Multi-Carrier GSM with State of the Art ADC technology
|
|
|
- Owen Bradford
- 10 years ago
- Views:
Transcription
1 Multi-Carrier GSM with State of the Art ADC technology Analog Devices, October 2002 revised August 29, 2005, May 1, 2006, May 10, 2006, November 30, 2006, June 19, 2007, October 3, 2007, November 12, 2007 and July 15, Over the last few years, a new class of BTS has been introduced that provides for a relaxed specification as outlined in the table below. This has eased the requirements for converters for some classes of basestations and this is highlighted in this document. Frequency GSM 400, T-GSM 810, P-, E- and R-GSM 900 DCS & PCS band other MS small MS (Note 1) BTS except Multicarrier BTS Multicarrier BTS (Note 2), (Note 3) MS BTS including Multicarrier BTS (Note 3) dbµv dbm dbµv dbm dbµv dbm dbµv dbm dbµv dbm dbµv dbm (emf) (emf) (emf) (emf) (emf) (emf) in-band 600 khz f-f o < khz 800 khz f-f o < ,6 MHz 1,6 MHz f-f o < MHz 3 MHz f-f o out-of-band (a) (b) (c) (d) NOTE 1: For definition of small MS, see subclause 1.1. NOTE 2: In case of either multicarrier BTS class with multicarrier receiver, the inband requirements for frequency offsets 800 khz f-f o and blocking signal levels higher than -25 dbm, the performance shall be met X db above the reference sensitivity level or input level for reference performance, whichever applicable, as specified in subclause 6.2 where X is - 8 db for blocking signal levels below -20 dbm, and - 12 db for blocking signal levels above -20 dbm. The relaxed values for multicarrier BTS classes are not applicable for GSM-R usage. The requirements apply to both multicarrier BTS classes. The requirements for Multicarrier BTS apply to multicarrier BTS with multicarrier receiver. NOTE 3: For MSR BS multicarrier BTS requirements apply. Sample Rate A true multi-carrier receiver would need to process a band of up to 75 MHz. Therefore, the sample rate should ideally be at least 180 MSPS and as high as 250 MSPS. In cases where the input bandwidth is limited, it may be advantageous to use higher sampling rates to improve noise performance. Therefore, many applications may run a much higher sample rate than otherwise required, simply to improve the noise and linearity performance. Gain based on 900 MHz Blocking Typically ADC full-scales are between +4 and +7.5 dbm. The goal of the following analysis is to determine the best performance possible with this technology. The updated standard makes a key change that reduces the need somewhat. First the sensitivity requirements have changed for both band groups listed above. This section covers only the bands below 1 GHz. Above -25 dbm and below -20 dbm sensitivity may degrade by 5 db. Above -20 dbm and below -16 dbm, the sensitivity is allowed to degrade another 4 db. This potentially defines a linear degradation in performance by allowing the input signal to increase as the blocker levels increase as indicated in the table above.
2 Based on the ADC fullscale of +4 dbm rms and +7 dbm peak and given an in-band blocker of 25 dbm, the highest gain possible without clipping would be about 29 db. Above -25 dbm, AGC is allowed as the level above reference sensitivity my increase. For this discussion, the focus will be prior to desensitization and therefore -25 dbm is the block level used. Given implementation margin and headroom, this could be closer to 25 db and a NF of 3 db will be assumed. At blocking levels above -25 dbm, the gain may be reduced. One interpretation of the standard indicates that gain may be reduced by 9 db between -25 dbm and -16 dbm. Therefore between these levels, the gain could drop to 16 db, a very low level but sensitivity is also allowed to degrade so it is assumed this is not a problem. Products like the AD9247 and AD6655 can be used to automate this process by taking advantage of the built in fast detect and rms power calculations subsystems. Optimistic sensitivity at 900 MHz Under these stated conditions, front-end noise (AFE) presented to the ADC will be 146 dbm/hz (-174 plus 25 db gain plus 3 db NF). A receiver based on pipeline ADC technology should place the RF thermal noise floor about 10 db larger than the ADC noise floor to avoid reliability issues associated with the non-white characteristics of the ADC noise. See the article titled DNL and Some of its Effects on Data Converters 1 for details of the reason why margin is required between the thermal noise floor and the ADC noise floor. Therefore an ideal ADC should exhibit a noise floor around -156 dbm/hz. As noted in the table above, this is a challenge. Even though the latest specification includes considerations for MC-GSM, it is still a challenge to achieve this 10 db margin. Therefore, slight relaxations are still necessary. To complicate this issue, most GSM radio manufacturers exceed the reference sensitivity by 6-8 db and that performance can be extended to MC-GSM platforms as well. For the 900 MHz band, static reference sensitivity is -104 dbm. Yet a NF of about 3 db will allow a GSM receiver to operate as low as -113 dbm not including phase noise issues from the PLL. More realistic performance can be assumed to be between -110 and -111 dbm. Given a noise density between -154 dbm/hz and -156 dbm/hz, the converter SNR can be determined assuming a specified Nyquist rate. Many converters today run at either MSPS and MSPS; these yield integrated noises of -77 dbm and -74 dbm respectively. If fullscale of these converters are +4 dbm, this is a required SNR of 81 db and 78 db respectively. There is some margin in these numbers and they can be reduced perhaps 2 db, but reduction below these numbers would compromise integrity of the receiver too much. Therefore, the minimum SNR required would be 79 and 76 db. Ignoring the effects of clock and LO phase noise, a receive based on these converters would be able to simultaneously process a signal at -25 dbm and -110 dbm 2. To validate this, a -25 dbm signal would be increased to 0 dbm which would provide 4 db of margin to the converter clip point. Little distortion is expected. A -110 dbm signal would be compared to the noise floor which would be near -174 dbm/hz + 3 db If this is integrated across 200 khz total noise power of -118 dbm/200 khz found. This is an SNR of 8 db. Under this condition, it is expected to be received with a very low error rate. 1 June 2001, Wireless Design and Development. 2 Reference sensitivity is estimated by adding the front-end noise to the converter noise (both -159 dbm/hz) and then integrating over a 200 khz channel. This is a noise power of -103 dbm. It is assumed that a signal 5 db larger than the noise could be processed -98 dbm. Referenced to the antenna this would be -110 dbm.
3 NSD by Year NSD Linear (NSD) dbm/hz y = x Year ADC Noise Spectral Density over the last few decades Optimistic blocking at 900 MHz A signal at -25 dbm could produce a spurious in the ADC that behaves as a co-channel interferer. In this case, the spurious should be 9 db lower than the desired sensitivity to prevent co-channel blocking. If the receiver were required to provide operation at this level with a signal 3 db above reference sensitivity, this would mean that a signal of -101 dbm would need to be received in the presence of a -25 dbm blocker. The co-channel requirement is 9 db. Therefore the generated spurious could be as high as -110 dbm. If so, this would be a minimum SFDR of 85 dbc with an input at -4 dbfs. Given the state of the art, this should not be a significant issue with converter availability. An interesting side note is that while converter performance with un-modulated tones (CW) does limit converter performance, converter performance with modulated signals is significantly better. The figure below shows performance with single and multi-carrier EDGE application. For deployment in bands where CW tones do not exist, spurious performance may well be achieved. The figures below show the same 14 bit converter with a CW tone, a single EDGE carrier and 2 EDGE carriers. In all 3 cases, the peak input drive level was about.5 db below fullscale. In the case of the CW tone, the SFDR is about -90 dbc. In the single EDGE case, performance is now about -120 dbc remembering that the EDGE power is still fullscale even though it has been distributed across about 200 khz. Finally for the 2 EDGE case, spurious performance is even better, limited almost entirely by the noise floor of the converter. Multi-carrier EDGE has been demonstrated to be even better. Similar performance can be achieved with WCDMA, CDMA2000 and WiMAX waveforms however, it should at all times be remembered that in the presence of CW blockers performance will be limited by those waveforms.
4 14 bit ADC driven with CW tone 14 bit ADC driven with 1 EDGE Carrier 14 bit ADC driven with 2 EDGE Carriers As shown here, spurious performance with modulated waveforms is significantly better than with CW tones. As stated earlier, in applications that can avoid CW tones, performance is coming into line with the required performance. However, as with SNR, SFDR requirements for non-900 MHz applications are relaxed by 10 or more db. Therefore, current technology exists, even for CW tone tolerance in these bands.
5 Operation in the 1800 & 1900 MHz Band Operation in this band is exactly the same as the 900 MHz condition with the exception that there is no condition specified above -25 dbm. Therefore the anticipated performance will be the same as shown in the analysis above. Converter noise floor should be -155 dbm/hz and spurious should be better than 85 dbfs. Conclusion Based on this overview, 900 MHz is now feasible with existing high end converters. Additionally new converters are coming to market with better performance and it is expected that given good design practices, few issues should restrict the performance of multi-carrier GSM receivers give current ADC technology.
Understand the effects of clock jitter and phase noise on sampled systems A s higher resolution data converters that can
designfeature By Brad Brannon, Analog Devices Inc MUCH OF YOUR SYSTEM S PERFORMANCE DEPENDS ON JITTER SPECIFICATIONS, SO CAREFUL ASSESSMENT IS CRITICAL. Understand the effects of clock jitter and phase
AN-756 APPLICATION NOTE One Technology Way P.O. Box 9106 Norwood, MA 02062-9106 Tel: 781/329-4700 Fax: 781/326-8703 www.analog.com
APPLICATION NOTE One Technology Way P.O. Box 9106 Norwood, MA 02062-9106 Tel: 781/329-4700 Fax: 781/326-8703 www.analog.com Sampled Systems and the Effects of Clock Phase Noise and Jitter by Brad Brannon
GSM frequency planning
GSM frequency planning Band : 890-915 and 935-960 MHz Channel spacing: 200 khz (but signal bandwidth = 400 khz) Absolute Radio Frequency Channel Number (ARFCN) lower band: upper band: F l (n) = 890.2 +
Coexistence Tips the Market for Wireless System Simulation Chris Aden, MathWorks
Coexistence Tips the Market for Wireless System Simulation Chris Aden, MathWorks Introduction From time to time, marshalling events occur in stable markets placing difficult new requirements on established
How PLL Performances Affect Wireless Systems
May 2010 Issue: Tutorial Phase Locked Loop Systems Design for Wireless Infrastructure Applications Use of linear models of phase noise analysis in a closed loop to predict the baseline performance of various
LTE System Specifications and their Impact on RF & Base Band Circuits. Application Note. Products: R&S FSW R&S SMU R&S SFU R&S FSV R&S SMJ R&S FSUP
Application Note Dr. Oliver Werther/Roland Minihold 04.2013 1MA221_1E LTE System Specifications and their Impact on RF & Base Band Circuits Application Note Products: R&S FSW R&S SMU R&S SFU R&S FSV R&S
RFSPACE CLOUD-IQ #CONNECTED SOFTWARE DEFINED RADIO
CLOUD-IQ #CONNECTED SOFTWARE DEFINED RADIO 1 - SPECIFICATIONS Cloud-IQ INTRODUCTION The Cloud-IQ is a high performance, direct sampling software radio with an ethernet interface. It offers outstanding
Agilent AN 1315 Optimizing RF and Microwave Spectrum Analyzer Dynamic Range. Application Note
Agilent AN 1315 Optimizing RF and Microwave Spectrum Analyzer Dynamic Range Application Note Table of Contents 3 3 3 4 4 4 5 6 7 7 7 7 9 10 10 11 11 12 12 13 13 14 15 1. Introduction What is dynamic range?
Achieving New Levels of Channel Density in Downstream Cable Transmitter Systems: RF DACs Deliver Smaller Size and Lower Power Consumption
Achieving New Levels of Channel Density in Downstream Cable Transmitter Systems: RF DACs Deliver Smaller Size and Lower Power Consumption Introduction By: Analog Devices, Inc. (ADI) Daniel E. Fague, Applications
Optimizing IP3 and ACPR Measurements
Optimizing IP3 and ACPR Measurements Table of Contents 1. Overview... 2 2. Theory of Intermodulation Distortion... 2 3. Optimizing IP3 Measurements... 4 4. Theory of Adjacent Channel Power Ratio... 9 5.
Dithering in Analog-to-digital Conversion
Application Note 1. Introduction 2. What is Dither High-speed ADCs today offer higher dynamic performances and every effort is made to push these state-of-the art performances through design improvements
Application Note Noise Frequently Asked Questions
: What is? is a random signal inherent in all physical components. It directly limits the detection and processing of all information. The common form of noise is white Gaussian due to the many random
Taking the Mystery out of the Infamous Formula, "SNR = 6.02N + 1.76dB," and Why You Should Care. by Walt Kester
ITRODUCTIO Taking the Mystery out of the Infamous Formula, "SR = 6.0 + 1.76dB," and Why You Should Care by Walt Kester MT-001 TUTORIAL You don't have to deal with ADCs or DACs for long before running across
GSM/EDGE Output RF Spectrum on the V93000 Joe Kelly and Max Seminario, Verigy
GSM/EDGE Output RF Spectrum on the V93000 Joe Kelly and Max Seminario, Verigy Introduction A key transmitter measurement for GSM and EDGE is the Output RF Spectrum, or ORFS. The basis of this measurement
Wireless Communication and RF System Design Using MATLAB and Simulink Giorgia Zucchelli Technical Marketing RF & Mixed-Signal
Wireless Communication and RF System Design Using MATLAB and Simulink Giorgia Zucchelli Technical Marketing RF & Mixed-Signal 2013 The MathWorks, Inc. 1 Outline of Today s Presentation Introduction to
DRM compatible RF Tuner Unit DRT1
FEATURES DRM compatible RF Tuner Unit DRT1 High- Performance RF Tuner Frequency Range: 10 KHz to 30 MHz Input ICP3: +13,5dBm, typ. Noise Figure @ full gain: 14dB, typ. Receiver Factor: -0,5dB, typ. Input
PXI. www.aeroflex.com. GSM/EDGE Measurement Suite
PXI GSM/EDGE Measurement Suite The GSM/EDGE measurement suite is a collection of software tools for use with Aeroflex PXI 3000 Series RF modular instruments for characterising the performance of GSM/HSCSD/GPRS
1 Lecture Notes 1 Interference Limited System, Cellular. Systems Introduction, Power and Path Loss
ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2015 1 Lecture Notes 1 Interference Limited System, Cellular Systems Introduction, Power and Path Loss Reading: Mol 1, 2, 3.3, Patwari
How To Use A Sound Card With A Subsonic Sound Card
!"## $#!%!"# &"#' ( "#' )*! #+ #,# "##!$ -+./0 1" 1! 2"# # -&1!"#" (2345-&1 #$6.7 -&89$## ' 6! #* #!"#" +" 1##6$ "#+# #-& :1# # $ #$#;1)+#1#+
Software Defined Radio. What is software defined radio? Brad Brannon, Analog Devices, Inc.
Software Defined Radio Brad Brannon, Analog Devices, Inc. What is software defined radio? Over the last decade as semiconductor technology has improved both in terms of performance capability and cost,
Agilent GSM/EDGE Base Station Test with the E4406A VSA and ESG-D Series RF Signal Generators Product Overview
Agilent GSM/EDGE Base Station Test with the E4406A VSA and ESG-D Series RF Signal Generators Product Overview The flexible GSM/EDGE base station test solution with a 3G future... Designed for manufacturing
Timing Errors and Jitter
Timing Errors and Jitter Background Mike Story In a sampled (digital) system, samples have to be accurate in level and time. The digital system uses the two bits of information the signal was this big
Visual System Simulator White Paper
Visual System Simulator White Paper UNDERSTANDING AND CORRECTLY PREDICTING CRITICAL METRICS FOR WIRELESS RF LINKS Understanding and correctly predicting cellular, radar, or satellite RF link performance
COMPATIBILITY STUDY FOR UMTS OPERATING WITHIN THE GSM 900 AND GSM 1800 FREQUENCY BANDS
Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) COMPATIBILITY STUDY FOR UMTS OPERATING WITHIN THE GSM 900 AND GSM 1800 FREQUENCY
is the power reference: Specifically, power in db is represented by the following equation, where P0 P db = 10 log 10
RF Basics - Part 1 This is the first article in the multi-part series on RF Basics. We start the series by reviewing some basic RF concepts: Decibels (db), Antenna Gain, Free-space RF Propagation, RF Attenuation,
Introduction to Receivers
Introduction to Receivers Purpose: translate RF signals to baseband Shift frequency Amplify Filter Demodulate Why is this a challenge? Interference (selectivity, images and distortion) Large dynamic range
Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP
Department of Electrical and Computer Engineering Ben-Gurion University of the Negev LAB 1 - Introduction to USRP - 1-1 Introduction In this lab you will use software reconfigurable RF hardware from National
Advanced Test Equipment Rentals www.atecorp.com 800-404-ATEC (2832)
Established 1981 Advanced Test Equipment Rentals www.atecorp.com 800-404-ATEC (2832) Agilent E4406A Vector Signal Analyzer Data Sheet The Agilent Technologies E4406A vector signal analyzer (VSA) is a full-featured
In 3G/WCDMA mobile. IP2 and IP3 Nonlinearity Specifications for 3G/WCDMA Receivers 3G SPECIFICATIONS
From June 009 High Frequency Electronics Copyright 009 Summit Technical Media, LLC IP and IP3 Nonlinearity Specifications for 3G/WCDMA Receivers By Chris W. Liu and Morten Damgaard Broadcom Corporation
RF Communication System. EE 172 Systems Group Presentation
RF Communication System EE 172 Systems Group Presentation RF System Outline Transmitter Components Receiver Components Noise Figure Link Budget Test Equipment System Success Design Remedy Transmitter Components
GSM GSM 05.05 TECHNICAL March 1996 SPECIFICATION Version 5.0.0
GSM GSM 05.05 TECHNICAL March 1996 SPECIFICATION Version 5.0.0 Source: ETSI TC-SMG Reference: TS/SMG-020505Q ICS: 33.060.50 Key words: Digital cellular telecommunications system, Global System for Mobile
Vector Signal Analyzer FSQ-K70
Product brochure Version 02.00 Vector Signal Analyzer FSQ-K70 July 2004 Universal demodulation, analysis and documentation of digital radio signals For all major mobile radio communication standards: GSM
Maximizing Receiver Dynamic Range for Spectrum Monitoring
Home Maximizing Receiver Dynamic Range for Spectrum Monitoring Brian Avenell, National Instruments Corp., Austin, TX October 15, 2012 As consumers continue to demand more data wirelessly through mobile
ETSI EN 302 774 V1.2.1 (2012-02)
EN 302 774 V1.2.1 (2012-02) Harmonized European Standard Broadband Wireless Access Systems (BWA) in the 3 400 MHz to 3 800 MHz frequency band; Base Stations; Harmonized EN covering the essential requirements
Measurement of Adjacent Channel Leakage Power on 3GPP W-CDMA Signals with the FSP
Products: Spectrum Analyzer FSP Measurement of Adjacent Channel Leakage Power on 3GPP W-CDMA Signals with the FSP This application note explains the concept of Adjacent Channel Leakage Ratio (ACLR) measurement
Lecture 1: Communication Circuits
EECS 142 Lecture 1: Communication Circuits Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California, Berkeley EECS 142 Lecture
AM/FM/ϕM Measurement Demodulator FS-K7
Data sheet Version 02.00 AM/FM/ϕM Measurement Demodulator FS-K7 July 2005 for the Analyzers FSQ/FSU/FSP and the Test Receivers ESCI/ESPI AM/FM/ϕM demodulator for measuring analog modulation parameters
CS263: Wireless Communications and Sensor Networks
CS263: Wireless Communications and Sensor Networks Matt Welsh Lecture 4: Medium Access Control October 5, 2004 2004 Matt Welsh Harvard University 1 Today's Lecture Medium Access Control Schemes: FDMA TDMA
Spectrum and Power Measurements Using the E6474A Wireless Network Optimization Platform
Application Note Spectrum and Power Measurements Using the E6474A Wireless Network Optimization Platform By: Richard Komar Introduction With the rapid development of wireless technologies, it has become
Phase Noise Measurement Methods and Techniques
Phase Noise Measurement Methods and Techniques Presented by: Kay Gheen, Agilent Technologies Introduction Extracting electronic signals from noise is a challenge for most electronics engineers. As engineers
HD Radio FM Transmission System Specifications Rev. F August 24, 2011
HD Radio FM Transmission System Specifications Rev. F August 24, 2011 SY_SSS_1026s TRADEMARKS HD Radio and the HD, HD Radio, and Arc logos are proprietary trademarks of ibiquity Digital Corporation. ibiquity,
RF SYSTEM DESIGN OF TRANSCEIVERS FOR WIRELESS COMMUNICATIONS
RF SYSTEM DESIGN OF TRANSCEIVERS FOR WIRELESS COMMUNICATIONS Qizheng Gu Nokia Mobile Phones, Inc. 4y Springer Contents Preface xiii Chapter 1. Introduction 1 1.1. Wireless Systems 1 1.1.1. Mobile Communications
Basics of Designing a Digital Radio Receiver (Radio 101) Brad Brannon, Analog Devices, Inc. Greensboro, NC
Basics of Designing a Digital Radio Receiver (Radio 0) Brad Brannon, Analog Devices, Inc. Greensboro, NC Abstract: This paper introduces the basics of designing a digital radio receiver. With many new
AN1200.04. Application Note: FCC Regulations for ISM Band Devices: 902-928 MHz. FCC Regulations for ISM Band Devices: 902-928 MHz
AN1200.04 Application Note: FCC Regulations for ISM Band Devices: Copyright Semtech 2006 1 of 15 www.semtech.com 1 Table of Contents 1 Table of Contents...2 1.1 Index of Figures...2 1.2 Index of Tables...2
102 26-m Antenna Subnet Telecommunications Interfaces
DSMS Telecommunications Link Design Handbook 26-m Antenna Subnet Telecommunications Interfaces Effective November 30, 2000 Document Owner: Approved by: Released by: [Signature on file in TMOD Library]
The Effective Number of Bits (ENOB) of my R&S Digital Oscilloscope Technical Paper
The Effective Number of Bits (ENOB) of my R&S Digital Oscilloscope Technical Paper Products: R&S RTO1012 R&S RTO1014 R&S RTO1022 R&S RTO1024 This technical paper provides an introduction to the signal
Agilent E6832A W-CDMA Calibration Application
Agilent E6832A W-CDMA Calibration Application For the E6601A Wireless Communications Test Set Data Sheet The next generation of mobile phone manufacturing test. E6601A is the newest test set from Agilent
RF System Design. Peter Kinget. Bell Laboratories Lucent Technologies Murray Hill, NJ, USA
RF System Design Peter Kinget Bell Laboratories Lucent Technologies Murray Hill, NJ, USA Outline Circuits for Wireless Wireless Communications duplex, access, and cellular communication systems standards
The front end of the receiver performs the frequency translation, channel selection and amplification of the signal.
Many receivers must be capable of handling a very wide range of signal powers at the input while still producing the correct output. This must be done in the presence of noise and interference which occasionally
ECC REPORT 162 PRACTICAL MECHANISM TO IMPROVE THE COMPATIBILITY BETWEEN GSM-R AND PUBLIC MOBILE NETWORKS AND GUIDANCE ON PRACTICAL COORDINATION
Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) ECC REPORT 162 PRACTICAL MECHANISM TO IMPROVE THE COMPATIBILITY BETWEEN
RF Measurements Using a Modular Digitizer
RF Measurements Using a Modular Digitizer Modern modular digitizers, like the Spectrum M4i series PCIe digitizers, offer greater bandwidth and higher resolution at any given bandwidth than ever before.
DDS. 16-bit Direct Digital Synthesizer / Periodic waveform generator Rev. 1.4. Key Design Features. Block Diagram. Generic Parameters.
Key Design Features Block Diagram Synthesizable, technology independent VHDL IP Core 16-bit signed output samples 32-bit phase accumulator (tuning word) 32-bit phase shift feature Phase resolution of 2π/2
CLOCK AND SYNCHRONIZATION IN SYSTEM 6000
By Christian G. Frandsen Introduction This document will discuss the clock, synchronization and interface design of TC System 6000 and deal with several of the factors that must be considered when using
Interpreting the Information Element C/I
Prepared Date Rev Document no pproved File/reference 1(17) 2000-04-11 Interpreting the Information Element C/I This document primarily addresses users of TEMS Investigation. 2(17) 1 Introduction Why is
Measurement, analysis, and monitoring of RF signals
NRA-2500, NRA-3000 and NRA-6000 Narda Remote Spectrum Analyzer Measurement, analysis, and monitoring of RF signals 19" rack mountable Spectrum Analyzer for remote controlled measurements and analysis of
'Possibilities and Limitations in Software Defined Radio Design.
'Possibilities and Limitations in Software Defined Radio Design. or Die Eierlegende Wollmilchsau Peter E. Chadwick Chairman, ETSI ERM_TG30, co-ordinated by ETSI ERM_RM Software Defined Radio or the answer
FUNDAMENTALS OF MODERN SPECTRAL ANALYSIS. Matthew T. Hunter, Ph.D.
FUNDAMENTALS OF MODERN SPECTRAL ANALYSIS Matthew T. Hunter, Ph.D. AGENDA Introduction Spectrum Analyzer Architecture Dynamic Range Instantaneous Bandwidth The Importance of Image Rejection and Anti-Aliasing
Conquering Noise for Accurate RF and Microwave Signal Measurements. Presented by: Ernie Jackson
Conquering Noise for Accurate RF and Microwave Signal Measurements Presented by: Ernie Jackson The Noise Presentation Review of Basics, Some Advanced & Newer Approaches Noise in Signal Measurements-Summary
Keysight Technologies Understanding GSM/EDGE Transmitter and Receiver Measurements for Base Transceiver Stations and their Components
Keysight Technologies Understanding GSM/EDGE Transmitter and Receiver Measurements for Base Transceiver Stations and their Components Application Note 02 Keysight Understanding GSM/EDGE Transmitter and
LTE Evolution for Cellular IoT Ericsson & NSN
LTE Evolution for Cellular IoT Ericsson & NSN LTE Evolution for Cellular IoT Overview and introduction White Paper on M2M is geared towards low cost M2M applications Utility (electricity/gas/water) metering
Audio processing and ALC in the FT-897D
Audio processing and ALC in the FT-897D I recently bought an FT-897D, and after a period of operation noticed problems with what I perceived to be a low average level of output power and reports of muffled
FIBRE TO THE BTS IMPROVING NETWORK FLEXIBILITY & ENERGY EFFICIENCY
FIBRE TO THE BTS IMPROVING NETWORK FLEXIBILITY & ENERGY EFFICIENCY (Study Paper by FLA Division) Ram Krishna Dy. Director General (FLA) TEC New Delhi, DoT, Govt. of India. E-mail: [email protected] Mrs.
How To Understand The Theory Of Time Division Duplexing
Multiple Access Techniques Dr. Francis LAU Dr. Francis CM Lau, Associate Professor, EIE, PolyU Content Introduction Frequency Division Multiple Access Time Division Multiple Access Code Division Multiple
Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT)
Page 1 Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) ECC RECOMMENDATION (06)01 Bandwidth measurements using FFT techniques
Non-Data Aided Carrier Offset Compensation for SDR Implementation
Non-Data Aided Carrier Offset Compensation for SDR Implementation Anders Riis Jensen 1, Niels Terp Kjeldgaard Jørgensen 1 Kim Laugesen 1, Yannick Le Moullec 1,2 1 Department of Electronic Systems, 2 Center
Using Multilayer Baluns to Improve ADC Performance. Introduction. September, 2009
(ANN-900) Rev B Page 1 of 1 Using Multilayer Baluns to Improve ADC Performance Introduction September, 009 This application note explains the use of Anaren s multilayer balun (BD005F5050AHF) in conjunction
UGF09030. 30W, 1 GHz, 26V Broadband RF Power N-Channel Enhancement-Mode Lateral MOSFET
30W, 1 GHz, 26V Broadband RF Power N-Channel Enhancement-Mode Lateral MOSFET Designed for base station applications in the frequency band 800MHz to 1000MHz. Rated with a minimum output power of 30W, it
AN-837 APPLICATION NOTE
APPLICATION NOTE One Technology Way P.O. Box 916 Norwood, MA 262-916, U.S.A. Tel: 781.329.47 Fax: 781.461.3113 www.analog.com DDS-Based Clock Jitter Performance vs. DAC Reconstruction Filter Performance
GSM Network and Services
GSM Network and Services Cellular networks GSM Network and Services 2G1723 Johan Montelius 1 The name of the game The number one priority for mobile/cellular networks is to implement full-duplex voice
Electronic Communications Committee (ECC) within the Conference of Postal and Telecommunications Administrations (CEPT)
Page 1 Electronic Communications Committee (ECC) within the Conference of Postal and Telecommunications Administrations (CEPT) ECC RECOMMENDATION (05)08 (replacing recommendations T/R 20-08 and 22-07)
Application Note Receiving HF Signals with a USRP Device Ettus Research
Application Note Receiving HF Signals with a USRP Device Ettus Research Introduction The electromagnetic (EM) spectrum between 3 and 30 MHz is commonly referred to as the HF band. Due to the propagation
Agilent Technologies. Generating Custom, Real-World Waveforms Integrating Test Instrumentation into the Design Process Application Note 1360
Agilent Technologies Generating Custom, Real-World Waveforms Integrating Test Instrumentation into the Design Process Application Note 1360 Table of Contents Introduction...............................................................................3
Test Report: Yaesu FTDX-1200, S/N 3F02051 (loaned by Bill Trippett W7VP)
Test Report: Yaesu FTDX-1200, S/N 3F02051 (loaned by Bill Trippett W7VP) Adam M. Farson VA7OJ/AB4OJ, 19-21 July 2013 1. Introduction and Scope: The following tests were conducted on the FTDX-1200: A. Receiver
Measuring ACLR Performance in LTE Transmitters. Application Note
Measuring ACLR Performance in LTE Transmitters Application Note Introduction As wireless service providers push for more bandwidth to deliver IP services to more users, LTE has emerged as a next-generation
Wireless Cellular Networks: 3G
Wireless Cellular Networks: 3G Raj Jain Washington University Saint Louis, MO 63131 [email protected] These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse574-06/ 7-1 Overview Wireless
Making Spectrum Measurements with Rohde & Schwarz Network Analyzers
Making Spectrum Measurements with Rohde & Schwarz Network Analyzers Application Note Products: R&S ZVA R&S ZVB R&S ZVT R&S ZNB This application note describes how to configure a Rohde & Schwarz Network
Introduction to RF Engineering. Andrew CLEGG
Introduction to RF Engineering Andrew CLEGG 1 Comparing the Lingo Radio Astronomers Speak a Unique Vernacular We are receiving interference from your transmitter at a level of 10 janskys What the ^#$&
Propagation Channel Emulator ECP_V3
Navigation simulators Propagation Channel Emulator ECP_V3 1 Product Description The ECP (Propagation Channel Emulator V3) synthesizes the principal phenomena of propagation occurring on RF signal links
CDMA Network Planning
CDMA Network Planning by AWE Communications GmbH www.awe-com.com Contents Motivation Overview Network Planning Module Air Interface Cell Load Interference Network Simulation Simulation Results by AWE Communications
EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak
Path Loss Radio Wave Propagation The wireless radio channel puts fundamental limitations to the performance of wireless communications systems Radio channels are extremely random, and are not easily analyzed
Nokia Siemens Networks LTE 1800 MHz Introducing LTE with maximum reuse of GSM assets
Nokia Siemens Networks LTE 1800 MHz Introducing LTE with maximum reuse of GSM assets White paper Table of contents 1. Overview... 3 2. 1800 MHz spectrum... 3 3. Traffic Migration... 5 4. Deploying LTE-GSM
Implementation of Digital Signal Processing: Some Background on GFSK Modulation
Implementation of Digital Signal Processing: Some Background on GFSK Modulation Sabih H. Gerez University of Twente, Department of Electrical Engineering [email protected] Version 4 (February 7, 2013)
@'pproved for release by NSA on 12-01-2011, Transparency Case# 6385~SSIFIED. Receiver Dynamics
@'pproved for release by NSA on 12-01-2011, Transparency Case# 6385~SSIFIED Receiver Dynamics STATUTORILY EXEMPT Editor's Note: This paper was written before the author retired (1995), In K4 we use a number
Using R&S FSW for Efficient Measurements on Multi- Standard Radio Base Stations Application Note
Using R&S FSW for Efficient Measurements on Multi- Standard Radio Base Stations Application Note Products: R&S FSW This application note introduces the Multi- Standard Radio Analyzer function of the R&S
Understanding the Effect of Uncorrelated Phase Noise on Multi-channel RF Vector Signal Generators and Analysers
Understanding the Effect of Uncorrelated Phase Noise on Multi-channel RF Vector Signal Generators and Analysers David A. Hall, Product Marketing Manager Andy Hinde, RF Systems Engineer Introduction With
RADIO FREQUENCY INTERFERENCE AND CAPACITY REDUCTION IN DSL
RADIO FREQUENCY INTERFERENCE AND CAPACITY REDUCTION IN DSL Padmabala Venugopal, Michael J. Carter*, Scott A. Valcourt, InterOperability Laboratory, Technology Drive Suite, University of New Hampshire,
Channel Bandwidth, MHz. Symbol Rate, Msym/sec
APPENDIXB Information in the following tables is from the DOCSIS and EuroDOCSIS Radio Frequency Interface Specification, and should be considered minimum recommended performance criteria for reliable data
Jeff Thomas Tom Holmes Terri Hightower. Learn RF Spectrum Analysis Basics
Jeff Thomas Tom Holmes Terri Hightower Learn RF Spectrum Analysis Basics Learning Objectives Name the major measurement strengths of a swept-tuned spectrum analyzer Explain the importance of frequency
Mobile Communications TCS 455
Mobile Communications TCS 455 Dr. Prapun Suksompong [email protected] Lecture 26 1 Office Hours: BKD 3601-7 Tuesday 14:00-16:00 Thursday 9:30-11:30 Announcements Read the following from the SIIT online
SkyWay-Mobile. Broadband Wireless Solution
SkyWay-Mobile Broadband Wireless Solution Wonderful World of Wireless The era of ubiquitous communication has arrived. Region by region, country by country and continent by continent, wireless connectivity
LTE UE RF measurements An introduction and overview
An introduction and overview February 2010 Andreas Roessler [email protected] Technology Manager North America Rohde & Schwarz, Germany Guenter Pfeifer [email protected]
Fast and Accurate Test of Mobile Phone Boards
Products: R&S FSP Fast and Accurate Test of Mobile Phone Boards Short test times in conjunction with accurate and repeatable measurement results are essential when testing and calibrating mobile phones
8. Cellular Systems. 1. Bell System Technical Journal, Vol. 58, no. 1, Jan 1979. 2. R. Steele, Mobile Communications, Pentech House, 1992.
8. Cellular Systems References 1. Bell System Technical Journal, Vol. 58, no. 1, Jan 1979. 2. R. Steele, Mobile Communications, Pentech House, 1992. 3. G. Calhoun, Digital Cellular Radio, Artech House,
ANY-G TO 4G. The Top Five Considerations for Migrating to 4G LTE
ANY-G TO 4G The Top Five Considerations for Migrating to 4G LTE Preparing for Sunsets In the consumer market, the 4G LTE standard continues to gain favor as the preferred network for phones and tablets,
Cellular Network Organization. Cellular Wireless Networks. Approaches to Cope with Increasing Capacity. Frequency Reuse
Cellular Network Organization Cellular Wireless Networks Use multiple low-power transmitters (100 W or less) Areas divided into cells Each served by its own antenna Served by base station consisting of
The Effect of Network Cabling on Bit Error Rate Performance. By Paul Kish NORDX/CDT
The Effect of Network Cabling on Bit Error Rate Performance By Paul Kish NORDX/CDT Table of Contents Introduction... 2 Probability of Causing Errors... 3 Noise Sources Contributing to Errors... 4 Bit Error
RECOMMENDATION ITU-R SM.1792. Measuring sideband emissions of T-DAB and DVB-T transmitters for monitoring purposes
Rec. ITU-R SM.1792 1 RECOMMENDATION ITU-R SM.1792 Measuring sideband emissions of T-DAB and DVB-T transmitters for monitoring purposes (2007) Scope This Recommendation provides guidance to measurement
AN437. Si4432 RF PERFORMANCE AND FCC COMPLIANCE TEST RESULTS. 1. Introduction. 2. Relevant Measurements to comply with FCC
Si4432 RF PERFORMANCE AND FCC COMPLIANCE TEST RESULTS 1. Introduction This document provides measurement results and FCC compliance results for the Si4432B when operated from 902 928 MHz. The measurement
Revision of Lecture Eighteen
Revision of Lecture Eighteen Previous lecture has discussed equalisation using Viterbi algorithm: Note similarity with channel decoding using maximum likelihood sequence estimation principle It also discusses
DT3: RF On/Off Remote Control Technology. Rodney Singleton Joe Larsen Luis Garcia Rafael Ocampo Mike Moulton Eric Hatch
DT3: RF On/Off Remote Control Technology Rodney Singleton Joe Larsen Luis Garcia Rafael Ocampo Mike Moulton Eric Hatch Agenda Radio Frequency Overview Frequency Selection Signals Methods Modulation Methods
