CDMA TECHNOLOGY. Brief Working of CDMA
|
|
|
- Cori Cobb
- 9 years ago
- Views:
Transcription
1 CDMA TECHNOLOGY History of CDMA The Cellular Challenge The world's first cellular networks were introduced in the early 1980s, using analog radio transmission technologies such as AMPS (Advanced Mobile Phone System). Within a few years, cellular systems began to hit a capacity ceiling as millions of new subscribers signed up for service, demanding more and more airtime. Dropped calls and network busy signals became common in many areas. To accommodate more traffic within a limited amount of radio spectrum, the industry developed a new set of digital wireless technologies called TDMA (Time Division Multiple Access) and GSM (Global System for Mobile). TDMA and GSM used a time-sharing protocol to provide three to four times more capacity than analog systems. But just as TDMA was being standardized, an even better solution was found in CDMA. Commercial Development The founders of QUALCOMM realized that CDMA technology could be used in commercial cellular communications to make even better use of the radio spectrum than other technologies. They developed the key advances that made CDMA suitable for cellular, then demonstrated a working prototype and began to license the technology to telecom equipment manufacturers. The first CDMA networks were commercially launched in 1995, and provided roughly 10 times more capacity than analog networks - far more than TDMA or GSM. Since then, CDMA has become the fastest-growing of all wireless technologies, with over 100 million subscribers worldwide. In addition to supporting more traffic, CDMA brings many other benefits to carriers and consumers, including better voice quality, broader coverage and stronger security. The world is demanding more from wireless communication technologies than ever before. More people around the world are subscribing to wireless services and consumers are using their phones more frequently. Add in exciting Third-Generation (3G) wireless data services and applications - such as wireless , web, digital picture taking/sending and assisted-gps position location applications - and wireless networks are asked to do much more than just a few years ago. And these networks will be asked to do more tomorrow. This is where CDMA technology fits in. CDMA consistently provides better capacity for voice and data communications than other commercial mobile technologies, allowing more subscribers to connect at any given time, and it is the common platform on which 3G technologies are built. CDMA is a "spread spectrum" technology, allowing many users to occupy the same time and frequency allocations in a given band/space. As its name implies, CDMA assigns unique codes to each communication to differentiate it from others in the same spectrum. Brief Working of CDMA CDMA takes an entirely different approach from TDMA. CDMA, after digitizing data, spreads it out over the entire available bandwidth. Multiple calls are overlaid on each other on the channel, with each assigned a unique sequence code. CDMA is a form
2 of spread spectrum, which simply means that data is sent in small pieces over a number of the discrete frequencies available for use at any time in the specified range. In CDMA, each phone's data has a unique code. All of the users transmit in the same wide-band chunk of spectrum. Each user's signal is spread over the entire bandwidth by a unique spreading code. At the receiver, that same unique code is used to recover the signal. Because CDMA systems need to put an accurate time-stamp on each piece of a signal, it references the GPS system for this information. Between eight and 10 separate calls can be carried in the same channel space as one analog AMPS call. Spread Spectrum Communications CDMA is a form of Direct Sequence Spread Spectrum communications. In general, Spread Spectrum communications is distinguished by three key elements: 1. The signal occupies a bandwidth much greater than that which is necessary to send the information. This results in many benefits, such as immunity to interference and jamming and multi-user access, which we ll discuss later on. 2. The bandwidth is spread by means of a code which is independent of the data. The independence of the code distinguishes this from standard modulation schemes in which the data modulation will always spread the spectrum somewhat. 3. The receiver synchronizes to the code to recover the data. The use of an independent code and synchronous reception allows multiple users to access the same frequency band at the same time. In order to protect the signal, the code used is pseudo-random. It appears random, but is actually deterministic, so that the receiver can reconstruct the code for synchronous detection. This pseudo-random code is also called pseudo-noise (PN). Three Types of Spread Spectrum Communications Frequency hopping.
3 The signal is rapidly switched between different frequencies within the hopping bandwidth pseudo-randomly, and the receiver knows before hand where to find the signal at any given time. Time hopping. The signal is transmitted in short bursts pseudo-randomly, and the receiver knows beforehand when to expect the burst. Direct sequence. The digital data is directly coded at a much higher frequency. The code is generated pseudo-randomly, the receiver knows how to generate the same code, and correlates the received signal with that code to extract the data. Direct Sequence Spread Spectrum FIG:-1 CDMA is a Direct Sequence Spread Spectrum system. The CDMA system works directly on 64 kbit/sec digital signals. These signals can be digitized voice, ISDN channels, modem data, etc. Figure 1 shows a simplified Direct Sequence Spread Spectrum system. For clarity, the figure shows one channel operating in one direction only.
4 Signal transmission consists of the following steps: 1. A pseudo-random code is generated, different for each channel and each successive connection. 2. The Information data modulates the pseudo-random code (the Information data is spread ). 3. The resulting signal modulates a carrier. 4. The modulated carrier is amplified and broadcast. Signal reception consists of the following steps: 1. The carrier is received and amplified. 2. The received signal is mixed with a local carrier to recover the spread digital signal. 3. A pseudo-random code is generated, matching the anticipated signal. 4. The receiver acquires the received code and phase locks its own code to it. 5. The received signal is correlated with the generated code, extracting the Information data. Implementing CDMA Technology The following sections describe how a system might implement the steps illustrated in Figure 1. Input data CDMA works on Information data from several possible sources, such as digitized voice or ISDN channels. Data rates can vary, here are some examples: Data Source Voice Pulse Code Modulation (PCM) Data Rate 64 kbits/sec Adaptive Differential Pulse Code Modulation (ADPCM) 32 kbits/sec Low Delay Code Excited Linear Prediction (LD-CELP) 16 kbits/sec ISDN Bearer Channel (B-Channel) 64 kbits/sec Data Channel (D-Channel) 16 kbits/sec The system works with 64 kbits/sec data, but can accept input rates of 8, 16, 32, or 64 kbits/sec. Inputs of less than 64 kbits/sec are padded with extra bits to bring them up to 64 kbits/sec. For inputs of 8, 16, 32, or 64 kbits/sec, the system applies Forward Error Correction (FEC) coding, which doubles the bit rate, up to 128 kbits/sec. The Complex Modulation scheme (which we ll discuss in more detail later), transmits two bits at a time, in two bit symbols. For inputs of less than 64 kbits/sec, each symbol is repeated to bring the transmission rate up to 64 kilosymbols/sec. Each component of the complex signal carries one bit of the two bit symbol, at 64 kbits/sec, as shown below.
5 Generating Pseudo-Random Codes For each channel the base station generates a unique code that changes for every connection. The base station adds together all the coded transmissions for every subscriber. The subscriber unit correctly generates its own matching code and uses it to extract the appropriate signals. Note that each subscriber uses several independent channels. In order for all this to occur, the pseudo-random code must have the following properties: 1. It must be deterministic. The subscriber station must be able to independently generate the code that matches the base station code. 2. It must appear random to a listener without prior knowledge of the code (i.e. it has the statistical properties of sampled white noise). 3. The cross-correlation between any two codes must be small (see below for more information on code correlation). 4. The code must have a long period (i.e. a long time before the code repeats itself). Code Correlation In this context, correlation has a specific mathematical meaning. In general the correlation function has these properties: It equals 1 if the two codes are identical It equals 0 of the two codes have nothing in common Intermediate values indicate how much the codes have in common. The more they have in common, the harder it is for the receiver to extract the appropriate signal. There are two correlation functions: Cross-Correlation: The correlation of two different codes. As we ve said, this should be as small as possible. Auto-Correlation: The correlation of a code with a time-delayed version of itself. In order to reject multi-path interference, this function should equal 0 for any time delay other than zero. The receiver uses cross-correlation to separate the appropriate signal from signals meant for other receivers, and auto-correlation to reject multi-path interference.
6 Figure 2a. Pseudo-Noise Spreading Figure 2b. Frequency Spreading Pseudo-Noise Spreading The FEC coded Information data modulates the pseudo-random code, as shown in Figure 2a. Some terminology related to the pseudo-random code: Chipping Frequency (f c ): the bit rate of the PN code. Information rate (f i ): the bit rate of the digital data. Chip: One bit of the PN code. Epoch: The length of time before the code starts repeating itself (the period of the code). The epoch must be longer than the round trip propagation delay (The epoch is on the order of several seconds).
7 Figure 2b shows the process of frequency spreading. In general, the bandwidth of a digital signal is twice its bit rate. The bandwidths of the information data (f i ) and the PN code are shown together. The bandwidth of the combination of the two, for f c >f i, can be approximated by the bandwidth of the PN code. Figure 3a. Complex Modulator Figure 3b. Complex Modulation Transmitting Data The resultant coded signal next modulates an RF carrier for transmission using Quadrature Phase Shift Keying (QPSK). QPSK uses four different states to encode each symbol. The four states are phase shifts of the carrier spaced 90_ apart. By convention, the phase shifts are 45, 135, 225, and 315 degrees. Since there are four possible states used to encode binary information, each state represents two bits. This two bit word is called a symbol. Figure 3 shows in general how QPSK works.
8 First, we ll discuss Complex Modulation in general, applying it to a single channel with no PN-coding (that is, we ll show how Complex Modulation would work directly on the symbols). Then we ll discuss how we apply it to a multi-channel, PN-coded, system. Complex Modulation Algebraically, a carrier wave with an applied phase shift, (t), can be expressed as a sum of two components, a Cosine wave and a Sine wave, as: I(t) is called the real, or In-phase, component of the data, and Q(t) is called the imaginary, or Quadrature-phase, component of the data. We end up with two Binary PSK waves superimposed. These are easier to modulate and later demodulate. This is not only an algebraic identity, but also forms the basis for the actual modulation/demodulation scheme. The transmitter generates two carrier waves of the same frequency, a sine and cosine. I(t) and Q(t) are binary, modulating each component by phase shifting it either 0 or 180 degrees. Both components are then summed together. Since I(t) and Q(t) are binary, we ll refer to them as simply I and Q. The receiver generates the two reference waves, and demodulates each component. It is easier to detect 180_ phase shifts than 90_ phase shifts. The following table summarizes this modulation scheme. Note that I and Q are normalized to 1. Symbol I Q Phase shift For Digital Signal Processing, the two-bit symbols are considered to be complex numbers, I +jq. Working with Complex Data In order to make full use of the efficiency of Digital Signal Processing, the conversion of the Information data into complex symbols occurs before the modulation. The system generates complex PN codes made up of 2 independent components, PNi +jpnq. To spread the Information data the system performs complex multiplication between the complex PN codes and the complex data. Summing Many Channels Together Many channels are added together and transmitted simultaneously. This addition happens digitally at the chip rate. Receiving Data The receiver performs the following steps to extract the Information: Demodulation
9 The receiver generates two reference waves, a Cosine wave and a Sine wave. Separately mixing each with the received carrier, the receiver extracts I(t) and Q(t). Analog to Digital converters restore the 8-bit words representing the I and Q chips. Code Acquisition and Lock The receiver, as described earlier, generates its own complex PN code that matches the code generated by the transmitter. However, the local code must be phase-locked to the encoded data. The RCS and FSU each have different ways of acquiring and locking onto the other s transmitted code. Each method will be covered in more detail in later sections. Correlation and Data Dispreading Once the PN code is phase-locked to the pilot, the received signal is sent to a correlator that multiplies it with the complex PN code, extracting the I and Q data meant for that receiver. The receiver reconstructs the Information data from the I and Q data. Call Processing:- Call processing puts together everything we ve covered so far. There are slight differences in the way the RCS and FSU process calls, so we will cover the Forward link (RCS to FSU). In the forward direction, the RCS: 1. Generates CDMA data signal for each traffic channel: FEC codes the Information data, and converts the data to two-bit symbols. Converts the symbols to I and Q data, and pads each data stream to 64 kbits/sec.generates the Complex PN code for each channel. Multiplies the Complex Information data and the Complex PN code together. Reads APC data from FSU, digitally scales channels accordingly. 2. Generates other signal channels: Calculates APC signal, Converts it to I data only, Multiplies it with its own Complex PN code 3. Adds all signals together: Traffic channels, APC channel, Order Wire channel, Global Pilot 4. Adds together the signals for all currently active FSUs. 5. Modulates and transmits carriers I and Q data modulate Cosine and Sine carriers. Carriers are combined, amplified, and broadcast. The FSU: 1. Extracts the I and Q data: Receives and amplifies the modulated carriers. Demodulates the signal and extracts the I and Q data. 2. Filters the I and Q data: Extracts multi-path information from the Pilot Rake filter and supplies it to the Adaptive Matched Filter. Removes multi-path interference from I and Q data using the Adaptive Matched Filter. Performs Automatic Gain Control on received signal 3. Extracts the CDMA data signal for each traffic channel: Generates the Complex PN code for each channel. Multiplies the Complex signal and the Complex PN code together. Converts the I and Q data to symbols. Decodes the symbols for error correction. Extracts the signal data. Conclusion
10 The basic problem of cellular traffic is removed by the use of CDMA. It provides about 10 times more capacity then analog networks- far more then TDMA & GSM systems. CDMA is a "spread spectrum" technology, allowing many users to occupy the same time and frequency allocations in a given band/space. CDMA consistently provides better capacity for voice and data communications.
CS263: Wireless Communications and Sensor Networks
CS263: Wireless Communications and Sensor Networks Matt Welsh Lecture 4: Medium Access Control October 5, 2004 2004 Matt Welsh Harvard University 1 Today's Lecture Medium Access Control Schemes: FDMA TDMA
Revision of Lecture Eighteen
Revision of Lecture Eighteen Previous lecture has discussed equalisation using Viterbi algorithm: Note similarity with channel decoding using maximum likelihood sequence estimation principle It also discusses
How To Understand The Theory Of Time Division Duplexing
Multiple Access Techniques Dr. Francis LAU Dr. Francis CM Lau, Associate Professor, EIE, PolyU Content Introduction Frequency Division Multiple Access Time Division Multiple Access Code Division Multiple
Mobile Communications TCS 455
Mobile Communications TCS 455 Dr. Prapun Suksompong [email protected] Lecture 26 1 Office Hours: BKD 3601-7 Tuesday 14:00-16:00 Thursday 9:30-11:30 Announcements Read the following from the SIIT online
Digital Modulation. David Tipper. Department of Information Science and Telecommunications University of Pittsburgh. Typical Communication System
Digital Modulation David Tipper Associate Professor Department of Information Science and Telecommunications University of Pittsburgh http://www.tele.pitt.edu/tipper.html Typical Communication System Source
Lecture 1. Introduction to Wireless Communications 1
896960 Introduction to Algorithmic Wireless Communications Lecture 1. Introduction to Wireless Communications 1 David Amzallag 2 May 25, 2008 Introduction to cellular telephone systems. How a cellular
Module 5. Broadcast Communication Networks. Version 2 CSE IIT, Kharagpur
Module 5 Broadcast Communication Networks Lesson 9 Cellular Telephone Networks Specific Instructional Objectives At the end of this lesson, the student will be able to: Explain the operation of Cellular
Lecture 18: CDMA. What is Multiple Access? ECE 598 Fall 2006
ECE 598 Fall 2006 Lecture 18: CDMA What is Multiple Access? Multiple users want to communicate in a common geographic area Cellular Example: Many people want to talk on their cell phones. Each phone must
Lezione 6 Communications Blockset
Corso di Tecniche CAD per le Telecomunicazioni A.A. 2007-2008 Lezione 6 Communications Blockset Ing. Marco GALEAZZI 1 What Is Communications Blockset? Communications Blockset extends Simulink with a comprehensive
Computers Are Your Future. 2006 Prentice-Hall, Inc.
Computers Are Your Future 2006 Prentice-Hall, Inc. Computers Are Your Future Chapter 3 Wired and Wireless Communication 2006 Prentice-Hall, Inc Slide 2 What You Will Learn... ü The definition of bandwidth
Cellular Network Organization. Cellular Wireless Networks. Approaches to Cope with Increasing Capacity. Frequency Reuse
Cellular Network Organization Cellular Wireless Networks Use multiple low-power transmitters (100 W or less) Areas divided into cells Each served by its own antenna Served by base station consisting of
Appendix D Digital Modulation and GMSK
D1 Appendix D Digital Modulation and GMSK A brief introduction to digital modulation schemes is given, showing the logical development of GMSK from simpler schemes. GMSK is of interest since it is used
How To Understand And Understand The Power Of A Cdma/Ds System
CDMA Technology : Pr. Dr. W. Skupin www.htwg-konstanz.de Pr. S. Flament www.greyc.fr/user/99 On line Course on CDMA Technology CDMA Technology : Introduction to Spread Spectrum Technology CDMA / DS : Principle
Mobile Communications Chapter 2: Wireless Transmission
Mobile Communications Chapter 2: Wireless Transmission Frequencies Signals Antennas Signal propagation Multiplexing Spread spectrum Modulation Cellular systems Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/
Exercise 2 Common Fundamentals: Multiple Access
Exercise 2 Common Fundamentals: Multiple Access Problem 1: TDMA, guard time. To set up a GSM-connection, the base station (BTS) and the mobile station (MS) use the following short access burst in a TDMA-slot
Implementing Digital Wireless Systems. And an FCC update
Implementing Digital Wireless Systems And an FCC update Spectrum Repacking Here We Go Again: The FCC is reallocating 600 MHz Frequencies for Wireless Mics 30-45 MHz (8-m HF) 174-250 MHz (VHF) 450-960 MHz
INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA
COMM.ENG INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA 9/6/2014 LECTURES 1 Objectives To give a background on Communication system components and channels (media) A distinction between analogue
RF Measurements Using a Modular Digitizer
RF Measurements Using a Modular Digitizer Modern modular digitizers, like the Spectrum M4i series PCIe digitizers, offer greater bandwidth and higher resolution at any given bandwidth than ever before.
www.aticourses.com Boost Your Skills with On-Site Courses Tailored to Your Needs
Boost Your Skills with On-Site Courses Tailored to Your Needs www.aticourses.com The Applied Technology Institute specializes in training programs for technical professionals. Our courses keep you current
Voice services over Adaptive Multi-user Orthogonal Sub channels An Insight
TEC Voice services over Adaptive Multi-user Orthogonal Sub channels An Insight HP 4/15/2013 A powerful software upgrade leverages quaternary modulation and MIMO techniques to improve network efficiency
Hello viewers, welcome to today s lecture on cellular telephone systems.
Data Communications Prof. A. Pal Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture minus 31 Cellular Telephone Systems Hello viewers, welcome to today s lecture
Lecture 1: Introduction
Mobile Data Networks Lecturer: Victor O.K. Li EEE Department Room: CYC601D Tel.: 857 845 Email: [email protected] Course home page: http://www.eee.hku.hk/courses.msc/ 1 Lecture 1: Introduction Mobile data
Algorithms for Interference Sensing in Optical CDMA Networks
Algorithms for Interference Sensing in Optical CDMA Networks Purushotham Kamath, Joseph D. Touch and Joseph A. Bannister {pkamath, touch, joseph}@isi.edu Information Sciences Institute, University of Southern
Cellular Wireless Networks. Principles of Cellular Networks
Cellular Wireless Networks Chapter 14 CS420/520 Axel Krings Page 1 Principles of Cellular Networks Underlying technology for mobile phones, personal communication systems, wireless networking etc. Developed
Implementation of Digital Signal Processing: Some Background on GFSK Modulation
Implementation of Digital Signal Processing: Some Background on GFSK Modulation Sabih H. Gerez University of Twente, Department of Electrical Engineering [email protected] Version 4 (February 7, 2013)
Multiple Access Techniques
Chapter 8 Multiple Access Techniques Multiple access techniques are used to allow a large number of mobile users to share the allocated spectrum in the most efficient manner. As the spectrum is limited,
Appendix C GSM System and Modulation Description
C1 Appendix C GSM System and Modulation Description C1. Parameters included in the modelling In the modelling the number of mobiles and their positioning with respect to the wired device needs to be taken
How To Encode Data From A Signal To A Signal (Wired) To A Bitcode (Wired Or Coaxial)
Physical Layer Part 2 Data Encoding Techniques Networks: Data Encoding 1 Analog and Digital Transmissions Figure 2-23.The use of both analog and digital transmissions for a computer to computer call. Conversion
Modern Wireless Communication
Modern Wireless Communication Simon Haykin, Michael Moher CH01-1 Chapter 1 Introduction CH01-2 1 Contents 1.1 Background 1.2 Communication Systems 1.3 Physical Layer 1.4 The Data-Link Layer 1.4.1 FDMA
Objectives. Lecture 4. How do computers communicate? How do computers communicate? Local asynchronous communication. How do computers communicate?
Lecture 4 Continuation of transmission basics Chapter 3, pages 75-96 Dave Novak School of Business University of Vermont Objectives Line coding Modulation AM, FM, Phase Shift Multiplexing FDM, TDM, WDM
Course Curriculum for Master Degree in Electrical Engineering/Wireless Communications
Course Curriculum for Master Degree in Electrical Engineering/Wireless Communications The Master Degree in Electrical Engineering/Wireless Communications, is awarded by the Faculty of Graduate Studies
EPL 657 Wireless Networks
EPL 657 Wireless Networks Some fundamentals: Multiplexing / Multiple Access / Duplex Infrastructure vs Infrastructureless Panayiotis Kolios Recall: The big picture... Modulations: some basics 2 Multiplexing
Pradipta Biswas Roll No. 04IT6007 M. Tech. (IT) School of Information Technology Indian Institute of Technology, Kharagpur
Pradipta Biswas Roll No. 04IT6007 M. Tech. (IT) School of Information Technology Indian Institute of Technology, Kharagpur ABSTRACT W-CDMA (Wideband Code-Division Multiple Access), an ITU standard derived
Security and protection of digital images by using watermarking methods
Security and protection of digital images by using watermarking methods Andreja Samčović Faculty of Transport and Traffic Engineering University of Belgrade, Serbia Gjovik, june 2014. Digital watermarking
AN INTRODUCTION TO DIGITAL MODULATION
AN INTRODUCTION TO DIGITAL MODULATION This article provides readers a simple overview of the various popular methods used in modulating a digital signal. The relative merits of each of these modulation
Multiplexing on Wireline Telephone Systems
Multiplexing on Wireline Telephone Systems Isha Batra, Divya Raheja Information Technology, Dronacharya College of Engineering Farrukh Nagar, Gurgaon, India ABSTRACT- This Paper Outlines a research multiplexing
Analog vs. Digital Transmission
Analog vs. Digital Transmission Compare at two levels: 1. Data continuous (audio) vs. discrete (text) 2. Signaling continuously varying electromagnetic wave vs. sequence of voltage pulses. Also Transmission
CDMA Performance under Fading Channel
CDMA Performance under Fading Channel Ashwini Dyahadray 05307901 Under the guidance of: Prof Girish P Saraph Department of Electrical Engineering Overview Wireless channel fading characteristics Large
AN1200.04. Application Note: FCC Regulations for ISM Band Devices: 902-928 MHz. FCC Regulations for ISM Band Devices: 902-928 MHz
AN1200.04 Application Note: FCC Regulations for ISM Band Devices: Copyright Semtech 2006 1 of 15 www.semtech.com 1 Table of Contents 1 Table of Contents...2 1.1 Index of Figures...2 1.2 Index of Tables...2
INTERNATIONAL TELECOMMUNICATION UNION $!4! #/--5.)#!4)/. /6%2 4(% 4%,%0(/.%.%47/2+
INTERNATIONAL TELECOMMUNICATION UNION )454 6 TER TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU $!4! #/--5.)#!4)/. /6%2 4(% 4%,%(/.%.%47/2+ ")43 %2 3%#/.$ -/$%- 34!.$!2$):%$ &/2 53% ). 4(% '%.%2!, 37)4#(%$
The Evolution of 3G CDMA Wireless Networks. David W. Paranchych IEEE CVT Luncheon January 21, 2003
The Evolution of 3G CDMA Wireless Networks David W. Paranchych IEEE CVT Luncheon January 21, 2003 Outline Past: cdma2000 1xRTT Present: 1xEV-DO What is it? How does it work? How well does it work? What
Location management Need Frequency Location updating
Lecture-16 Mobility Management Location management Need Frequency Location updating Fig 3.10 Location management in cellular network Mobility Management Paging messages Different paging schemes Transmission
Basics of Digital Recording
Basics of Digital Recording CONVERTING SOUND INTO NUMBERS In a digital recording system, sound is stored and manipulated as a stream of discrete numbers, each number representing the air pressure at a
Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics:
Voice Transmission --Basic Concepts-- Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics: Amplitude Frequency Phase Voice Digitization in the POTS Traditional
CHAPTER 8 MULTIPLEXING
CHAPTER MULTIPLEXING 3 ANSWERS TO QUESTIONS.1 Multiplexing is cost-effective because the higher the data rate, the more cost-effective the transmission facility.. Interference is avoided under frequency
communication over wireless link handling mobile user who changes point of attachment to network
Wireless Networks Background: # wireless (mobile) phone subscribers now exceeds # wired phone subscribers! computer nets: laptops, palmtops, PDAs, Internet-enabled phone promise anytime untethered Internet
Ch 2.3.3 GSM PENN. Magda El Zarki - Tcom 510 - Spring 98
Ch 2.3.3 GSM In the early 80 s the European community decided to work together to define a cellular system that would permit full roaming in all countries and give the network providers freedom to provide
Wireless LANs vs. Wireless WANs
White Paper Wireless LANs vs. Wireless WANs White Paper 2130273 Revision 1.0 Date 2002 November 18 Subject Supported Products Comparing Wireless LANs and Wireless WANs Wireless data cards and modules,
Chapter 6: Broadcast Systems. Mobile Communications. Unidirectional distribution systems DVB DAB. High-speed Internet. architecture Container
Mobile Communications Chapter 6: Broadcast Systems Unidirectional distribution systems DAB DVB architecture Container High-speed Internet Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC
Improved user experiences are possible with enhanced FM radio data system (RDS) reception
Improved user experiences are possible with enhanced FM radio data system (RDS) reception Aravind Ganesan, Senior Systems Engineer, and Jaiganesh Balakrishnan, Senior Member of Technical Staff, Wireless
CDMA Network Planning
CDMA Network Planning by AWE Communications GmbH www.awe-com.com Contents Motivation Overview Network Planning Module Air Interface Cell Load Interference Network Simulation Simulation Results by AWE Communications
Adjacent Channel Interference. Adaptive Modulation and Coding. Advanced Mobile Phone System. Automatic Repeat Request. Additive White Gaussian Noise
Apéndice A. Lista de s ACI AM AMC AMPS ARQ AWGN BB BER BPSK BPF BW CCK CD CDMA CDPD COFDM CRL CSI CWTS Adjacent Channel Interference Amplitude Modulation Adaptive Modulation and Coding Advanced Mobile
Mobile IP Network Layer Lesson 01 OSI (open systems interconnection) Seven Layer Model and Internet Protocol Layers
Mobile IP Network Layer Lesson 01 OSI (open systems interconnection) Seven Layer Model and Internet Protocol Layers Oxford University Press 2007. All rights reserved. 1 OSI (open systems interconnection)
CS 8803 - Cellular and Mobile Network Security: CDMA/UMTS Air Interface
CS 8803 - Cellular and Mobile Network Security: CDMA/UMTS Air Interface Hank Carter Professor Patrick Traynor 10/4/2012 UMTS and CDMA 3G technology - major change from GSM (TDMA) Based on techniques originally
DT3: RF On/Off Remote Control Technology. Rodney Singleton Joe Larsen Luis Garcia Rafael Ocampo Mike Moulton Eric Hatch
DT3: RF On/Off Remote Control Technology Rodney Singleton Joe Larsen Luis Garcia Rafael Ocampo Mike Moulton Eric Hatch Agenda Radio Frequency Overview Frequency Selection Signals Methods Modulation Methods
MODULATION Systems (part 1)
Technologies and Services on Digital Broadcasting (8) MODULATION Systems (part ) "Technologies and Services of Digital Broadcasting" (in Japanese, ISBN4-339-62-2) is published by CORONA publishing co.,
Over the PSTN... 2 Over Wireless Networks... 2. Network Architecture... 3
Content Introduction... 1 History of Modems... 2 Over the PSTN... 2 Over Wireless Networks... 2 Network Architecture... 3 Circuit-Switched Cellular Data... 3 Short Message Service... 3 Packet-Switched
Complementary Code Keying with PIC Based Microcontrollers For The Wireless Radio Communications
Complementary Code Keying with PIC Based Microcontrollers For The Wireless Radio Communications Boris Ribov, Grisha Spasov Abstract: The IEEE 802.11b is a Direct Sequence Spread Spectrum (DSSS) system
Wireless Medical Telemetry Laboratory
Wireless Medical Telemetry Laboratory 0 Introduction The development of wireless medical telemetry has become an increasingly popular application in recent years. As the elderly population continues to
Introduction to FM-Stereo-RDS Modulation
Introduction to FM-Stereo-RDS Modulation Ge, Liang Tan, EK Kelly, Joe Verigy, China Verigy, Singapore Verigy US 1. Introduction Frequency modulation (FM) has a long history of its application and is widely
ITU-T RECOMMENDATION J.122, SECOND-GENERATION TRANSMISSION SYSTEMS FOR INTERACTIVE CABLE TELEVISION SERVICES IP CABLE MODEMS
ORGANIZATION OF AMERICAN STATES INTER-AMERICAN TELECOMMUNICATION COMMISSION PERMANENT CONSULTATIVE COMMITTEE I: TELECOMMUNICATION STANDARDIZATION Standards Coordination Document Nr. 10: ITU-T RECOMMENDATION
How To Get A Phone In The United States
Telephone Systems COMP476 Home Telephones Plain Old Telephone Service (POTS) provides a twisted pair connection from your phone to the central office. You own your home wiring and the telephone company
Introduction to Wireless Communications and Networks
Introduction to Wireless Communications and Networks Tongtong Li Dept. Electrical and Computer Engineering East Lansing, MI 48824 [email protected] 1 Outline Overview of a Communication System Digital
Chapter 6 Wireless and Mobile Networks
Chapter 6 Wireless and Mobile Networks A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;
Frequency Hopping Spread Spectrum (FHSS) vs. Direct Sequence Spread Spectrum (DSSS) in Broadband Wireless Access (BWA) and Wireless LAN (WLAN)
FHSS vs. DSSS page 1 of 16 Frequency Hopping Spread Spectrum (FHSS) vs. Direct Sequence Spread Spectrum (DSSS) in Broadband Wireless Access (BWA) and Wireless LAN (WLAN) by Sorin M. SCHWARTZ Scope In 1997
Course Duration: Course Content Course Description Course Objectives Course Requirements
Course: TCS 201 Telecommunication and Networks I (3 credits compulsory) Course Duration: The course shall comprise of 45hours of theory and practical classes. The theory will be taught for 30hours of 2hours
Technical Specifications for KD5HIO Software
Technical Specifications for KD5HIO Software Version 0.2 12/12/2000 by Glen Hansen, KD5HIO HamScope Forward Error Correction Algorithms HamScope is a terminal program designed to support multi-mode digital
PCM Encoding and Decoding:
PCM Encoding and Decoding: Aim: Introduction to PCM encoding and decoding. Introduction: PCM Encoding: The input to the PCM ENCODER module is an analog message. This must be constrained to a defined bandwidth
ODOT Surveyor s Conference
Introduction to This document describes the process that will enable you to access the ODOT servers and Microsoft Outlook (E-mail) when you are away from your office and not on the internet. The process
Satellite Telemetry, Tracking and Control Subsystems
Satellite Telemetry, Tracking and Control Subsystems Col John E. Keesee 1 Overview The telemetry, tracking and control subsystem provides vital communication to and from the spacecraft TT&C is the only
Chapter 3 Cellular Networks. Wireless Network and Mobile Computing Professor: Dr. Patrick D. Cerna
Chapter 3 Cellular Networks Wireless Network and Mobile Computing Professor: Dr. Patrick D. Cerna Objectives! Understand Cellular Phone Technology! Know the evolution of evolution network! Distinguish
Non-Data Aided Carrier Offset Compensation for SDR Implementation
Non-Data Aided Carrier Offset Compensation for SDR Implementation Anders Riis Jensen 1, Niels Terp Kjeldgaard Jørgensen 1 Kim Laugesen 1, Yannick Le Moullec 1,2 1 Department of Electronic Systems, 2 Center
Wireless LAN Concepts
Wireless LAN Concepts Wireless LAN technology is becoming increasingly popular for a wide variety of applications. After evaluating the technology, most users are convinced of its reliability, satisfied
Radio Transmission Performance of EPCglobal Gen-2 RFID System
Radio Transmission Performance of EPCglobal Gen-2 RFID System Manar Mohaisen, HeeSeok Yoon, and KyungHi Chang The Graduate School of Information Technology & Telecommunications INHA University Incheon,
(Refer Slide Time: 2:10)
Data Communications Prof. A. Pal Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture-12 Multiplexer Applications-1 Hello and welcome to today s lecture on multiplexer
8. Cellular Systems. 1. Bell System Technical Journal, Vol. 58, no. 1, Jan 1979. 2. R. Steele, Mobile Communications, Pentech House, 1992.
8. Cellular Systems References 1. Bell System Technical Journal, Vol. 58, no. 1, Jan 1979. 2. R. Steele, Mobile Communications, Pentech House, 1992. 3. G. Calhoun, Digital Cellular Radio, Artech House,
Chapter 6 Bandwidth Utilization: Multiplexing and Spreading 6.1
Chapter 6 Bandwidth Utilization: Multiplexing and Spreading 6.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Note Bandwidth utilization is the wise use of
ECE/CS 372 introduction to computer networks. Lecture 13
ECE/CS 372 introduction to computer networks Lecture 13 Announcements: HW #4 hard copy due today Lab #5 posted is due Tuesday June 4 th HW #5 posted is due Thursday June 6 th Pickup midterms Acknowledgement:
4 Cellular systems: multiple access
CHAPTER 4 Cellular systems: multiple access and interference management 4.1 Introduction In Chapter 3, our focus was on point-to-point communication, i.e., the scenario of a single transmitter and a single
'Possibilities and Limitations in Software Defined Radio Design.
'Possibilities and Limitations in Software Defined Radio Design. or Die Eierlegende Wollmilchsau Peter E. Chadwick Chairman, ETSI ERM_TG30, co-ordinated by ETSI ERM_RM Software Defined Radio or the answer
3GPP Wireless Standard
3GPP Wireless Standard Shishir Pandey School of Technology and Computer Science TIFR, Mumbai April 10, 2009 Shishir Pandey (TIFR) 3GPP Wireless Standard April 10, 2009 1 / 23 3GPP Overview 3GPP : 3rd Generation
Guide to Wireless Communications. Digital Cellular Telephony. Learning Objectives. Digital Cellular Telephony. Chapter 8
Guide to Wireless Communications Digital Cellular Telephony Chapter 2 Learning Objectives Digital Cellular Telephony 3 Describe the applications that can be used on a digital cellular telephone Explain
DAB Digital Radio Broadcasting. Dr. Campanella Michele
DAB Digital Radio Broadcasting Dr. Campanella Michele Intel Telecomponents Via degli Ulivi n. 3 Zona Ind. 74020 Montemesola (TA) Italy Phone +39 0995664328 Fax +39 0995932061 Email:[email protected]
The front end of the receiver performs the frequency translation, channel selection and amplification of the signal.
Many receivers must be capable of handling a very wide range of signal powers at the input while still producing the correct output. This must be done in the presence of noise and interference which occasionally
Sampling Theorem Notes. Recall: That a time sampled signal is like taking a snap shot or picture of signal periodically.
Sampling Theorem We will show that a band limited signal can be reconstructed exactly from its discrete time samples. Recall: That a time sampled signal is like taking a snap shot or picture of signal
PART 5D TECHNICAL AND OPERATING CHARACTERISTICS OF MOBILE-SATELLITE SERVICES RECOMMENDATION ITU-R M.1188
Rec. ITU-R M.1188 1 PART 5D TECHNICAL AND OPERATING CHARACTERISTICS OF MOBILE-SATELLITE SERVICES Rec. ITU-R M.1188 RECOMMENDATION ITU-R M.1188 IMPACT OF PROPAGATION ON THE DESIGN OF NON-GSO MOBILE-SATELLITE
What is DECT? DECT stands for Digital Enhanced Cordless Telecommunications.
DECT 6.0 vs 900 MHz vs 2.4GHz vs 5.8 GHz DECT 6.0 (1.9 GHz) 900 MHz 2.4 GHz 5.8 GHz FCC approved frequency for cordless telecommunication Baby monitors, microwave oven Wi-Fi electronics (routers), wireless
How To Make A Multi-User Communication Efficient
Multiple Access Techniques PROF. MICHAEL TSAI 2011/12/8 Multiple Access Scheme Allow many users to share simultaneously a finite amount of radio spectrum Need to be done without severe degradation of the
Multiplexing. Multiplexing is the set of techniques that allows the simultaneous transmission of multiple signals across a single physical medium.
Multiplexing Multiplexing is the set of techniques that allows the simultaneous transmission of multiple signals across a single physical medium. The following two factors in data communications lead to
INTRODUCTION... 3 FREQUENCY HOPPING SPREAD SPECTRUM... 4 SECURED WIRELESS COMMUNICATION WITH AES ENCRYPTION... 6
Technology Overview CONTENTS INTRODUCTION... 3 FREQUENCY HOPPING SPREAD SPECTRUM... 4 FULL TWO-WAY SYNCHRONIZED TDMA COMMUNICATION... 5 SECURED WIRELESS COMMUNICATION WITH AES ENCRYPTION... 6 UNMATCHED
2. What is the maximum value of each octet in an IP address? A. 128 B. 255 C. 256 D. None of the above
1. How many bits are in an IP address? A. 16 B. 32 C. 64 2. What is the maximum value of each octet in an IP address? A. 128 B. 255 C. 256 3. The network number plays what part in an IP address? A. It
Design and Implementation of FHSS and DSSS for Secure Data Transmission
International Journal of Signal Processing Systems Vol. 4, No. 2, April 2016 Design and Implementation of FHSS and DSSS for Secure Data Transmission M. Hasan, J. M. Thakur, and P. Podder Khulna University
Wireless Personal Area Networks (WPANs)
Wireless Personal Area Networks (WPANs) Bluetooth, ZigBee Contents Introduction to the IEEE 802 specification family Concept of ISM frequency band Comparison between different wireless technologies ( and
Mobile Wireless Overview
Mobile Wireless Overview A fast-paced technological transition is occurring today in the world of internetworking. This transition is marked by the convergence of the telecommunications infrastructure
Analog-to-Digital Voice Encoding
Analog-to-Digital Voice Encoding Basic Voice Encoding: Converting Analog to Digital This topic describes the process of converting analog signals to digital signals. Digitizing Analog Signals 1. Sample
Protocolo IEEE 802.15.4. Sergio Scaglia SASE 2012 - Agosto 2012
Protocolo IEEE 802.15.4 SASE 2012 - Agosto 2012 IEEE 802.15.4 standard Agenda Physical Layer for Wireless Overview MAC Layer for Wireless - Overview IEEE 802.15.4 Protocol Overview Hardware implementation
EECC694 - Shaaban. Transmission Channel
The Physical Layer: Data Transmission Basics Encode data as energy at the data (information) source and transmit the encoded energy using transmitter hardware: Possible Energy Forms: Electrical, light,
