Gaussian Processes in Machine Learning
|
|
|
- Camilla Long
- 10 years ago
- Views:
Transcription
1 Gaussian Processes in Machine Learning Carl Edward Rasmussen Max Planck Institute for Biological Cybernetics, Tübingen, Germany WWW home page: carl Abstract. We give a basic introduction to Gaussian Process regression models. We focus on understanding the role of the stochastic process and how it is used to define a distribution over functions. We present the simple equations for incorporating training data and examine how to learn the hyperparameters using the marginal likelihood. We explain the practical advantages of Gaussian Process and end with conclusions and a look at the current trends in GP work. Supervised learning in the form of regression (for continuous outputs) and classification (for discrete outputs) is an important constituent of statistics and machine learning, either for analysis of data sets, or as a subgoal of a more complex problem. Traditionally parametric 1 models have been used for this purpose. These have a possible advantage in ease of interpretability, but for complex data sets, simple parametric models may lack expressive power, and their more complex counterparts (such as feed forward neural networks) may not be easy to work with in practice. The advent of kernel machines, such as Support Vector Machines and Gaussian Processes has opened the possibility of flexible models which are practical to work with. In this short tutorial we present the basic idea on how Gaussian Process models can be used to formulate a Bayesian framework for regression. We will focus on understanding the stochastic process and how it is used in supervised learning. Secondly, we will discuss practical matters regarding the role of hyperparameters in the covariance function, the marginal likelihood and the automatic Occam s razor. For broader introductions to Gaussian processes, consult [1], [2]. 1 Gaussian Processes In this section we define Gaussian Processes and show how they can very naturally be used to define distributions over functions. In the following section we continue to show how this distribution is updated in the light of training examples. 1 By a parametric model, we here mean a model which during training absorbs the information from the training data into the parameters; after training the data can be discarded.
2 68 Carl Edward Rasmussen Definition 1. A Gaussian Process is a collection of random variables, any finite number of which have (consistent) joint Gaussian distributions. A Gaussian process is fully specified by its mean function m(x) and covariance function k(x,x ). This is a natural generalization of the Gaussian distribution whose mean and covariance is a vector and matrix, respectively. The Gaussian distribution is over vectors, whereas the Gaussian process is over functions. We will write: f GP(m, k), (1) meaning: the function f is distributed as a GP with mean function m and covariance function k. Although the generalization from distribution to process is straight forward, we will be a bit more explicit about the details, because it may be unfamiliar to some readers. The individual random variables in a vector from a Gaussian distribution are indexed by their position in the vector. For the Gaussian process it is the argument x (of the random function f(x)) which plays the role of index set: for every input x there is an associated random variable f(x), which is the value of the (stochastic) function f at that location. For reasons of notational convenience, we will enumerate the x values of interest by the natural numbers, and use these indexes as if they were the indexes of the process don t let yourself be confused by this: the index to the process is x i, which we have chosen to index by i. Although working with infinite dimensional objects may seem unwieldy at first, it turns out that the quantities that we are interested in computing, require only working with finite dimensional objects. In fact, answering questions about the process reduces to computing with the related distribution. This is the key to why Gaussian processes are feasible. Let us look at an example. Consider the Gaussian process given by: f GP(m, k), where m(x) = 1 4 x2, and k(x,x ) = exp( 1 2 (x x ) 2 ). (2) In order to understand this process we can draw samples from the function f. In order to work only with finite quantities, we request only the value of f at a distinct finite number n of locations. How do we generate such samples? Given the x-values we can evaluate the vector of means and a covariance matrix using Eq. (2), which defines a regular Gaussian distribution: µ i = m(x i ) = 1 4 x2 i, i = 1,...,n and Σ ij = k(x i,x j ) = exp( 1 2 (x i x j ) 2 ), i,j = 1,...,n, (3) where to clarify the distinction between process and distribution we use m and k for the former and µ and Σ for the latter. We can now generate a random vector from this distribution. This vector will have as coordinates the function values f(x) for the corresponding x s: f N(µ,Σ). (4)
3 Gaussian Processes Fig. 1. Function values from three functions drawn at random from a GP as specified in Eq. (2). The dots are the values generated from Eq. (4), the two other curves have (less correctly) been drawn by connecting sampled points. The function values suggest a smooth underlying function; this is in fact a property of GPs with the squared exponential covariance function. The shaded grey area represent the 95% confidence intervals. We could now plot the values of f as a function of x, see Figure 1. How can we do this in practice? Below are a few lines of Matlab 2 used to create the plot: xs = (-5:0.2:5) ; ns = size(xs,1); keps = 1e-9; m = inline( 0.25*x.^2 ); K = inline( exp(-0.5*(repmat(p,size(q))-repmat(q,size(p ))).^2) ); fs = m(xs) + chol(k(xs,xs)+keps*eye(ns)) *randn(ns,1); plot(xs,fs,. ) In the above example, m and k are mean and covariances; chol is a function to compute the Cholesky decomposition 3 of a matrix. This example has illustrated how we move from process to distribution and also shown that the Gaussian process defines a distribution over functions. Up until now, we have only been concerned with random functions in the next section we will see how to use the GP framework in a very simple way to make inferences about functions given some training examples. 2 Posterior Gaussian Process In the previous section we saw how to define distributions over functions using GPs. This GP will be used as a prior for Bayesian inference. The prior does not depend on the training data, but specifies some properties of the functions; for 2 Matlab is a trademark of The MathWorks Inc. 3 We ve also added a tiny keps multiple of the identity to the covariance matrix for numerical stability (to bound the eigenvalues numerically away from zero); see comments around Eq. (8) for a interpretation of this term as a tiny amount of noise.
4 70 Carl Edward Rasmussen example, in Figure 1 the function is smooth, and close to a quadratic. The goal of this section is to derive the simple rules of how to update this prior in the light of the training data. The goal of the next section is to attempt to learn about some properties of the prior 4 in the the light of the data. One of the primary goals computing the posterior is that it can be used to make predictions for unseen test cases. Let f be the known function values of the training cases, and let f be a set of function values corresponding to the test set inputs, X. Again, we write out the joint distribution of everything we are interested in: [ ] ([ ] [ ]) f µ Σ Σ N, f µ Σ, (5) Σ where we ve introduced the following shorthand: µ = m(x i ),i = 1,...,n for the training means and analogously for the test means µ ; for the covariance we use Σ for training set covariances, Σ for training-test set covariances and Σ for test set covariances. Since we know the values for the training set f we are interested in the conditional distribution of f given f which is expressed as 5 : f f N ( µ + Σ Σ 1 (f µ), Σ Σ Σ 1 Σ ). (6) This is the posterior distribution for a specific set of test cases. It is easy to verify (by inspection) that the corresponding posterior process is: f D GP(m D, k D ), m D (x) = m(x) + Σ(X,x) Σ 1 (f m) k D (x,x ) = k(x,x ) Σ(X,x) Σ 1 Σ(X,x ), (7) where Σ(X,x) is a vector of covariances between every training case and x. These are the central equations for Gaussian process predictions. Let s examine these equations for the posterior mean and covariance. Notice that the posterior variance k D (x,x) is equal to the prior variance k(x,x) minus a positive term, which depends on the training inputs; thus the posterior variance is always smaller than the prior variance, since the data has given us some additional information. We need to address one final issue: noise in the training outputs. It is common to many applications of regression that there is noise in the observations 6. The most common assumption is that of additive i.i.d. Gaussian noise in the outputs. In the Gaussian process models, such noise is easily taken into account; the 4 By definition, the prior is independent of the data; here we ll be using a hierarchical prior with free parameters, and make inference about the parameters. 5 the» formula» for» conditioning «a joint Gaussian distribution is: x a A C N, y b C = x y N `a + CB 1 (y b), A CB 1 C. B 6 However, it is perhaps interesting that the GP model works also in the noise-free case this is in contrast to most parametric methods, since they often cannot model the data exactly.
5 Gaussian Processes Fig. 2. Three functions drawn at random from the posterior, given 20 training data points, the GP as specified in Eq. (3) and a noise level of σ n = 0.7. The shaded area gives the 95% confidence region. Compare with Figure 1 and note that the uncertainty goes down close to the observations. effect is that every f(x) has a extra covariance with itself only (since the noise is assumed independent), with a magnitude equal to the noise variance: y(x) = f(x) + ε, ε N(0,σ 2 n), f GP(m,k), y GP(m,k + σ 2 nδ ii ), (8) where δ ii = 1 iff i = i is the Kronecker s delta. Notice, that the indexes to the Kronecker s delta is the identify of the cases, i, and not the inputs x i ; you may have several cases with identical inputs, but the noise on these cases is assumed to be independent. Thus, the covariance function for a noisy process is the sum of the signal covariance and the noise covariance. Now, we can plug in the posterior covariance function into the little Matlab example on page 69 to draw samples from the posterior process, see Figure 2. In this section we have shown how simple manipulations with mean and covariance functions allow updates of the prior to the posterior in the light of the training data. However, we left some questions unanswered: How do we come up with mean and covariance functions in the first place? How could we estimate the noise level? This is the topic of the next section. 3 Training a Gaussian Process In the previous section we saw how to update the prior Gaussian process in the light of training data. This is useful if we have enough prior information about a dataset at hand to confidently specify prior mean and covariance functions. However, the availability of such detailed prior information is not the typical case in machine learning applications. In order for the GP techniques to be of value in practice, we must be able to chose between different mean and covariance
6 72 Carl Edward Rasmussen functions in the light of the data. This process will be referred to as training 7 the GP model. In the light of typically vague prior information, we use a hierarchical prior, where the mean and covariance functions are parameterized in terms of hyperparameters. For example, we could use a generalization of Eq. (2): f GP(m, k), m(x) = ax 2 + bx + c, and k(x,x ) = σ 2 y exp ( (x x ) 2 2l 2 ) + σ 2 n δ ii, where we have introduced hyperparameters θ = {a,b,c,σ y,σ n,l}. The purpose of this hierarchical specification is that it allows us to specify vague prior information in a simple way. For example, we ve stated that we believe the function to be close to a second order polynomial, but we haven t said exactly what the polynomial is, or exactly what is meant by close. In fact the discrepancy between the polynomial and the data is a smooth function plus independent Gaussian noise, but again we re don t need exactly to specify the characteristic length scale l or the magnitudes of the two contributions. We want to be able to make inferences about all of the hyperparameters in the light of the data. In order to do this we compute the probability of the data given the hyperparameters. Fortunately, this is not difficult, since by assumption the distribution of the data is Gaussian: L = log p(y x,θ) = 1 2 log Σ 1 2 (y µ) Σ 1 (y µ) n 2 log(2π). (10) We will call this quantity the log marginal likelihood. We use the term marginal to emphasize that we are dealing with a non-parametric model. See e.g. [1] for the weight-space view of Gaussian processes which equivalently leads to Eq. (10) after marginalization over the weights. We can now find the values of the hyperparameters which optimizes the marginal likelihood based on its partial derivatives which are easily evaluated: L θ m L θ k = (y µ) 1 m Σ, θ m = 1 2 trace ( 1 Σ Σ ) + 1 θ 2 k Σ 1 Σ (y µ) Σ (y µ), θ k θ k (9) (11) where θ m and θ k are used to indicate hyperparameters of the mean and covariance functions respectively. Eq. (11) can conveniently be used in conjunction with a numerical optimization routine such as conjugate gradients to find good 8 hyperparameter settings. 7 Training the GP model involves both model selection, or the discrete choice between different functional forms for mean and covariance functions as well as adaptation of the hyperparameters of these functions; for brevity we will only consider the latter here the generalization is straightforward, in that marginal likelihoods can be compared. 8 Note, that for most non-trivial Gaussian processes, optimization over hyperparameters is not a convex problem, so the usual precautions against bad local minima should be taken.
7 Gaussian Processes Fig. 3. Mean and 95% posterior confidence region with parameters learned by maximizing marginal likelihood, Eq. (10), for the Gaussian process specification in Eq. (9), for the same data as in Figure 2. The hyperparameters found were a = 0.3, b = 0.03, c = 0.7, l = 0.7, σ y = 1.1, σ n = This example was constructed so that the approach without optimization of hyperparameters worked reasonably well (Figure 2), but there is of course no guarantee of this in a typical application. Due to the fact that the Gaussian process is a non-parametric model, the marginal likelihood behaves somewhat differently to what one might expect from experience with parametric models. Note first, that it is in fact very easy for the model to fit the training data exactly: simply set the noise level σn 2 to zero, and the model produce a mean predictive function which agrees exactly with the training points. However, this is not the typical behavior when optimizing the marginal likelihood. Indeed, the log marginal likelihood from Eq. (10) consists of three terms: The first term, 1 2 log Σ is a complexity penalty term, which measures and penalizes the complexity of the model. The second term a negative quadratic, and plays the role of a data-fit measure (it is the only term which depends on the training set output values y). The third term is a log normalization term, independent of the data, and not very interesting. Figure 3 illustrates the predictions of a model trained by maximizing the marginal likelihood. Note that the tradeoff between penalty and data-fit in the GP model is automatic. There is no weighting parameter which needs to be set by some external method such as cross validation. This is a feature of great practical importance, since it simplifies training. Figure 4 illustrates how the automatic tradeoff comes about. We ve seen in this section how we, via a hierarchical specification of the prior, can express prior knowledge in a convenient way, and how we can learn values of hyperparameters via optimization of the marginal likelihood. This can be done using some gradient based optimization. Also, we ve seen how the marginal likelihood automatically incorporates Occam s razor; this property of of great practical importance, since it simplifies training a lot.
8 74 Carl Edward Rasmussen too simple P(Y M i ) "just right" too complex Y All possible data sets Fig. 4. Occam s razor is automatic. On the x-axis is an abstract representation of all possible datasets (of a particular size). On the y-axis the probability of the data given the model. Three different models are shown. A more complex model can account for many more data sets than a simple model, but since the probabilities have to integrate to unity, this means more complex models are automatically penalized more. 4 Conclusions and Future Directions We ve seen how Gaussian processes can conveniently be used to specify very flexible non-linear regression. We only mentioned in passing one type of covariance function, but in fact any positive definite function 9 can be used as covariance function. Many such functions are known, and understanding the properties of functions drawn from GPs with particular covariance functions is an important ongoing research goal. When the properties of these functions are known, one will be able to chose covariance functions reflecting prior information, or alternatively, one will be able to interpret the covariance functions chosen by maximizing marginal likelihood, to get a better understanding of the data. In this short tutorial, we have only treated the simplest possible case of regression with Gaussian noise. In the case of non-gaussian likelihoods (such as e.g. needed for classification) training becomes more complicated. One can resort to approximations, such as the Laplace approximation [3], or approximations based on projecting the non-gaussian posterior onto the closest Gaussian (in a KL sense) [4] or sampling techniques [5]. Another issue is the computational limitations. A straightforward implementation of the simple techniques explained here, requires inversion of the covariance matrix Σ, with a memory complexity of O(n 2 ) and a computational complexity of O(n 3 ). This is feasible on a desktop computer for dataset sizes of n 9 The covariance function must be positive definite to ensure that the resulting covariance matrix is positive definite.
9 Gaussian Processes 75 up to a few thousands. Although there are many interesting machine learning problems with such relatively small datasets, a lot of current work is going into the development of approximate methods for larger datasets. A number of these methods rely on sparse approximations. Acknowledgements The author was supported by the German Research Council (DFG) through grant RA 1030/1. References 1. Williams, C.K.I.: Prediction with Gaussian processes: From linear regression to linear prediction and beyond. In Jordan, M.I., ed.: Learning in Graphical Models. Kluwer Academic (1998) MacKay, D.J.C.: Gaussian processes a replacement for supervised neural networks? Tutorial lecture notes for NIPS 1997 (1997) 3. Williams, C.K.I., Barber, D.: Bayesian classification with Gaussian processes. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(12) (1998) Csató, L., Opper, M.: Sparse on-line Gaussian processes. Neural Computation 14 (2002) Neal, R.M.: Regression and classification using Gaussian process priors (with discussion). In Bernardo, J.M., et al., eds.: Bayesian statistics 6. Oxford University Press (1998)
STA 4273H: Statistical Machine Learning
STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! [email protected]! http://www.cs.toronto.edu/~rsalakhu/ Lecture 6 Three Approaches to Classification Construct
HT2015: SC4 Statistical Data Mining and Machine Learning
HT2015: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Bayesian Nonparametrics Parametric vs Nonparametric
Linear Threshold Units
Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear
Machine Learning and Pattern Recognition Logistic Regression
Machine Learning and Pattern Recognition Logistic Regression Course Lecturer:Amos J Storkey Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh Crichton Street,
PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION
PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION Introduction In the previous chapter, we explored a class of regression models having particularly simple analytical
Flexible and efficient Gaussian process models for machine learning
Flexible and efficient Gaussian process models for machine learning Edward Lloyd Snelson M.A., M.Sci., Physics, University of Cambridge, UK (2001) Gatsby Computational Neuroscience Unit University College
Applications to Data Smoothing and Image Processing I
Applications to Data Smoothing and Image Processing I MA 348 Kurt Bryan Signals and Images Let t denote time and consider a signal a(t) on some time interval, say t. We ll assume that the signal a(t) is
Lecture 3: Linear methods for classification
Lecture 3: Linear methods for classification Rafael A. Irizarry and Hector Corrada Bravo February, 2010 Today we describe four specific algorithms useful for classification problems: linear regression,
Regression. Chapter 2. 2.1 Weight-space View
Chapter Regression Supervised learning can be divided into regression and classification problems. Whereas the outputs for classification are discrete class labels, regression is concerned with the prediction
Christfried Webers. Canberra February June 2015
c Statistical Group and College of Engineering and Computer Science Canberra February June (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 829 c Part VIII Linear Classification 2 Logistic
Learning Gaussian process models from big data. Alan Qi Purdue University Joint work with Z. Xu, F. Yan, B. Dai, and Y. Zhu
Learning Gaussian process models from big data Alan Qi Purdue University Joint work with Z. Xu, F. Yan, B. Dai, and Y. Zhu Machine learning seminar at University of Cambridge, July 4 2012 Data A lot of
Gaussian Process Training with Input Noise
Gaussian Process Training with Input Noise Andrew McHutchon Department of Engineering Cambridge University Cambridge, CB PZ [email protected] Carl Edward Rasmussen Department of Engineering Cambridge University
CS229 Lecture notes. Andrew Ng
CS229 Lecture notes Andrew Ng Part X Factor analysis Whenwehavedatax (i) R n thatcomesfromamixtureofseveral Gaussians, the EM algorithm can be applied to fit a mixture model. In this setting, we usually
Regression III: Advanced Methods
Lecture 16: Generalized Additive Models Regression III: Advanced Methods Bill Jacoby Michigan State University http://polisci.msu.edu/jacoby/icpsr/regress3 Goals of the Lecture Introduce Additive Models
Lecture 8 February 4
ICS273A: Machine Learning Winter 2008 Lecture 8 February 4 Scribe: Carlos Agell (Student) Lecturer: Deva Ramanan 8.1 Neural Nets 8.1.1 Logistic Regression Recall the logistic function: g(x) = 1 1 + e θt
An Introduction to Machine Learning
An Introduction to Machine Learning L5: Novelty Detection and Regression Alexander J. Smola Statistical Machine Learning Program Canberra, ACT 0200 Australia [email protected] Tata Institute, Pune,
Machine Learning and Data Analysis overview. Department of Cybernetics, Czech Technical University in Prague. http://ida.felk.cvut.
Machine Learning and Data Analysis overview Jiří Kléma Department of Cybernetics, Czech Technical University in Prague http://ida.felk.cvut.cz psyllabus Lecture Lecturer Content 1. J. Kléma Introduction,
Computing with Finite and Infinite Networks
Computing with Finite and Infinite Networks Ole Winther Theoretical Physics, Lund University Sölvegatan 14 A, S-223 62 Lund, Sweden [email protected] Abstract Using statistical mechanics results,
Least Squares Estimation
Least Squares Estimation SARA A VAN DE GEER Volume 2, pp 1041 1045 in Encyclopedia of Statistics in Behavioral Science ISBN-13: 978-0-470-86080-9 ISBN-10: 0-470-86080-4 Editors Brian S Everitt & David
Neural Networks: a replacement for Gaussian Processes?
Neural Networks: a replacement for Gaussian Processes? Matthew Lilley and Marcus Frean Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand [email protected] http://www.mcs.vuw.ac.nz/
Local Gaussian Process Regression for Real Time Online Model Learning and Control
Local Gaussian Process Regression for Real Time Online Model Learning and Control Duy Nguyen-Tuong Jan Peters Matthias Seeger Max Planck Institute for Biological Cybernetics Spemannstraße 38, 776 Tübingen,
What are the place values to the left of the decimal point and their associated powers of ten?
The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything
BayesX - Software for Bayesian Inference in Structured Additive Regression
BayesX - Software for Bayesian Inference in Structured Additive Regression Thomas Kneib Faculty of Mathematics and Economics, University of Ulm Department of Statistics, Ludwig-Maximilians-University Munich
1 Short Introduction to Time Series
ECONOMICS 7344, Spring 202 Bent E. Sørensen January 24, 202 Short Introduction to Time Series A time series is a collection of stochastic variables x,.., x t,.., x T indexed by an integer value t. The
Methods of Data Analysis Working with probability distributions
Methods of Data Analysis Working with probability distributions Week 4 1 Motivation One of the key problems in non-parametric data analysis is to create a good model of a generating probability distribution,
Statistical Machine Learning
Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes
Statistics Graduate Courses
Statistics Graduate Courses STAT 7002--Topics in Statistics-Biological/Physical/Mathematics (cr.arr.).organized study of selected topics. Subjects and earnable credit may vary from semester to semester.
Multivariate Normal Distribution
Multivariate Normal Distribution Lecture 4 July 21, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #4-7/21/2011 Slide 1 of 41 Last Time Matrices and vectors Eigenvalues
We shall turn our attention to solving linear systems of equations. Ax = b
59 Linear Algebra We shall turn our attention to solving linear systems of equations Ax = b where A R m n, x R n, and b R m. We already saw examples of methods that required the solution of a linear system
High School Algebra Reasoning with Equations and Inequalities Solve equations and inequalities in one variable.
Performance Assessment Task Quadratic (2009) Grade 9 The task challenges a student to demonstrate an understanding of quadratic functions in various forms. A student must make sense of the meaning of relations
Dirichlet Processes A gentle tutorial
Dirichlet Processes A gentle tutorial SELECT Lab Meeting October 14, 2008 Khalid El-Arini Motivation We are given a data set, and are told that it was generated from a mixture of Gaussian distributions.
Classification Problems
Classification Read Chapter 4 in the text by Bishop, except omit Sections 4.1.6, 4.1.7, 4.2.4, 4.3.3, 4.3.5, 4.3.6, 4.4, and 4.5. Also, review sections 1.5.1, 1.5.2, 1.5.3, and 1.5.4. Classification Problems
Review of Fundamental Mathematics
Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools
CHAPTER 2 Estimating Probabilities
CHAPTER 2 Estimating Probabilities Machine Learning Copyright c 2016. Tom M. Mitchell. All rights reserved. *DRAFT OF January 24, 2016* *PLEASE DO NOT DISTRIBUTE WITHOUT AUTHOR S PERMISSION* This is a
CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning.
Lecture Machine Learning Milos Hauskrecht [email protected] 539 Sennott Square, x5 http://www.cs.pitt.edu/~milos/courses/cs75/ Administration Instructor: Milos Hauskrecht [email protected] 539 Sennott
Statistical Models in Data Mining
Statistical Models in Data Mining Sargur N. Srihari University at Buffalo The State University of New York Department of Computer Science and Engineering Department of Biostatistics 1 Srihari Flood of
Chapter 6: Multivariate Cointegration Analysis
Chapter 6: Multivariate Cointegration Analysis 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and und Econometrics Ökonometrie VI. Multivariate Cointegration
Exact Inference for Gaussian Process Regression in case of Big Data with the Cartesian Product Structure
Exact Inference for Gaussian Process Regression in case of Big Data with the Cartesian Product Structure Belyaev Mikhail 1,2,3, Burnaev Evgeny 1,2,3, Kapushev Yermek 1,2 1 Institute for Information Transmission
Bayesian Statistics: Indian Buffet Process
Bayesian Statistics: Indian Buffet Process Ilker Yildirim Department of Brain and Cognitive Sciences University of Rochester Rochester, NY 14627 August 2012 Reference: Most of the material in this note
Introduction to the Finite Element Method (FEM)
Introduction to the Finite Element Method (FEM) ecture First and Second Order One Dimensional Shape Functions Dr. J. Dean Discretisation Consider the temperature distribution along the one-dimensional
Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not.
Statistical Learning: Chapter 4 Classification 4.1 Introduction Supervised learning with a categorical (Qualitative) response Notation: - Feature vector X, - qualitative response Y, taking values in C
A New Quantitative Behavioral Model for Financial Prediction
2011 3rd International Conference on Information and Financial Engineering IPEDR vol.12 (2011) (2011) IACSIT Press, Singapore A New Quantitative Behavioral Model for Financial Prediction Thimmaraya Ramesh
Convolution. 1D Formula: 2D Formula: Example on the web: http://www.jhu.edu/~signals/convolve/
Basic Filters (7) Convolution/correlation/Linear filtering Gaussian filters Smoothing and noise reduction First derivatives of Gaussian Second derivative of Gaussian: Laplacian Oriented Gaussian filters
Logistic Regression (1/24/13)
STA63/CBB540: Statistical methods in computational biology Logistic Regression (/24/3) Lecturer: Barbara Engelhardt Scribe: Dinesh Manandhar Introduction Logistic regression is model for regression used
Question 2 Naïve Bayes (16 points)
Question 2 Naïve Bayes (16 points) About 2/3 of your email is spam so you downloaded an open source spam filter based on word occurrences that uses the Naive Bayes classifier. Assume you collected the
Algebra I Vocabulary Cards
Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression
Statistical machine learning, high dimension and big data
Statistical machine learning, high dimension and big data S. Gaïffas 1 14 mars 2014 1 CMAP - Ecole Polytechnique Agenda for today Divide and Conquer principle for collaborative filtering Graphical modelling,
Probabilistic Models for Big Data. Alex Davies and Roger Frigola University of Cambridge 13th February 2014
Probabilistic Models for Big Data Alex Davies and Roger Frigola University of Cambridge 13th February 2014 The State of Big Data Why probabilistic models for Big Data? 1. If you don t have to worry about
Penalized regression: Introduction
Penalized regression: Introduction Patrick Breheny August 30 Patrick Breheny BST 764: Applied Statistical Modeling 1/19 Maximum likelihood Much of 20th-century statistics dealt with maximum likelihood
Pattern Analysis. Logistic Regression. 12. Mai 2009. Joachim Hornegger. Chair of Pattern Recognition Erlangen University
Pattern Analysis Logistic Regression 12. Mai 2009 Joachim Hornegger Chair of Pattern Recognition Erlangen University Pattern Analysis 2 / 43 1 Logistic Regression Posteriors and the Logistic Function Decision
Bayesian Time Series Learning with Gaussian Processes
Bayesian Time Series Learning with Gaussian Processes Roger Frigola-Alcalde Department of Engineering St Edmund s College University of Cambridge August 2015 This dissertation is submitted for the degree
CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA
We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical
Precalculus REVERSE CORRELATION. Content Expectations for. Precalculus. Michigan CONTENT EXPECTATIONS FOR PRECALCULUS CHAPTER/LESSON TITLES
Content Expectations for Precalculus Michigan Precalculus 2011 REVERSE CORRELATION CHAPTER/LESSON TITLES Chapter 0 Preparing for Precalculus 0-1 Sets There are no state-mandated Precalculus 0-2 Operations
These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop
Music and Machine Learning (IFT6080 Winter 08) Prof. Douglas Eck, Université de Montréal These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher
Logistic Regression. Vibhav Gogate The University of Texas at Dallas. Some Slides from Carlos Guestrin, Luke Zettlemoyer and Dan Weld.
Logistic Regression Vibhav Gogate The University of Texas at Dallas Some Slides from Carlos Guestrin, Luke Zettlemoyer and Dan Weld. Generative vs. Discriminative Classifiers Want to Learn: h:x Y X features
Manifold Learning Examples PCA, LLE and ISOMAP
Manifold Learning Examples PCA, LLE and ISOMAP Dan Ventura October 14, 28 Abstract We try to give a helpful concrete example that demonstrates how to use PCA, LLE and Isomap, attempts to provide some intuition
203.4770: Introduction to Machine Learning Dr. Rita Osadchy
203.4770: Introduction to Machine Learning Dr. Rita Osadchy 1 Outline 1. About the Course 2. What is Machine Learning? 3. Types of problems and Situations 4. ML Example 2 About the course Course Homepage:
Linear and quadratic Taylor polynomials for functions of several variables.
ams/econ 11b supplementary notes ucsc Linear quadratic Taylor polynomials for functions of several variables. c 010, Yonatan Katznelson Finding the extreme (minimum or maximum) values of a function, is
11 Linear and Quadratic Discriminant Analysis, Logistic Regression, and Partial Least Squares Regression
Frank C Porter and Ilya Narsky: Statistical Analysis Techniques in Particle Physics Chap. c11 2013/9/9 page 221 le-tex 221 11 Linear and Quadratic Discriminant Analysis, Logistic Regression, and Partial
Class #6: Non-linear classification. ML4Bio 2012 February 17 th, 2012 Quaid Morris
Class #6: Non-linear classification ML4Bio 2012 February 17 th, 2012 Quaid Morris 1 Module #: Title of Module 2 Review Overview Linear separability Non-linear classification Linear Support Vector Machines
Support Vector Machines with Clustering for Training with Very Large Datasets
Support Vector Machines with Clustering for Training with Very Large Datasets Theodoros Evgeniou Technology Management INSEAD Bd de Constance, Fontainebleau 77300, France [email protected] Massimiliano
Simple and efficient online algorithms for real world applications
Simple and efficient online algorithms for real world applications Università degli Studi di Milano Milano, Italy Talk @ Centro de Visión por Computador Something about me PhD in Robotics at LIRA-Lab,
Linear Models for Classification
Linear Models for Classification Sumeet Agarwal, EEL709 (Most figures from Bishop, PRML) Approaches to classification Discriminant function: Directly assigns each data point x to a particular class Ci
Fitting Subject-specific Curves to Grouped Longitudinal Data
Fitting Subject-specific Curves to Grouped Longitudinal Data Djeundje, Viani Heriot-Watt University, Department of Actuarial Mathematics & Statistics Edinburgh, EH14 4AS, UK E-mail: [email protected] Currie,
Introduction to Support Vector Machines. Colin Campbell, Bristol University
Introduction to Support Vector Machines Colin Campbell, Bristol University 1 Outline of talk. Part 1. An Introduction to SVMs 1.1. SVMs for binary classification. 1.2. Soft margins and multi-class classification.
Basics of Statistical Machine Learning
CS761 Spring 2013 Advanced Machine Learning Basics of Statistical Machine Learning Lecturer: Xiaojin Zhu [email protected] Modern machine learning is rooted in statistics. You will find many familiar
7 Time series analysis
7 Time series analysis In Chapters 16, 17, 33 36 in Zuur, Ieno and Smith (2007), various time series techniques are discussed. Applying these methods in Brodgar is straightforward, and most choices are
Stochastic Inventory Control
Chapter 3 Stochastic Inventory Control 1 In this chapter, we consider in much greater details certain dynamic inventory control problems of the type already encountered in section 1.3. In addition to the
The equivalence of logistic regression and maximum entropy models
The equivalence of logistic regression and maximum entropy models John Mount September 23, 20 Abstract As our colleague so aptly demonstrated ( http://www.win-vector.com/blog/20/09/the-simplerderivation-of-logistic-regression/
CCNY. BME I5100: Biomedical Signal Processing. Linear Discrimination. Lucas C. Parra Biomedical Engineering Department City College of New York
BME I5100: Biomedical Signal Processing Linear Discrimination Lucas C. Parra Biomedical Engineering Department CCNY 1 Schedule Week 1: Introduction Linear, stationary, normal - the stuff biology is not
2DI36 Statistics. 2DI36 Part II (Chapter 7 of MR)
2DI36 Statistics 2DI36 Part II (Chapter 7 of MR) What Have we Done so Far? Last time we introduced the concept of a dataset and seen how we can represent it in various ways But, how did this dataset came
Regression III: Advanced Methods
Lecture 4: Transformations Regression III: Advanced Methods William G. Jacoby Michigan State University Goals of the lecture The Ladder of Roots and Powers Changing the shape of distributions Transforming
6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives
6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise
Linear Classification. Volker Tresp Summer 2015
Linear Classification Volker Tresp Summer 2015 1 Classification Classification is the central task of pattern recognition Sensors supply information about an object: to which class do the object belong
Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data
Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data Introduction In several upcoming labs, a primary goal will be to determine the mathematical relationship between two variable
Several Views of Support Vector Machines
Several Views of Support Vector Machines Ryan M. Rifkin Honda Research Institute USA, Inc. Human Intention Understanding Group 2007 Tikhonov Regularization We are considering algorithms of the form min
Long-term Stock Market Forecasting using Gaussian Processes
Long-term Stock Market Forecasting using Gaussian Processes 1 2 3 4 Anonymous Author(s) Affiliation Address email 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Understanding Basic Calculus
Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other
Multiple Linear Regression in Data Mining
Multiple Linear Regression in Data Mining Contents 2.1. A Review of Multiple Linear Regression 2.2. Illustration of the Regression Process 2.3. Subset Selection in Linear Regression 1 2 Chap. 2 Multiple
Lecture 6: Logistic Regression
Lecture 6: CS 194-10, Fall 2011 Laurent El Ghaoui EECS Department UC Berkeley September 13, 2011 Outline Outline Classification task Data : X = [x 1,..., x m]: a n m matrix of data points in R n. y { 1,
Analysis of Bayesian Dynamic Linear Models
Analysis of Bayesian Dynamic Linear Models Emily M. Casleton December 17, 2010 1 Introduction The main purpose of this project is to explore the Bayesian analysis of Dynamic Linear Models (DLMs). The main
Part 4 fitting with energy loss and multiple scattering non gaussian uncertainties outliers
Part 4 fitting with energy loss and multiple scattering non gaussian uncertainties outliers material intersections to treat material effects in track fit, locate material 'intersections' along particle
Modeling and Prediction of Network Traffic Based on Hybrid Covariance Function Gaussian Regressive
Journal of Information & Computational Science 12:9 (215) 3637 3646 June 1, 215 Available at http://www.joics.com Modeling and Prediction of Network Traffic Based on Hybrid Covariance Function Gaussian
Introduction to Quadratic Functions
Introduction to Quadratic Functions The St. Louis Gateway Arch was constructed from 1963 to 1965. It cost 13 million dollars to build..1 Up and Down or Down and Up Exploring Quadratic Functions...617.2
Principles of Dat Da a t Mining Pham Tho Hoan [email protected] [email protected]. n
Principles of Data Mining Pham Tho Hoan [email protected] References [1] David Hand, Heikki Mannila and Padhraic Smyth, Principles of Data Mining, MIT press, 2002 [2] Jiawei Han and Micheline Kamber,
CS 688 Pattern Recognition Lecture 4. Linear Models for Classification
CS 688 Pattern Recognition Lecture 4 Linear Models for Classification Probabilistic generative models Probabilistic discriminative models 1 Generative Approach ( x ) p C k p( C k ) Ck p ( ) ( x Ck ) p(
Decision Theory. 36.1 Rational prospecting
36 Decision Theory Decision theory is trivial, apart from computational details (just like playing chess!). You have a choice of various actions, a. The world may be in one of many states x; which one
2.2 Creaseness operator
2.2. Creaseness operator 31 2.2 Creaseness operator Antonio López, a member of our group, has studied for his PhD dissertation the differential operators described in this section [72]. He has compared
Data Mining and Data Warehousing. Henryk Maciejewski. Data Mining Predictive modelling: regression
Data Mining and Data Warehousing Henryk Maciejewski Data Mining Predictive modelling: regression Algorithms for Predictive Modelling Contents Regression Classification Auxiliary topics: Estimation of prediction
15.062 Data Mining: Algorithms and Applications Matrix Math Review
.6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop
Introduction to nonparametric regression: Least squares vs. Nearest neighbors
Introduction to nonparametric regression: Least squares vs. Nearest neighbors Patrick Breheny October 30 Patrick Breheny STA 621: Nonparametric Statistics 1/16 Introduction For the remainder of the course,
CS 591.03 Introduction to Data Mining Instructor: Abdullah Mueen
CS 591.03 Introduction to Data Mining Instructor: Abdullah Mueen LECTURE 3: DATA TRANSFORMATION AND DIMENSIONALITY REDUCTION Chapter 3: Data Preprocessing Data Preprocessing: An Overview Data Quality Major
(Refer Slide Time: 1:42)
Introduction to Computer Graphics Dr. Prem Kalra Department of Computer Science and Engineering Indian Institute of Technology, Delhi Lecture - 10 Curves So today we are going to have a new topic. So far
Bayesian probability theory
Bayesian probability theory Bruno A. Olshausen arch 1, 2004 Abstract Bayesian probability theory provides a mathematical framework for peforming inference, or reasoning, using probability. The foundations
Introduction to Machine Learning Using Python. Vikram Kamath
Introduction to Machine Learning Using Python Vikram Kamath Contents: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Introduction/Definition Where and Why ML is used Types of Learning Supervised Learning Linear Regression
Vector and Matrix Norms
Chapter 1 Vector and Matrix Norms 11 Vector Spaces Let F be a field (such as the real numbers, R, or complex numbers, C) with elements called scalars A Vector Space, V, over the field F is a non-empty
Bayes and Naïve Bayes. cs534-machine Learning
Bayes and aïve Bayes cs534-machine Learning Bayes Classifier Generative model learns Prediction is made by and where This is often referred to as the Bayes Classifier, because of the use of the Bayes rule
