defined by the improper integral Γ) = The integral is

More information

Mean value theorem, Taylors Theorem, Maxima and Minima.

Mean value theorem, Taylors Theorem, Maxima and Minima. MA 001 Preparatory Mathematics I. Complex numbers as ordered pairs. Argand s diagram. Triangle inequality. De Moivre s Theorem. Algebra: Quadratic equations and express-ions. Permutations and Combinations.

More information

SCHWEITZER ENGINEERING LABORATORIES, COMERCIAL LTDA.

SCHWEITZER ENGINEERING LABORATORIES, COMERCIAL LTDA. Pocket book of Electrical Engineering Formulas Content 1. Elementary Algebra and Geometry 1. Fundamental Properties (real numbers) 1 2. Exponents 2 3. Fractional Exponents 2 4. Irrational Exponents 2 5.

More information

AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS

AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS Revised Edition James Epperson Mathematical Reviews BICENTENNIAL 0, 1 8 0 7 z ewiley wu 2007 r71 BICENTENNIAL WILEY-INTERSCIENCE A John Wiley & Sons, Inc.,

More information

Zeros of Polynomial Functions

Zeros of Polynomial Functions Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of

More information

Zeros of Polynomial Functions

Zeros of Polynomial Functions Review: Synthetic Division Find (x 2-5x - 5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 3-5x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 3-5x 2 + x + 2. Zeros of Polynomial Functions Introduction

More information

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P. MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called

More information

Clovis Community College Core Competencies Assessment 2014 2015 Area II: Mathematics Algebra

Clovis Community College Core Competencies Assessment 2014 2015 Area II: Mathematics Algebra Core Assessment 2014 2015 Area II: Mathematics Algebra Class: Math 110 College Algebra Faculty: Erin Akhtar (Learning Outcomes Being Measured) 1. Students will construct and analyze graphs and/or data

More information

Microeconomic Theory: Basic Math Concepts

Microeconomic Theory: Basic Math Concepts Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts

More information

March 29, 2011. 171S4.4 Theorems about Zeros of Polynomial Functions

March 29, 2011. 171S4.4 Theorems about Zeros of Polynomial Functions MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 4: Polynomial and Rational Functions 4.1 Polynomial Functions and Models 4.2 Graphing Polynomial Functions 4.3 Polynomial

More information

Math Course Descriptions & Student Learning Outcomes

Math Course Descriptions & Student Learning Outcomes Math Course Descriptions & Student Learning Outcomes Table of Contents MAC 100: Business Math... 1 MAC 101: Technical Math... 3 MA 090: Basic Math... 4 MA 095: Introductory Algebra... 5 MA 098: Intermediate

More information

Equations. #1-10 Solve for the variable. Inequalities. 1. Solve the inequality: 2 5 7. 2. Solve the inequality: 4 0

Equations. #1-10 Solve for the variable. Inequalities. 1. Solve the inequality: 2 5 7. 2. Solve the inequality: 4 0 College Algebra Review Problems for Final Exam Equations #1-10 Solve for the variable 1. 2 1 4 = 0 6. 2 8 7 2. 2 5 3 7. = 3. 3 9 4 21 8. 3 6 9 18 4. 6 27 0 9. 1 + log 3 4 5. 10. 19 0 Inequalities 1. Solve

More information

Mathematics (MAT) MAT 061 Basic Euclidean Geometry 3 Hours. MAT 051 Pre-Algebra 4 Hours

Mathematics (MAT) MAT 061 Basic Euclidean Geometry 3 Hours. MAT 051 Pre-Algebra 4 Hours MAT 051 Pre-Algebra Mathematics (MAT) MAT 051 is designed as a review of the basic operations of arithmetic and an introduction to algebra. The student must earn a grade of C or in order to enroll in MAT

More information

Math 131 College Algebra Fall 2015

Math 131 College Algebra Fall 2015 Math 131 College Algebra Fall 2015 Instructor's Name: Office Location: Office Hours: Office Phone: E-mail: Course Description This course has a minimal review of algebraic skills followed by a study of

More information

MATHEMATICS (MATH) 3. Provides experiences that enable graduates to find employment in sciencerelated

MATHEMATICS (MATH) 3. Provides experiences that enable graduates to find employment in sciencerelated 194 / Department of Natural Sciences and Mathematics MATHEMATICS (MATH) The Mathematics Program: 1. Provides challenging experiences in Mathematics, Physics, and Physical Science, which prepare graduates

More information

Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics

Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in

More information

2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: 2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

More information

MATH. ALGEBRA I HONORS 9 th Grade 12003200 ALGEBRA I HONORS

MATH. ALGEBRA I HONORS 9 th Grade 12003200 ALGEBRA I HONORS * Students who scored a Level 3 or above on the Florida Assessment Test Math Florida Standards (FSA-MAFS) are strongly encouraged to make Advanced Placement and/or dual enrollment courses their first choices

More information

How To Understand And Solve Algebraic Equations

How To Understand And Solve Algebraic Equations College Algebra Course Text Barnett, Raymond A., Michael R. Ziegler, and Karl E. Byleen. College Algebra, 8th edition, McGraw-Hill, 2008, ISBN: 978-0-07-286738-1 Course Description This course provides

More information

Numerical Analysis An Introduction

Numerical Analysis An Introduction Walter Gautschi Numerical Analysis An Introduction 1997 Birkhauser Boston Basel Berlin CONTENTS PREFACE xi CHAPTER 0. PROLOGUE 1 0.1. Overview 1 0.2. Numerical analysis software 3 0.3. Textbooks and monographs

More information

Second Order Differential Equations with Hypergeometric Solutions of Degree Three

Second Order Differential Equations with Hypergeometric Solutions of Degree Three Second Order Differential Equations with Hypergeometric Solutions of Degree Three Vijay Jung Kunwar, Mark van Hoeij Department of Mathematics, Florida State University Tallahassee, FL 0-07, USA vkunwar@mathfsuedu,

More information

3.2 LOGARITHMIC FUNCTIONS AND THEIR GRAPHS. Copyright Cengage Learning. All rights reserved.

3.2 LOGARITHMIC FUNCTIONS AND THEIR GRAPHS. Copyright Cengage Learning. All rights reserved. 3.2 LOGARITHMIC FUNCTIONS AND THEIR GRAPHS Copyright Cengage Learning. All rights reserved. What You Should Learn Recognize and evaluate logarithmic functions with base a. Graph logarithmic functions.

More information

Algebra 1 Course Title

Algebra 1 Course Title Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

More information

Sequence of Mathematics Courses

Sequence of Mathematics Courses Sequence of ematics Courses Where do I begin? Associates Degree and Non-transferable Courses (For math course below pre-algebra, see the Learning Skills section of the catalog) MATH M09 PRE-ALGEBRA 3 UNITS

More information

Lecture 13: Factoring Integers

Lecture 13: Factoring Integers CS 880: Quantum Information Processing 0/4/0 Lecture 3: Factoring Integers Instructor: Dieter van Melkebeek Scribe: Mark Wellons In this lecture, we review order finding and use this to develop a method

More information

Elementary Differential Equations and Boundary Value Problems. 10th Edition International Student Version

Elementary Differential Equations and Boundary Value Problems. 10th Edition International Student Version Brochure More information from http://www.researchandmarkets.com/reports/3148843/ Elementary Differential Equations and Boundary Value Problems. 10th Edition International Student Version Description:

More information

HIGH SCHOOL: GEOMETRY (Page 1 of 4)

HIGH SCHOOL: GEOMETRY (Page 1 of 4) HIGH SCHOOL: GEOMETRY (Page 1 of 4) Geometry is a complete college preparatory course of plane and solid geometry. It is recommended that there be a strand of algebra review woven throughout the course

More information

Zeros of Polynomial Functions

Zeros of Polynomial Functions Zeros of Polynomial Functions Objectives: 1.Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions 2.Find rational zeros of polynomial functions 3.Find conjugate

More information

PRE-CALCULUS GRADE 12

PRE-CALCULUS GRADE 12 PRE-CALCULUS GRADE 12 [C] Communication Trigonometry General Outcome: Develop trigonometric reasoning. A1. Demonstrate an understanding of angles in standard position, expressed in degrees and radians.

More information

Course Name: College Algebra Course Number: Math 1513 Semester: Fall 2015

Course Name: College Algebra Course Number: Math 1513 Semester: Fall 2015 Course Name: College Algebra Course Number: Math 1513 Semester: Fall 2015 Instructor s Name: Ricky Streight Hours Credit: 3 Office Phone: 945-6794 Office Hours: Check http://www.osuokc.edu/rickyws/ for

More information

Zeros of a Polynomial Function

Zeros of a Polynomial Function Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we

More information

6. Define log(z) so that π < I log(z) π. Discuss the identities e log(z) = z and log(e w ) = w.

6. Define log(z) so that π < I log(z) π. Discuss the identities e log(z) = z and log(e w ) = w. hapter omplex integration. omplex number quiz. Simplify 3+4i. 2. Simplify 3+4i. 3. Find the cube roots of. 4. Here are some identities for complex conjugate. Which ones need correction? z + w = z + w,

More information

Inverse Functions and Logarithms

Inverse Functions and Logarithms Section 3. Inverse Functions and Logarithms 1 Kiryl Tsishchanka Inverse Functions and Logarithms DEFINITION: A function f is called a one-to-one function if it never takes on the same value twice; that

More information

Georgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1

Georgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1 Accelerated Mathematics 3 This is a course in precalculus and statistics, designed to prepare students to take AB or BC Advanced Placement Calculus. It includes rational, circular trigonometric, and inverse

More information

Mathematics Review for MS Finance Students

Mathematics Review for MS Finance Students Mathematics Review for MS Finance Students Anthony M. Marino Department of Finance and Business Economics Marshall School of Business Lecture 1: Introductory Material Sets The Real Number System Functions,

More information

Taylor and Maclaurin Series

Taylor and Maclaurin Series Taylor and Maclaurin Series In the preceding section we were able to find power series representations for a certain restricted class of functions. Here we investigate more general problems: Which functions

More information

Differentiation and Integration

Differentiation and Integration This material is a supplement to Appendix G of Stewart. You should read the appendix, except the last section on complex exponentials, before this material. Differentiation and Integration Suppose we have

More information

4.3 Lagrange Approximation

4.3 Lagrange Approximation 206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average

More information

Notes on Determinant

Notes on Determinant ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 9-18/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without

More information

ORDINARY DIFFERENTIAL EQUATIONS

ORDINARY DIFFERENTIAL EQUATIONS ORDINARY DIFFERENTIAL EQUATIONS GABRIEL NAGY Mathematics Department, Michigan State University, East Lansing, MI, 48824. SEPTEMBER 4, 25 Summary. This is an introduction to ordinary differential equations.

More information

Methods of Solution of Selected Differential Equations Carol A. Edwards Chandler-Gilbert Community College

Methods of Solution of Selected Differential Equations Carol A. Edwards Chandler-Gilbert Community College Methods of Solution of Selected Differential Equations Carol A. Edwards Chandler-Gilbert Community College Equations of Order One: Mdx + Ndy = 0 1. Separate variables. 2. M, N homogeneous of same degree:

More information

Schneps, Leila; Colmez, Coralie. Math on Trial : How Numbers Get Used and Abused in the Courtroom. New York, NY, USA: Basic Books, 2013. p i.

Schneps, Leila; Colmez, Coralie. Math on Trial : How Numbers Get Used and Abused in the Courtroom. New York, NY, USA: Basic Books, 2013. p i. New York, NY, USA: Basic Books, 2013. p i. http://site.ebrary.com/lib/mcgill/doc?id=10665296&ppg=2 New York, NY, USA: Basic Books, 2013. p ii. http://site.ebrary.com/lib/mcgill/doc?id=10665296&ppg=3 New

More information

2.5 Zeros of a Polynomial Functions

2.5 Zeros of a Polynomial Functions .5 Zeros of a Polynomial Functions Section.5 Notes Page 1 The first rule we will talk about is Descartes Rule of Signs, which can be used to determine the possible times a graph crosses the x-axis and

More information

Lecturer(s): Mr. Martin Franklin, Mr. Gregory Wallace and Mr. Rishi Maharaj

Lecturer(s): Mr. Martin Franklin, Mr. Gregory Wallace and Mr. Rishi Maharaj COURSE TITLE: Introduction to Mathematics COURSE CODE: ECON1003 Level: I SEMESTER: II No. of Credits: 3 Lecturer(s): Mr. Martin Franklin, Mr. Gregy Wallace and Mr. Rishi Maharaj Lecturers E-mail Addresses:

More information

Math Placement Test Study Guide. 2. The test consists entirely of multiple choice questions, each with five choices.

Math Placement Test Study Guide. 2. The test consists entirely of multiple choice questions, each with five choices. Math Placement Test Study Guide General Characteristics of the Test 1. All items are to be completed by all students. The items are roughly ordered from elementary to advanced. The expectation is that

More information

MATHEMATICS. Administered by the Department of Mathematical and Computing Sciences within the College of Arts and Sciences. Degree Requirements

MATHEMATICS. Administered by the Department of Mathematical and Computing Sciences within the College of Arts and Sciences. Degree Requirements MATHEMATICS Administered by the Department of Mathematical and Computing Sciences within the College of Arts and Sciences. Paul Feit, PhD Dr. Paul Feit is Professor of Mathematics and Coordinator for Mathematics.

More information

Algebra II. Weeks 1-3 TEKS

Algebra II. Weeks 1-3 TEKS Algebra II Pacing Guide Weeks 1-3: Equations and Inequalities: Solve Linear Equations, Solve Linear Inequalities, Solve Absolute Value Equations and Inequalities. Weeks 4-6: Linear Equations and Functions:

More information

School of Mathematics, Computer Science and Engineering. Mathematics* Associate in Arts Degree COURSES, PROGRAMS AND MAJORS

School of Mathematics, Computer Science and Engineering. Mathematics* Associate in Arts Degree COURSES, PROGRAMS AND MAJORS Mathematics School of Mathematics, Computer Science and Engineering Dean: Lianna Zhao, MD Academic Chair: Miriam Castroconde Faculty: Miriam Castroconde; Terry Cheng; Howard Dachslager, PhD; Ilknur Erbas

More information

88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a

88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a 88 CHAPTER. VECTOR FUNCTIONS.4 Curvature.4.1 Definitions and Examples The notion of curvature measures how sharply a curve bends. We would expect the curvature to be 0 for a straight line, to be very small

More information

MATH BOOK OF PROBLEMS SERIES. New from Pearson Custom Publishing!

MATH BOOK OF PROBLEMS SERIES. New from Pearson Custom Publishing! MATH BOOK OF PROBLEMS SERIES New from Pearson Custom Publishing! The Math Book of Problems Series is a database of math problems for the following courses: Pre-algebra Algebra Pre-calculus Calculus Statistics

More information

AP CALCULUS BC 2008 SCORING GUIDELINES

AP CALCULUS BC 2008 SCORING GUIDELINES AP CALCULUS BC 008 SCORING GUIDELINES Question 6 dy y Consider the logistic differential equation = ( 6 y). Let y = f() t be the particular solution to the 8 differential equation with f ( 0) = 8. (a)

More information

New Higher-Proposed Order-Combined Approach. Block 1. Lines 1.1 App. Vectors 1.4 EF. Quadratics 1.1 RC. Polynomials 1.1 RC

New Higher-Proposed Order-Combined Approach. Block 1. Lines 1.1 App. Vectors 1.4 EF. Quadratics 1.1 RC. Polynomials 1.1 RC New Higher-Proposed Order-Combined Approach Block 1 Lines 1.1 App Vectors 1.4 EF Quadratics 1.1 RC Polynomials 1.1 RC Differentiation-but not optimisation 1.3 RC Block 2 Functions and graphs 1.3 EF Logs

More information

Polynomials and Factoring

Polynomials and Factoring Lesson 2 Polynomials and Factoring A polynomial function is a power function or the sum of two or more power functions, each of which has a nonnegative integer power. Because polynomial functions are built

More information

SEMESTER PLANS FOR MATH COURSES, FOR MAJORS OUTSIDE MATH.

SEMESTER PLANS FOR MATH COURSES, FOR MAJORS OUTSIDE MATH. SEMESTER PLANS FOR MATH COURSES, FOR MAJORS OUTSIDE MATH. CONTENTS: AP calculus credit and Math Placement levels. List of semester math courses. Student pathways through the semester math courses Transition

More information

Higher Order Equations

Higher Order Equations Higher Order Equations We briefly consider how what we have done with order two equations generalizes to higher order linear equations. Fortunately, the generalization is very straightforward: 1. Theory.

More information

( ) FACTORING. x In this polynomial the only variable in common to all is x.

( ) FACTORING. x In this polynomial the only variable in common to all is x. FACTORING Factoring is similar to breaking up a number into its multiples. For example, 10=5*. The multiples are 5 and. In a polynomial it is the same way, however, the procedure is somewhat more complicated

More information

Course Name: College Algebra - MML Course Number: Math 1513 Semester: Fall 2011. Instructor s Name: Hours Credit: 3

Course Name: College Algebra - MML Course Number: Math 1513 Semester: Fall 2011. Instructor s Name: Hours Credit: 3 Course Name: College Algebra - MML Course Number: Math 1513 Semester: Fall 2011 Instructor s Name: Hours Credit: 3 Office Phone: Office Hours: I. Course Description: Quadratic equations, functions and

More information

RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A

RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A RAJALAKSHMI ENGINEERING COLLEGE MA 26 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS. Solve (D 2 + D 2)y = 0. 2. Solve (D 2 + 6D + 9)y = 0. PART A 3. Solve (D 4 + 4)x = 0 where D = d dt 4. Find Particular Integral:

More information

Homework # 3 Solutions

Homework # 3 Solutions Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8

More information

REVIEW EXERCISES DAVID J LOWRY

REVIEW EXERCISES DAVID J LOWRY REVIEW EXERCISES DAVID J LOWRY Contents 1. Introduction 1 2. Elementary Functions 1 2.1. Factoring and Solving Quadratics 1 2.2. Polynomial Inequalities 3 2.3. Rational Functions 4 2.4. Exponentials and

More information

Understanding Basic Calculus

Understanding Basic Calculus Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other

More information

INTRODUCTION TO FLUID MECHANICS

INTRODUCTION TO FLUID MECHANICS INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION

More information

Differentiating under an integral sign

Differentiating under an integral sign CALIFORNIA INSTITUTE OF TECHNOLOGY Ma 2b KC Border Introduction to Probability and Statistics February 213 Differentiating under an integral sign In the derivation of Maximum Likelihood Estimators, or

More information

Review of Fundamental Mathematics

Review of Fundamental Mathematics Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools

More information

SOLVING EQUATIONS WITH EXCEL

SOLVING EQUATIONS WITH EXCEL SOLVING EQUATIONS WITH EXCEL Excel and Lotus software are equipped with functions that allow the user to identify the root of an equation. By root, we mean the values of x such that a given equation cancels

More information

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year. This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra

More information

Algebra II End of Course Exam Answer Key Segment I. Scientific Calculator Only

Algebra II End of Course Exam Answer Key Segment I. Scientific Calculator Only Algebra II End of Course Exam Answer Key Segment I Scientific Calculator Only Question 1 Reporting Category: Algebraic Concepts & Procedures Common Core Standard: A-APR.3: Identify zeros of polynomials

More information

Properties of Real Numbers

Properties of Real Numbers 16 Chapter P Prerequisites P.2 Properties of Real Numbers What you should learn: Identify and use the basic properties of real numbers Develop and use additional properties of real numbers Why you should

More information

Vocabulary Words and Definitions for Algebra

Vocabulary Words and Definitions for Algebra Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

More information

Course Notes for Math 162: Mathematical Statistics Approximation Methods in Statistics

Course Notes for Math 162: Mathematical Statistics Approximation Methods in Statistics Course Notes for Math 16: Mathematical Statistics Approximation Methods in Statistics Adam Merberg and Steven J. Miller August 18, 6 Abstract We introduce some of the approximation methods commonly used

More information

INTEGRAL METHODS IN LOW-FREQUENCY ELECTROMAGNETICS

INTEGRAL METHODS IN LOW-FREQUENCY ELECTROMAGNETICS INTEGRAL METHODS IN LOW-FREQUENCY ELECTROMAGNETICS I. Dolezel Czech Technical University, Praha, Czech Republic P. Karban University of West Bohemia, Plzeft, Czech Republic P. Solin University of Nevada,

More information

DRAFT. Further mathematics. GCE AS and A level subject content

DRAFT. Further mathematics. GCE AS and A level subject content Further mathematics GCE AS and A level subject content July 2014 s Introduction Purpose Aims and objectives Subject content Structure Background knowledge Overarching themes Use of technology Detailed

More information

5 Numerical Differentiation

5 Numerical Differentiation D. Levy 5 Numerical Differentiation 5. Basic Concepts This chapter deals with numerical approximations of derivatives. The first questions that comes up to mind is: why do we need to approximate derivatives

More information

Factoring Polynomials

Factoring Polynomials Factoring Polynomials Sue Geller June 19, 2006 Factoring polynomials over the rational numbers, real numbers, and complex numbers has long been a standard topic of high school algebra. With the advent

More information

Some Lecture Notes and In-Class Examples for Pre-Calculus:

Some Lecture Notes and In-Class Examples for Pre-Calculus: Some Lecture Notes and In-Class Examples for Pre-Calculus: Section.7 Definition of a Quadratic Inequality A quadratic inequality is any inequality that can be put in one of the forms ax + bx + c < 0 ax

More information

Essays in Financial Mathematics

Essays in Financial Mathematics Essays in Financial Mathematics Essays in Financial Mathematics Kristoffer Lindensjö Dissertation for the Degree of Doctor of Philosophy, Ph.D. Stockholm School of Economics, 2013. Dissertation title:

More information

TOPIC 4: DERIVATIVES

TOPIC 4: DERIVATIVES TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the

More information

Second-Order Linear Differential Equations

Second-Order Linear Differential Equations Second-Order Linear Differential Equations A second-order linear differential equation has the form 1 Px d 2 y dx 2 dy Qx dx Rxy Gx where P, Q, R, and G are continuous functions. We saw in Section 7.1

More information

Academic Support Services Supplemental Learning Materials - Math

Academic Support Services Supplemental Learning Materials - Math Academic Support Services Supplemental Learning Materials - Math Algebra and trigonometry Basic math Calculator help Charts and graphs Coordinate planes Decimals Exponents General math sites Graphing Integers

More information

Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

More information

3-17 15-25 5 15-10 25 3-2 5 0. 1b) since the remainder is 0 I need to factor the numerator. Synthetic division tells me this is true

3-17 15-25 5 15-10 25 3-2 5 0. 1b) since the remainder is 0 I need to factor the numerator. Synthetic division tells me this is true Section 5.2 solutions #1-10: a) Perform the division using synthetic division. b) if the remainder is 0 use the result to completely factor the dividend (this is the numerator or the polynomial to the

More information

Mathematics. Mathematics MATHEMATICS. 298 2015-16 Sacramento City College Catalog. Degree: A.S. Mathematics AS-T Mathematics for Transfer

Mathematics. Mathematics MATHEMATICS. 298 2015-16 Sacramento City College Catalog. Degree: A.S. Mathematics AS-T Mathematics for Transfer MATH Degree: A.S. AS-T for Transfer Division of /Statistics & Engineering Anne E. Licciardi, Dean South Gym 220 916-558-2202 Associate in Science Degree Program Information The mathematics program provides

More information

Classroom Tips and Techniques: The Student Precalculus Package - Commands and Tutors. Content of the Precalculus Subpackage

Classroom Tips and Techniques: The Student Precalculus Package - Commands and Tutors. Content of the Precalculus Subpackage Classroom Tips and Techniques: The Student Precalculus Package - Commands and Tutors Robert J. Lopez Emeritus Professor of Mathematics and Maple Fellow Maplesoft This article provides a systematic exposition

More information

BookTOC.txt. 1. Functions, Graphs, and Models. Algebra Toolbox. Sets. The Real Numbers. Inequalities and Intervals on the Real Number Line

BookTOC.txt. 1. Functions, Graphs, and Models. Algebra Toolbox. Sets. The Real Numbers. Inequalities and Intervals on the Real Number Line College Algebra in Context with Applications for the Managerial, Life, and Social Sciences, 3rd Edition Ronald J. Harshbarger, University of South Carolina - Beaufort Lisa S. Yocco, Georgia Southern University

More information

096 Professional Readiness Examination (Mathematics)

096 Professional Readiness Examination (Mathematics) 096 Professional Readiness Examination (Mathematics) Effective after October 1, 2013 MI-SG-FLD096M-02 TABLE OF CONTENTS PART 1: General Information About the MTTC Program and Test Preparation OVERVIEW

More information

Columbia University in the City of New York New York, N.Y. 10027

Columbia University in the City of New York New York, N.Y. 10027 Columbia University in the City of New York New York, N.Y. 10027 DEPARTMENT OF MATHEMATICS 508 Mathematics Building 2990 Broadway Fall Semester 2005 Professor Ioannis Karatzas W4061: MODERN ANALYSIS Description

More information

MATH ADVISEMENT GUIDE

MATH ADVISEMENT GUIDE MATH ADVISEMENT GUIDE Recommendations for math courses are based on your placement results, degree program and career interests. Placement score: MAT 001 or MAT 00 You must complete required mathematics

More information

Mathematics for Algorithm and System Analysis

Mathematics for Algorithm and System Analysis Mathematics for Algorithm and System Analysis for students of computer and computational science Edward A. Bender S. Gill Williamson c Edward A. Bender & S. Gill Williamson 2005. All rights reserved. Preface

More information

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document

More information

Overview. Essential Questions. Precalculus, Quarter 4, Unit 4.5 Build Arithmetic and Geometric Sequences and Series

Overview. Essential Questions. Precalculus, Quarter 4, Unit 4.5 Build Arithmetic and Geometric Sequences and Series Sequences and Series Overview Number of instruction days: 4 6 (1 day = 53 minutes) Content to Be Learned Write arithmetic and geometric sequences both recursively and with an explicit formula, use them

More information

Chebyshev Expansions

Chebyshev Expansions Chapter 3 Chebyshev Expansions The best is the cheapest. Benjamin Franklin 3.1 Introduction In Chapter, approximations were considered consisting of expansions around a specific value of the variable (finite

More information

Production and Inventory Management

Production and Inventory Management Production and Inventory Management ARNOLDO C. HAX Massachusetts Institute of Technology DAN CANDEA Polytechnic Institute of Cluj-Napoca TECHNISCHE HOCHSCHULE DARMSTADT FoaiberGirii 1 Gesam th ibl iot

More information

CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis. Linda Shapiro Winter 2015

CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis. Linda Shapiro Winter 2015 CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis Linda Shapiro Today Registration should be done. Homework 1 due 11:59 pm next Wednesday, January 14 Review math essential

More information

a. all of the above b. none of the above c. B, C, D, and F d. C, D, F e. C only f. C and F

a. all of the above b. none of the above c. B, C, D, and F d. C, D, F e. C only f. C and F FINAL REVIEW WORKSHEET COLLEGE ALGEBRA Chapter 1. 1. Given the following equations, which are functions? (A) y 2 = 1 x 2 (B) y = 9 (C) y = x 3 5x (D) 5x + 2y = 10 (E) y = ± 1 2x (F) y = 3 x + 5 a. all

More information

GREEN CHICKEN EXAM - NOVEMBER 2012

GREEN CHICKEN EXAM - NOVEMBER 2012 GREEN CHICKEN EXAM - NOVEMBER 2012 GREEN CHICKEN AND STEVEN J. MILLER Question 1: The Green Chicken is planning a surprise party for his grandfather and grandmother. The sum of the ages of the grandmother

More information