Paninimania: sticker rarity and cost-effective strategy
|
|
|
- Owen Pearson
- 9 years ago
- Views:
Transcription
1 Paninimania: sticker rarity and cost-effective strategy Sylvain Sardy and Yvan Velenik Section de mathématiques Université de Genève Abstract We consider some issues related to the famous Panini stickers devoted to the football world cup. In particular, we address the following questions: is there a planned shortage of some stickers? What is a good cost-effective strategy to fill in an album? 1 Introduction The collectors frenzy over Panini s stickers is now almost a tradition with each new football world cup [1]. In this note we discuss the alleged rarity of certain stickers (famous players, etc. and propose a cost-effective strategy. For the purpose of the discussion below, we recall that in Switzerland the stickers can be purchased in three different ways: buying one packet of different stickers for CHF 1; buying one box of 00 different stickers 1 for CHF 100 (actually prices as low as CHF 70 can be found; buying specific individual stickers directly from Panini at a cost of CHF 0.30 apiece with, however, a limitation to at most 0 stickers. The album comprises different stickers. 2 Rare stickers: a myth? 2.1 Testing for uniformity To test whether all stickers appear with the same frequency, 12 boxes (three in four different Swiss cantons of 100 packets containing each five different stickers have been collected, which amounts to a total of 6000 stickers. Because of the dependence induced by the fact that stickers bought in a single box are all different, we cannot perform a standard chi-square test. Instead, we perform a Monte-Carlo simulation to estimate the null distribution under the hypothesis that stickers are uniformly distributed overall with the constraints that there are no duplicates neither within a packet nor within a box. Hence we generate 12 independent boxes with such constraints, count the total number of times N i, i = 1,...,, each sticker occurs, and calculate the statistics S = i=1 (N i e i 2 e i with e i = Although this is true for the analyzed boxes, it seems that some boxes may occasionally contain a few duplicates. We ignore this issue here. 1
2 Repeating this experiment M = 10 4 times provides an estimate of the null distribution that we plot on the left graph of Figure 1. The statistics s = 138 calculated on the collected stickers is also plotted and amounts to a p-value of , so that we do not reject the null hypothesis that stickers are uniformly distributed. Interestingly the p-value is large, which can be explained by the fact that in two of the four cantons, it was possible to complete an entire album by buying three boxes. If boxes were independent of each other the probability of such an event would be very small: 160 k=0 ( k 160 ( 00 k ( 340+k k ( (1 Looking at the serial number of the boxes reveals that successive boxes seem to be dependent, which violates the assumption of the previous test. For a more accurate test, we start by dropping the data from the two cantons where we were able to complete an entire album, and repeat the test. The right graph of Figure 1 now shows the estimated null distribution along with the statistics s = based on the 3000 measurements. The p-value is now 0.123, so that we still do not reject the null hypothesis. Data from 4 cantons Data from 2 cantons Density O Density O s s Figure 1: Density estimate of the distribution of the statistics S under the null hypothesis that stickers are uniformly distributed along the value of the statistics calculated from the data: (left based on the 6000 stickers of 4 cantons, in which case the independence assumption seems violated by boxes with successive serial numbers; (right based on 3000 stickers of 2 cantons. 2.2 How to explain the myth Most people who try to fill in the Panini album believe some stickers are indeed rare [1]. To explain the myth, we considered two scenarios and made some calculations. 2
3 Number of packets bought Number of different stickers obtained Table 1: Single person scenario. Average number of different stickers obtained as a function of the number of packets bought. Consider first the situation where a single person buys independent packets of five stickers. The average number of packets he needs to complete the album is 931 as one can read on Figure 2. And on average, with one fourth (i.e., 233 packets, he can obtain 0 different stickers; with another 233 packets, he can obtain 640 different stickers; with another 233 packets, 67 different stickers; finally another 233 packets are needed to complete the album with different stickers. These average calculations are summarized in Table 1. Hence the last three stickers missing seem rare since it takes so long to get them. Let us turn now to a more realistic scenario which takes into account sticker swapping. To model swapping we consider optimal swapping between k individuals who buy their cards together until they fill k albums. Other swapping procedures could also be considered (e.g., each individual swapping his duplicates for missing cards, but this would lead to less cost effective strategies. Consider ten friends who buy 100 packets each, one by one (as opposed to buying boxes and perform optimal swapping. Since a total of 000 stickers are bought, one has the feeling that it is unlikely that at least one sticker is missing to all the ten friends. But calculations show that this event actually occurs slightly more than 2% of the time. Hence, a group of friends that has at least one sticker missing will incorrectly believe that these stickers are rare. 3 Strategies 3.1 Without swapping Consider first the situation of a person trying to fill in his album without swapping stickers. This version is very reminiscent of the classical coupon collector problem [3, Section IX.3]. In the latter, one of n different coupons is obtained when buying one instance of some product; how many instances are necessary in order to complete the collection? This problem can easily be solved explicitly, yielding in particular an expected number of required purchases equal to n( n n(log n In particular for n =, this leads to approximately stickers, or CHF In our case, the situation is slightly more complicated, since different stickers are obtained each time a packet is purchased. Of course, one should not expect the latter constraint to affect significantly the conclusion, since objects sampled (with replacement from a pool of objects are all different with probability ( / This situation has also been treated analytically [4, 2] yielding for example an expectation of the number of required packets 3
4 of five stickers equal to ( ( ( 1 j+1 j j=1 ( ( j Effect of swapping Let us now turn to the effect of swapping on the overall expected cost of filling an album. As above we consider optimal swapping between k individuals. Figure 2 shows the evolution of the expected cost per collector as a function of k Expected number of required packets per person Number of persons Figure 2: Average number of packets each of k persons have to buy in order for all of them to complete their album, under an assumption of optimal swapping. Notice that in the limiting situation of an infinite number of friends, this minimal number is actually equal to 132 = /; this value corresponds to the horizontal axis in the picture. 3.3 A good strategy In order to devise a reasonable strategy, we use the facts that it is possible to buy boxes containing 00 different stickers for a price of CHF , depending on the vendor, and that it is possible to buy from Panini up to 0 specified stickers for a unit price of CHF.30 each. 4
5 Numerical computations suggest the following strategy, when swapping with 9 other persons: 1 buy a box, 2 buy 40 additional packets and swap the duplicates until at most 0 stickers are missing from your collection, 3 order the missing stickers from Panini. The cost of this strategy is between CHF 12 and CHF 1, depending on the price of the box. If one ignores swapping, it is possible to derive analytically the optimal strategy [4]. References [1] À bon entendeur, Télévision Suisse Romande, 18 mai 2010, [2] Adler, Ilan and Ross, Sheldon M.: The coupon subset collection problem, J. Appl. Probab. 38 (2001, no. 3, [3] Feller, William: An introduction to probability theory and its applications. Vol. I., Third edition John Wiley & Sons, Inc., New York-London-Sydney [4] Stadje, Wolfgang: The collector s problem with group drawings., Adv. in Appl. Probab. 22 (1990, no. 4,
A Study to Predict No Show Probability for a Scheduled Appointment at Free Health Clinic
A Study to Predict No Show Probability for a Scheduled Appointment at Free Health Clinic Report prepared for Brandon Slama Department of Health Management and Informatics University of Missouri, Columbia
Managerial Economics Prof. Trupti Mishra S.J.M. School of Management Indian Institute of Technology, Bombay. Lecture - 13 Consumer Behaviour (Contd )
(Refer Slide Time: 00:28) Managerial Economics Prof. Trupti Mishra S.J.M. School of Management Indian Institute of Technology, Bombay Lecture - 13 Consumer Behaviour (Contd ) We will continue our discussion
Graphical Integration Exercises Part Four: Reverse Graphical Integration
D-4603 1 Graphical Integration Exercises Part Four: Reverse Graphical Integration Prepared for the MIT System Dynamics in Education Project Under the Supervision of Dr. Jay W. Forrester by Laughton Stanley
CHI-SQUARE: TESTING FOR GOODNESS OF FIT
CHI-SQUARE: TESTING FOR GOODNESS OF FIT In the previous chapter we discussed procedures for fitting a hypothesized function to a set of experimental data points. Such procedures involve minimizing a quantity
The fundamental question in economics is 2. Consumer Preferences
A Theory of Consumer Behavior Preliminaries 1. Introduction The fundamental question in economics is 2. Consumer Preferences Given limited resources, how are goods and service allocated? 1 3. Indifference
Projects Involving Statistics (& SPSS)
Projects Involving Statistics (& SPSS) Academic Skills Advice Starting a project which involves using statistics can feel confusing as there seems to be many different things you can do (charts, graphs,
Chapter 3 RANDOM VARIATE GENERATION
Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.
How To Check For Differences In The One Way Anova
MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. One-Way
Process Capability Analysis Using MINITAB (I)
Process Capability Analysis Using MINITAB (I) By Keith M. Bower, M.S. Abstract The use of capability indices such as C p, C pk, and Sigma values is widespread in industry. It is important to emphasize
BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420
BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420 1. Which of the following will increase the value of the power in a statistical test
Variables Control Charts
MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. Variables
Permutation Tests for Comparing Two Populations
Permutation Tests for Comparing Two Populations Ferry Butar Butar, Ph.D. Jae-Wan Park Abstract Permutation tests for comparing two populations could be widely used in practice because of flexibility of
Outline. Definitions Descriptive vs. Inferential Statistics The t-test - One-sample t-test
The t-test Outline Definitions Descriptive vs. Inferential Statistics The t-test - One-sample t-test - Dependent (related) groups t-test - Independent (unrelated) groups t-test Comparing means Correlation
Statistical Impact of Slip Simulator Training at Los Alamos National Laboratory
LA-UR-12-24572 Approved for public release; distribution is unlimited Statistical Impact of Slip Simulator Training at Los Alamos National Laboratory Alicia Garcia-Lopez Steven R. Booth September 2012
NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )
Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates
SIMULATION STUDIES IN STATISTICS WHAT IS A SIMULATION STUDY, AND WHY DO ONE? What is a (Monte Carlo) simulation study, and why do one?
SIMULATION STUDIES IN STATISTICS WHAT IS A SIMULATION STUDY, AND WHY DO ONE? What is a (Monte Carlo) simulation study, and why do one? Simulations for properties of estimators Simulations for properties
1 Another method of estimation: least squares
1 Another method of estimation: least squares erm: -estim.tex, Dec8, 009: 6 p.m. (draft - typos/writos likely exist) Corrections, comments, suggestions welcome. 1.1 Least squares in general Assume Y i
Introduction to Hypothesis Testing OPRE 6301
Introduction to Hypothesis Testing OPRE 6301 Motivation... The purpose of hypothesis testing is to determine whether there is enough statistical evidence in favor of a certain belief, or hypothesis, about
Matching Investment Strategies in General Insurance Is it Worth It? Aim of Presentation. Background 34TH ANNUAL GIRO CONVENTION
Matching Investment Strategies in General Insurance Is it Worth It? 34TH ANNUAL GIRO CONVENTION CELTIC MANOR RESORT, NEWPORT, WALES Aim of Presentation To answer a key question: What are the benefit of
Difference tests (2): nonparametric
NST 1B Experimental Psychology Statistics practical 3 Difference tests (): nonparametric Rudolf Cardinal & Mike Aitken 10 / 11 February 005; Department of Experimental Psychology University of Cambridge
INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA)
INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the one-way ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete
Standard Deviation Estimator
CSS.com Chapter 905 Standard Deviation Estimator Introduction Even though it is not of primary interest, an estimate of the standard deviation (SD) is needed when calculating the power or sample size of
CONTENTS OF DAY 2. II. Why Random Sampling is Important 9 A myth, an urban legend, and the real reason NOTES FOR SUMMER STATISTICS INSTITUTE COURSE
1 2 CONTENTS OF DAY 2 I. More Precise Definition of Simple Random Sample 3 Connection with independent random variables 3 Problems with small populations 8 II. Why Random Sampling is Important 9 A myth,
LOGISTIC REGRESSION ANALYSIS
LOGISTIC REGRESSION ANALYSIS C. Mitchell Dayton Department of Measurement, Statistics & Evaluation Room 1230D Benjamin Building University of Maryland September 1992 1. Introduction and Model Logistic
LAB : THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics
Period Date LAB : THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,
START Selected Topics in Assurance
START Selected Topics in Assurance Related Technologies Table of Contents Introduction Some Statistical Background Fitting a Normal Using the Anderson Darling GoF Test Fitting a Weibull Using the Anderson
Inference for two Population Means
Inference for two Population Means Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison October 27 November 1, 2011 Two Population Means 1 / 65 Case Study Case Study Example
Two-sample inference: Continuous data
Two-sample inference: Continuous data Patrick Breheny April 5 Patrick Breheny STA 580: Biostatistics I 1/32 Introduction Our next two lectures will deal with two-sample inference for continuous data As
Testing Research and Statistical Hypotheses
Testing Research and Statistical Hypotheses Introduction In the last lab we analyzed metric artifact attributes such as thickness or width/thickness ratio. Those were continuous variables, which as you
12.5: CHI-SQUARE GOODNESS OF FIT TESTS
125: Chi-Square Goodness of Fit Tests CD12-1 125: CHI-SQUARE GOODNESS OF FIT TESTS In this section, the χ 2 distribution is used for testing the goodness of fit of a set of data to a specific probability
3.4 Statistical inference for 2 populations based on two samples
3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted
Class 19: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.1)
Spring 204 Class 9: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.) Big Picture: More than Two Samples In Chapter 7: We looked at quantitative variables and compared the
Examples on Monopoly and Third Degree Price Discrimination
1 Examples on Monopoly and Third Degree Price Discrimination This hand out contains two different parts. In the first, there are examples concerning the profit maximizing strategy for a firm with market
ECON 459 Game Theory. Lecture Notes Auctions. Luca Anderlini Spring 2015
ECON 459 Game Theory Lecture Notes Auctions Luca Anderlini Spring 2015 These notes have been used before. If you can still spot any errors or have any suggestions for improvement, please let me know. 1
3. Mathematical Induction
3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)
Chapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing
Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing 8-3 Testing a Claim About a Proportion 8-5 Testing a Claim About a Mean: s Not Known 8-6 Testing
Sample Size and Power in Clinical Trials
Sample Size and Power in Clinical Trials Version 1.0 May 011 1. Power of a Test. Factors affecting Power 3. Required Sample Size RELATED ISSUES 1. Effect Size. Test Statistics 3. Variation 4. Significance
A simple analysis of the TV game WHO WANTS TO BE A MILLIONAIRE? R
A simple analysis of the TV game WHO WANTS TO BE A MILLIONAIRE? R Federico Perea Justo Puerto MaMaEuSch Management Mathematics for European Schools 94342 - CP - 1-2001 - DE - COMENIUS - C21 University
Test Positive True Positive False Positive. Test Negative False Negative True Negative. Figure 5-1: 2 x 2 Contingency Table
ANALYSIS OF DISCRT VARIABLS / 5 CHAPTR FIV ANALYSIS OF DISCRT VARIABLS Discrete variables are those which can only assume certain fixed values. xamples include outcome variables with results such as live
Sample Questions with Explanations for LSAT India
Five Sample Analytical Reasoning Questions and Explanations Directions: Each group of questions in this section is based on a set of conditions. In answering some of the questions, it may be useful to
Recall this chart that showed how most of our course would be organized:
Chapter 4 One-Way ANOVA Recall this chart that showed how most of our course would be organized: Explanatory Variable(s) Response Variable Methods Categorical Categorical Contingency Tables Categorical
Colored Hats and Logic Puzzles
Colored Hats and Logic Puzzles Alex Zorn January 21, 2013 1 Introduction In this talk we ll discuss a collection of logic puzzles/games in which a number of people are given colored hats, and they try
LOGNORMAL MODEL FOR STOCK PRICES
LOGNORMAL MODEL FOR STOCK PRICES MICHAEL J. SHARPE MATHEMATICS DEPARTMENT, UCSD 1. INTRODUCTION What follows is a simple but important model that will be the basis for a later study of stock prices as
Comparing Means in Two Populations
Comparing Means in Two Populations Overview The previous section discussed hypothesis testing when sampling from a single population (either a single mean or two means from the same population). Now we
arxiv:1506.04135v1 [cs.ir] 12 Jun 2015
Reducing offline evaluation bias of collaborative filtering algorithms Arnaud de Myttenaere 1,2, Boris Golden 1, Bénédicte Le Grand 3 & Fabrice Rossi 2 arxiv:1506.04135v1 [cs.ir] 12 Jun 2015 1 - Viadeo
Simple linear regression
Simple linear regression Introduction Simple linear regression is a statistical method for obtaining a formula to predict values of one variable from another where there is a causal relationship between
WISE Power Tutorial All Exercises
ame Date Class WISE Power Tutorial All Exercises Power: The B.E.A.. Mnemonic Four interrelated features of power can be summarized using BEA B Beta Error (Power = 1 Beta Error): Beta error (or Type II
10. Comparing Means Using Repeated Measures ANOVA
10. Comparing Means Using Repeated Measures ANOVA Objectives Calculate repeated measures ANOVAs Calculate effect size Conduct multiple comparisons Graphically illustrate mean differences Repeated measures
Lab 11. Simulations. The Concept
Lab 11 Simulations In this lab you ll learn how to create simulations to provide approximate answers to probability questions. We ll make use of a particular kind of structure, called a box model, that
The Graphical Method: An Example
The Graphical Method: An Example Consider the following linear program: Maximize 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2 0, where, for ease of reference,
Methodology Overview
BRC Best Picks Methodology Overview May 2016 This structured products referenced do not constitute a participation in a collective investment scheme within the meaning of the Swiss Federal Act on Collective
EXPONENTIAL FUNCTIONS 8.1.1 8.1.6
EXPONENTIAL FUNCTIONS 8.1.1 8.1.6 In these sections, students generalize what they have learned about geometric sequences to investigate exponential functions. Students study exponential functions of the
Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means
Lesson : Comparison of Population Means Part c: Comparison of Two- Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis
Betting with the Kelly Criterion
Betting with the Kelly Criterion Jane June 2, 2010 Contents 1 Introduction 2 2 Kelly Criterion 2 3 The Stock Market 3 4 Simulations 5 5 Conclusion 8 1 Page 2 of 9 1 Introduction Gambling in all forms,
The Bayesian Approach to Forecasting. An Oracle White Paper Updated September 2006
The Bayesian Approach to Forecasting An Oracle White Paper Updated September 2006 The Bayesian Approach to Forecasting The main principle of forecasting is to find the model that will produce the best
For additional information, see the Math Notes boxes in Lesson B.1.3 and B.2.3.
EXPONENTIAL FUNCTIONS B.1.1 B.1.6 In these sections, students generalize what they have learned about geometric sequences to investigate exponential functions. Students study exponential functions of the
Systems of Equations Involving Circles and Lines
Name: Systems of Equations Involving Circles and Lines Date: In this lesson, we will be solving two new types of Systems of Equations. Systems of Equations Involving a Circle and a Line Solving a system
Fatigue Analysis of an Inline Skate Axel
FATIGUE ANALYSIS OF AN INLINE SKATE AXEL 57 Fatigue Analysis of an Inline Skate Axel Authors: Faculty Sponsor: Department: Garrett Hansen, Mike Woizeschke Dr. Shanzhong (Shawn) Duan Mechanical Engineering
p-values and significance levels (false positive or false alarm rates)
p-values and significance levels (false positive or false alarm rates) Let's say 123 people in the class toss a coin. Call it "Coin A." There are 65 heads. Then they toss another coin. Call it "Coin B."
IS YOUR DATA WAREHOUSE SUCCESSFUL? Developing a Data Warehouse Process that responds to the needs of the Enterprise.
IS YOUR DATA WAREHOUSE SUCCESSFUL? Developing a Data Warehouse Process that responds to the needs of the Enterprise. Peter R. Welbrock Smith-Hanley Consulting Group Philadelphia, PA ABSTRACT Developing
Transmission Line and Back Loaded Horn Physics
Introduction By Martin J. King, 3/29/3 Copyright 23 by Martin J. King. All Rights Reserved. In order to differentiate between a transmission line and a back loaded horn, it is really important to understand
Solutions to Homework 10 Statistics 302 Professor Larget
s to Homework 10 Statistics 302 Professor Larget Textbook Exercises 7.14 Rock-Paper-Scissors (Graded for Accurateness) In Data 6.1 on page 367 we see a table, reproduced in the table below that shows the
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.
Analysis of Variance (ANOVA) Using Minitab
Analysis of Variance (ANOVA) Using Minitab By Keith M. Bower, M.S., Technical Training Specialist, Minitab Inc. Frequently, scientists are concerned with detecting differences in means (averages) between
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a
Tests for Two Proportions
Chapter 200 Tests for Two Proportions Introduction This module computes power and sample size for hypothesis tests of the difference, ratio, or odds ratio of two independent proportions. The test statistics
Duration and Bond Price Volatility: Some Further Results
JOURNAL OF ECONOMICS AND FINANCE EDUCATION Volume 4 Summer 2005 Number 1 Duration and Bond Price Volatility: Some Further Results Hassan Shirvani 1 and Barry Wilbratte 2 Abstract This paper evaluates the
Simulation: An Effective Marketing Tool
Simulation: An Effective Marketing Tool Ashu Gupta Sr. Lecturer Apeejay Institute of Management, Jalandhar, Punjab, India. ABSTRACT Simulation- the study and use of models of complex relationships- is
Descriptive Analysis
Research Methods William G. Zikmund Basic Data Analysis: Descriptive Statistics Descriptive Analysis The transformation of raw data into a form that will make them easy to understand and interpret; rearranging,
Two-Sample T-Tests Allowing Unequal Variance (Enter Difference)
Chapter 45 Two-Sample T-Tests Allowing Unequal Variance (Enter Difference) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when no assumption
Introduction. Hypothesis Testing. Hypothesis Testing. Significance Testing
Introduction Hypothesis Testing Mark Lunt Arthritis Research UK Centre for Ecellence in Epidemiology University of Manchester 13/10/2015 We saw last week that we can never know the population parameters
Fixed-Effect Versus Random-Effects Models
CHAPTER 13 Fixed-Effect Versus Random-Effects Models Introduction Definition of a summary effect Estimating the summary effect Extreme effect size in a large study or a small study Confidence interval
A Comparative Analysis of Speech Recognition Platforms
Communications of the IIMA Volume 9 Issue 3 Article 2 2009 A Comparative Analysis of Speech Recognition Platforms Ore A. Iona College Follow this and additional works at: http://scholarworks.lib.csusb.edu/ciima
Odds ratio, Odds ratio test for independence, chi-squared statistic.
Odds ratio, Odds ratio test for independence, chi-squared statistic. Announcements: Assignment 5 is live on webpage. Due Wed Aug 1 at 4:30pm. (9 days, 1 hour, 58.5 minutes ) Final exam is Aug 9. Review
Exact Nonparametric Tests for Comparing Means - A Personal Summary
Exact Nonparametric Tests for Comparing Means - A Personal Summary Karl H. Schlag European University Institute 1 December 14, 2006 1 Economics Department, European University Institute. Via della Piazzuola
Power Management in Cloud Computing using Green Algorithm. -Kushal Mehta COP 6087 University of Central Florida
Power Management in Cloud Computing using Green Algorithm -Kushal Mehta COP 6087 University of Central Florida Motivation Global warming is the greatest environmental challenge today which is caused by
Special Situations in the Simplex Algorithm
Special Situations in the Simplex Algorithm Degeneracy Consider the linear program: Maximize 2x 1 +x 2 Subject to: 4x 1 +3x 2 12 (1) 4x 1 +x 2 8 (2) 4x 1 +2x 2 8 (3) x 1, x 2 0. We will first apply the
Non-Inferiority Tests for One Mean
Chapter 45 Non-Inferiority ests for One Mean Introduction his module computes power and sample size for non-inferiority tests in one-sample designs in which the outcome is distributed as a normal random
Fairfield Public Schools
Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity
Hypothesis Testing for Beginners
Hypothesis Testing for Beginners Michele Piffer LSE August, 2011 Michele Piffer (LSE) Hypothesis Testing for Beginners August, 2011 1 / 53 One year ago a friend asked me to put down some easy-to-read notes
Chapter 19 The Chi-Square Test
Tutorial for the integration of the software R with introductory statistics Copyright c Grethe Hystad Chapter 19 The Chi-Square Test In this chapter, we will discuss the following topics: We will plot
Linear Programming. Solving LP Models Using MS Excel, 18
SUPPLEMENT TO CHAPTER SIX Linear Programming SUPPLEMENT OUTLINE Introduction, 2 Linear Programming Models, 2 Model Formulation, 4 Graphical Linear Programming, 5 Outline of Graphical Procedure, 5 Plotting
Elasticity. I. What is Elasticity?
Elasticity I. What is Elasticity? The purpose of this section is to develop some general rules about elasticity, which may them be applied to the four different specific types of elasticity discussed in
RANDOM-NUMBER GUESSING AND THE FIRST DIGIT PHENOMENON1
Psychological Reports, 1988, 62,967-971. Psychological Reports 1788 RANDOM-NUMBER GUESSING AND THE FIRST DIGIT PHENOMENON1 THEODORE P. HILL' Georgia Irrrlirute of Technology Summmy.-To what extent do individuals
General Method: Difference of Means. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n 1, n 2 ) 1.
General Method: Difference of Means 1. Calculate x 1, x 2, SE 1, SE 2. 2. Combined SE = SE1 2 + SE2 2. ASSUMES INDEPENDENT SAMPLES. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n
Statistics 2014 Scoring Guidelines
AP Statistics 2014 Scoring Guidelines College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board. AP Central is the official online home
Direct Evidence Delay with A Task Decreases Working Memory Content in Free Recall
1 Direct Evidence Delay with A Task Decreases Working Memory Content in Free Recall Eugen Tarnow, Ph.D. 1 18-11 Radburn Road, Fair Lawn, NJ 07410, USA [email protected] 1 The author is an independent
CHAPTER 7 SUGGESTED ANSWERS TO CHAPTER 7 QUESTIONS
INSTRUCTOR S MANUAL: MULTINATIONAL FINANCIAL MANAGEMENT, 9 TH ED. CHAPTER 7 SUGGESTED ANSWERS TO CHAPTER 7 QUESTIONS 1. Answer the following questions based on data in Exhibit 7.5. a. How many Swiss francs
ECONOMIC SUPPLY & DEMAND
D-4388 ECONOMIC SUPPLY & DEMAND by Joseph Whelan Kamil Msefer Prepared for the MIT System Dynamics in Education Project Under the Supervision of Professor Jay W. Forrester January 4, 996 Copyright 994
COMPUTING DURATION, SLACK TIME, AND CRITICALITY UNCERTAINTIES IN PATH-INDEPENDENT PROJECT NETWORKS
Proceedings from the 2004 ASEM National Conference pp. 453-460, Alexandria, VA (October 20-23, 2004 COMPUTING DURATION, SLACK TIME, AND CRITICALITY UNCERTAINTIES IN PATH-INDEPENDENT PROJECT NETWORKS Ryan
Chapter 27: Taxation. 27.1: Introduction. 27.2: The Two Prices with a Tax. 27.2: The Pre-Tax Position
Chapter 27: Taxation 27.1: Introduction We consider the effect of taxation on some good on the market for that good. We ask the questions: who pays the tax? what effect does it have on the equilibrium
AP Statistics Solutions to Packet 2
AP Statistics Solutions to Packet 2 The Normal Distributions Density Curves and the Normal Distribution Standard Normal Calculations HW #9 1, 2, 4, 6-8 2.1 DENSITY CURVES (a) Sketch a density curve that
Abstract. In this paper, we attempt to establish a relationship between oil prices and the supply of
The Effect of Oil Prices on the Domestic Supply of Corn: An Econometric Analysis Daniel Blanchard, Saloni Sharma, Abbas Raza April 2015 Georgia Institute of Technology Abstract In this paper, we attempt
Games, gadgets, and other goods discount coupon: An ethics case
ABSTRACT Games, gadgets, and other goods discount coupon: An ethics case Magdy Farag California State Polytechnic University, Pomona This short ethics case is based on a real-world situation, so the names
Performance Analysis of the IEEE 802.11 Wireless LAN Standard 1
Performance Analysis of the IEEE. Wireless LAN Standard C. Sweet Performance Analysis of the IEEE. Wireless LAN Standard Craig Sweet and Deepinder Sidhu Maryland Center for Telecommunications Research
Information differences between closed-ended and open-ended survey questions for high-technology products
Information differences between closed-ended and open-ended survey questions for high-technology products ABSTRACT William Bleuel Pepperdine University Many businesses collect survey data that has two
Tutorial Paper on Quantitative Risk Assessment. Mohammad Reza Sohizadeh Abyaneh Seyed Mehdi Mohammed Hassanzadeh Håvard Raddum
Tutorial Paper on Quantitative Risk Assessment Mohammad Reza Sohizadeh Abyaneh Seyed Mehdi Mohammed Hassanzadeh Håvard Raddum Abstract This paper shows how to carry out a quantitative risk assessment,
