IP ADDRESS CONSERVATION STRATEGIES

Size: px
Start display at page:

Download "IP ADDRESS CONSERVATION STRATEGIES"

Transcription

1 DATA COMMUNICATIONS MANAGEMENT IP ADDESS CONSEVATION STATEGIES Cliff iggs INSIDE IP Version 6 (FC 2460); Variable-Length Subnet Masking (FC 1812) and Classless Interdomain outing (FC 1519); Private Address Space (FC 1918); Network Address Translation (FC 3022); Dynamic Host Configuration Protocol; Unnumbered Serial Interfaces; Case Study INTODUCTION On September 1, 1981, John Postel published the final version of the Internet Protocol Version 4 (IPv4). This protocol is responsible for addressing the units of data (i.e., packets) used to transmit information from one point to another over the Internet. The Internet at that time consisted of only several thousand hosts. It is a tribute to the design of both IP and its companion, TCP, that 20 years later, the Internet has grown to an astounding 120 million hosts. To send information across the Internet, each of these hosts needs an IP address. Because of this phenomenal growth, the 4.3 billion addresses created by IPv4 have come under increasing strain. In the mid-1990s, the Internet Engineering Task Force (IETF) introduced some guidelines to slow the scarcity of IP addresses until a newgeneration IP could be developed. The IETF meant to allow us to use the addresses that currently exist in a more efficient manner. This article focuses on these improvements and is meant for the network administrator or the manager of an information technology (IT) department. It explores how best design practices can be incorporated into new network design or an existing network. IP VESION 6 (FC 2460) In the mid-1990s, there was a scare that the Internet was running out of addresses. The Internet Protocol PAYOFF IDEA The Internet Protocol Version 4 (IPv4) is responsible for addressing the units of data (i.e., packets) used to transmit information from one point to another over the Internet. In the mid-1990s, the Internet Engineering Task Force (IETF) introduced some guidelines to slow the scarcity of IP addresses until a new-generation IP could be developed. The IETF meant to allow us to use the addresses that currently exist in a more efficient manner. This article focuses on these improvements and explores how best design practices can be incorporated into new network design or an existing network.

2 Version 6 (IPv6) was the long-term solution to this problem. By increasing the address space from 32 to 128 bits, the addressing problem would no longer exist. IPv6 is an improvement on IPv4 addresses in many ways other than increasing the number of IP addresses available for assignment. Despite these improvements, most networks are still using IPv4 addresses. Why? To begin with, the migration from IPv4 to IPv6 would require an upgrade in the networking software of every host connected to the Internet. This alone, similar to the Y2K issue, would be a phenomenal undertaking. Furthermore, the interim fixes to IPv4 have proven so successful that the existing address space will be sufficient for at least another ten years. Eventually, IPv6 will be here. European and Asian nations that have not been as liberally blessed with IPv4 address space as the United States have already begun implementations. As mobile Internet users begin to outnumber the traditional landline node, major carriers will be forced to adopt IPv6 in their backbones as well. Once this has taken place, widespread adoption of IPv6 will begin. Until that time, the network administrator is forced to rely on the other methods of allocating addresses developed by software vendors and the IETF. VAIABLE-LENGTH SUBNET MASKING (FC 1812) AND CLASSLESS INTEDOMAIN OUTING (FC 1519) To a computer, an IP address is a string of 32 bits. Because humans find exchanging information in this way cumbersome, these 32 bits can be broken down into four groups of eight and represented in decimal form (e.g., ). Computers divide that string of 32 bits into two parts: the network portion and the host portion. A subnet mask is a way for a computer to tell which of those 32 bits is the network and which of those 32 bits is the host portion of the IP address. For example, , with a 16- bit subnet mask represented with the notation /16 tells the computer that the first 16 bits is the network portion of that address. The remaining bits, represented by 1.1, is the host ID of a machine on that network. One of the major issues related to the early organization of IP addresses was that of classes. The 32-bit address space was divided into five classes referred to as classes A, B, C, D, and E. The latter two classes are for multicast traffic and experimental use, respectively, and are not typically assigned on a permanent basis to hosts on production networks. Exhibit 1 shows the division of the remaining addresses not assigned to class D and E address space. The original rationalization was that there would generally be very few large organizations that needed IP addresses. Hence, the class A space represented a mere 126 networks. Although

3 EXHIBIT 1 Classfull IP Addresses Class First Octet Value Bits epresenting Network Bits epresenting Hosts Default Mask Hosts per Subnet Class A (e.g., ) Class B (e.g., ) Class C (e.g., ) Class D Class E million , Multicast group addresses Experimental there were few networks, each network was allowed a total of 16 million hosts. Class B networks were more numerous at approximately 16 thousand, each with approximately 65,000 hosts on each network. Finally, just over two million class C networks were allocated, each with only 254 hosts on each network. Class C networks were designed for the many small organizations that would no doubt wish to connect to the Internet. In the days of classfull IP addresses, the subnet mask was fixed upon during the initial design of the network. The inefficiencies of this scheme were many. The largest subnet of every organization ended up sizing all other subnets. Every time more networks were created, the number of hosts on each network decreased at the same time. Some links (e.g., point-to-point links), which would never have more than two hosts on them by definition, would waste entire subnets. As a result, many of the early networks wasted a great many IP addresses. To combat this problem, the concept of the variable-length subnet mask (VLSM) was introduced. VLSM essentially gave the network designer the ability to create subnets of variable sizes and place them into the network as appropriate. The network could now be broken into subnets, but each subnet could be sized for the number of hosts on the subnet instead of requiring each subnet to be the same size. PIVATE ADDESS SPACE (FC 1918) The scarcity of IP addresses is compounded by inefficient allocation, loss of IP addresses to subnets, and one of the golden rules of IP addressing: each host connected to the Internet must have a unique IP address that is, once is assigned to a particular machine, it cannot be applied anywhere else. To solve this problem, the IETF introduced FC 1918, which, among other things, outlines a range of addresses known as a private address

4 EXHIBIT 2 Table of Private Addresses per FC 1918 Class A /8 Class B /12 Class C /16 space (see Exhibit 2). Private networks are free to use these addresses as long as they are kept internal to the network. Thus, network A could use the range /16 (64,000 addresses) and, across the street, network B could be using the same range. As long as the two networks are never connected, each host on networks A and B has what it believes to be a unique address. The primary advantage of this class of private address space for private networks is that each of these address spaces can be used over and over again. This reuse creates the effect of a virtually unlimited supply of IP addresses. The downfall is that no traffic to these addresses is possible over the Internet. Still, this is an attractive solution for many companies and should be used wherever possible. Networks that consume information instead of provide it find this implementation especially attractive. That is, machines that surf the Web are the perfect choice for the private address range. Servers that serve this Web content, however, are not a good choice. NETWOK ADDESS TANSLATION (FC 3022) Private, reusable IP addresses go a great deal of the way in solving the global shortage of IP addresses, while still allowing network administrators to avoid the pain of actually upgrading to IPv6. Yet the problem remains of how to take an unroutable address used in the private network and get it to work on the public Internet. The answer to that problem is network address translation (). As the name implies, it is possible to create a device that receives a packet with a private address as the source and have it rewrite the address as a public address. Each device, typically a router or firewall, is configured with a pool of addresses in the public range. For example, assume the range is to These ten IP addresses are then used to re-address the source of packets received from the local area network (LAN). When user Mary makes a request from her computer on the LAN to a Web server on the Internet, the device intercepts her packet addressed with the source IP of her machine ( ) and rewrites the source as The packet is then routed to the Web server. When the Web server responds, it responds to the address, which makes its way back to the device. This device has kept track that a packet coming from the wide area network (WAN) addressed

5 EXHIBIT 3 Example of Internet Server IP IP Destination: Source: Server receives packet and replies. 2 device intercepts packet and changes IP header. IP Destination: Source: Packet sent. Public IP Address Inbound packet intercepted by device and IP header changed. IP Destination: Source: IP Destination: Source: to really is intended for It then rewrites the destination address of the packet and sends it on its way back to Mary s machine. When Mary has finished downloading the Web page, Bob is now free to use the same address, or another from the pool, to create a connection to the Internet. In Exhibit 3, the ten addresses in the pool can be used to represent any number of host machines configured with private IP addresses. The limitation, however, is that because there are only ten IP addresses in the pool, only ten hosts can be using the network at any given time. This limitation is not an issue if there are only 20 people in the office using the pool, and then only to check or occasionally do some research on the Web; but it becomes a problem if those 20 people are heavy Internet users or if the office grows to 100 people. Instead of allocating more public addresses for the pool to increase the ratio of users/ip addresses, network administrators can take advantage of the fact that although each TCP/IP connection gets to its destination using an IP address, it also uses a TCP port to uniquely identify each connection between hosts. Just as traditionally works on IP addresses, port address translation (PAT) now includes the TCP port number in each connection. With PAT enabled in addition to, both

6 Mary and Bob can now access the Internet using the address at the same time. This time, the device not only remembers the private address and where it is headed to but also remembers which TCP ports are involved in the translation. Because there are just over 65,000 TCP ports available, suddenly, very few public IP addresses can be used to represent a great many private IP addresses. The technique discussed thus far is known as dynamic. When a LAN host needs an IP address, it is assigned one from the pool as it passes through the device. When the connection is finished, that assignment is returned back to the pool. Because each client can never be guaranteed the same IP address, dynamic is not suitable for machines that must initiate connections (e.g., severs). To create the ability to use on a private LAN yet still allow access from the WAN to the servers, static is an option and can be used in conjunction with dynamic. In addition to the pool of addresses for host workstations, a separate list can be included that reserves a mapping for one private IP address to one public IP address. For example, the mail server with private address will always be translated to Any incoming requests to will automatically be forwarded to the mail server at While is beneficial in that it allows companies to spare large numbers of public IP addresses, some of today s more popular IP applications, specifically voice over IP (VoIP) and, can have problems working with. The crux of the problem is that both of these technologies contain information about the host IP address and ports used inside the IP data packet. and PAT are only smart enough to look at and change the IP packet header, not the data inside the packet. Thus, VoIP and fail if used on a normal device. However, two solutions to the problem exist. The first is to use a device that can look into the packet. Fortunately, this capability is offered on many commercial firewalls and routers, but check the vendor s documentation before making any design decisions. If this is not applicable to a specific network design, the second solution involves strategically placing the device or VoIP gateway to eliminate the incompatibility between and VoIP and (see Exhibit 4). DYNAMIC HOST CONFIGUATION POTOCOL Using and private IP addresses will allow a great deal of flexibility and a reduction in the number of public IP addresses required for any network. Because the private IP address space represents about 18 million IP addresses, organizations are unlikely to run out of IP addresses, for a single location. However, for reasons such as application incompatibility, private addresses might not be suitable. In this case, the network designer will have a difficult time allocating IP addresses if only public addresses are available.

7 EXHIBIT 4 Placement of Devices for Translation Tunnel Internet Data Perform on Outbound Traffic Prior to Tunnel The Dynamic Host Configuration Protocol (DHCP) is currently in use on most networks. DHCP is used to assign IP addresses dynamically; important configuration information such as gateways, subnet masks, and other network-specific parameters can also be assigned to client host machines. This protocol prevents network administrators from having to manually configure each of hundreds of machines for network access. Furthermore, if there is a change in the address range or other networkspecific parameters (e.g., the default gateway), such a change can be configured on the DHCP server and can be automatically reflected in client machines. DHCP in some instances can also be used to help conserve IP addresses. A pool of IP addresses, much like the pool used in, is entered into the DHCP server. Each time a client boots up on the network, it

8 sends a request to the server. The DHCP server then leases an IP address from this pool to the client for the duration of its connection to the network. When the client logs off, the IP address is returned to the pool. For groups that are not always connected to the network, DHCP allows a small pool of IP addresses to represent a much larger group similar to the way ISPs allocate dial-in ports. An ISP that has 10,000 subscribers does not have 10,000 ports always available. It may have 1000, or even 500, ports and count on not all subscribers wishing to access the Internet at the same time. DHCP will thus allow a pool of 64 public IP addresses to represent 100 to 200 actual users. This is not very helpful in a typical office environment that is fully staffed each day, but some offices might have portions of the network where a certain percentage of the workforce, such as a salesforce, is absent from the office at any given time. In this case, the DHCP pool can be sized to fit the average number of network users at any given time rather than the entire possible network. UNNUMBEED SEIAL INTEFACES One of the advantages to VLSM (variable-length subnet mask) is that serial interfaces, which never use more than two IP addresses, can be given a subnet of just two hosts. However, because each subnet also needs a virtual address for the network itself and one for the broadcast address of the network, even a point-to-point link will need a total of four IP addresses. While this approach is preferable to allocating a greater number of IP addresses, it is still wasteful. There is a better solution. Because each point-to-point serial link always only connects to its partner, it makes sense not to waste an IP subnet on them at all. Why not program the routers with software that allows point-to-point IP connections without using any IP addresses? Unnumbered serial interfaces do exactly this. outers using unnumbered serial interfaces simply borrow an address from a LAN port that the network administrator designates, such as an Ethernet interface. Used on several serial links, the saved IP addresses per link soon add up to considerable savings. Virtually any interface that creates the appearance of a point-to-point link, such as Frame elay permanent virtual circuits (PVC), are suitable for this technique. In Exhibit 5, each Ethernet port is addressed but the serial links are not. CASE STUDY To put the preceding techniques into action, consider a simple example. A fictional company, Bump, Inc., has recently grown to be a company of 1000 employees. To account for its increasing reliance on E-commerce and the use of the Internet as a communications medium, the company has expanded from one Internet T1 connection to a second. To facilitate this change, the company has had to change its address space from one

9 EXHIBIT 5 Two outers Connected via a Serial Link Passing IP Data Between Them outers 1 and 2 form a virtual router using the Ethernet interfaces for the serial link endpoints outer 1 outer 2 IP Address IP Address provider to another. As a result of this change, Bump, Inc. now has at its disposal the network /25, meaning that it has 128 IP addresses to allocate among 1125 devices user workstations, routers, printers, and servers that need IP addresses. Bump, Inc. has several networks that must be represented using the new IP addresses. It has a collection of 18 servers that must be accessible from the Internet, and this number is anticipated to grow by at least another ten servers within the next two years. Bump, Inc. also has five floors totaling approximately 200 employees in its main office. A network of its own represents each floor. Also on the internal network is another server farm of 15 servers, which might double in size within the next two years as the company expands. To facilitate ad hoc networks in its five conference rooms, the network administrators of Bump, Inc. also wish to create separate networks in each conference room using a combination of workgroup switches and wireless access points. These separate networks will enable distinct security rules to be placed on each of the conference-room to ensure privacy for the conference rooms LAN participants and for the rest of the Bump, Inc. network. Bump, Inc. also has five remote offices. Two of these remote offices are connected via Frame elay links to one of the Bump, Inc. egress routers. The other three offices have independent networks that connect to Bump, Inc. via an tunnel. Each office has between 15 and 35 hosts, including printers and client workstations that might need to access the Internet at some point. Each of the three offices with VPN connections also hosts a pair of servers that relay and act as a proxy server for World Wide Web (WWW) content, respectively. The first design decision regarding IP address allocation is to employ the use of VLSM. and strategically placed gateways can overcome most of the IP address shortages, but to assign the pools to translation devices in a manner that facilitates efficient usage still requires VLSM. To support this, Bump, Inc. must use a routing protocol that sup-

10 ports VLSM. For performance reasons, Bump, Inc. has decided to use OSPF because it is an open standard, is easily scalable for the growth needs of the future, supports security, and supports VLSM. Once Bump, Inc. chooses a routing protocol that supports VLSM, it is time to break up the network block. To do this properly, the network administrators of Bump, Inc. must determine what size blocks it will need for each site. Generally, when subnetting networks, first examine the largest subnet that will be needed. In this case, it is the server farm for the externally accessible servers. Because there are 18 servers already, with plans to go to 28 servers within two years time, a block of 30 IP addresses should be adequate. For the remote sites that connect to the main office using a VPN, a block of six IP addresses should be sufficient. Although they have a couple of dozen hosts, because they only have two servers at each site, as long as and PAT is occurring at the WAN edge of the network, there will be enough translated addresses to allow Internet connectivity for the client machines. The simplest solution is to use on the entire portion of the network that only supports the clients and servers not intended to be accessible from the Internet. In most cases, this is done quite simply. All of the private IP addresses are placed behind a single device on the network (most likely a router) and are then treated as an independent network from the point of view of placement of servers and routers. The Bump, Inc. network using this solution is illustrated in Exhibit 6. While viable and certainly conserving IP addresses, this solution suffers from a single point of failure. Were the router performing to fail, the entire private IP addresses space would be unable to contact the Internet, thus effectively eliminating the redundancy hoped for by using a multi-homed WAN connection. As a slightly more complex yet robust solution, two routers can serve as the gateway between the private network and the public network (Exhibit 7). In this case, separate pools are configured on each router, reflecting independent subnets of the Bump, Inc. public IP address space. Thus, if in the previously presented solution the /28 network were the pool assigned to the router, those 14 usable IP addresses would be divided into two /27 networks, each representing six usable IP addresses. One /27 network (e.g., /27) would be applied to one gateway, and another /27 network (e.g., /27) would be applied to the pool on the other gateway router. Traffic from the private network would choose the gateway closest via the OSPF metric and would use for the journey to the Internet and back. While the serial interfaces for the remote sites connected to the Bump, Inc. network could use unnumbered interfaces, and thus conserve IP addresses, this is not required. Because the private address space is being used, it is assumed that sufficient subnets exist.

11 EXHIBIT 6 The Simple Solution for Bump, Inc. Internet Private Addresses Public Addresses emote VPN Offices Public Servers Private Address emote Frame elay Links To ease the administration of the large number of client machines, the network administrators of Bump, Inc. decide to use DHCP on all host machines. To eliminate the failure of the servers if the DHCP server becomes inoperable, the servers use statically assigned public or private IP addresses. From a global perspective, Bump, Inc. now has a network design that facilitates its growth for the foreseeable future. Although it was only assigned 128 IP addresses for a company of over 1000 hosts, through the use of VLSM and, all major design objectives have been met for the company regarding IP addresses.

12 EXHIBIT 7 More Complex Yet obust Solution for Bump, Inc. Internet Private Addresses Public Addresses emote VPN Offices Private Addresses Public Servers Serial Unnumbered emote Frame elay Links CONCLUSION The address shortages forecast in the mid-1990s have not materialized. While the total number of IP addresses has not increased, thanks to the efforts of the IETF, we have learned to use those existing addresses more efficiently. While this has allowed networks and the Internet itself to continue to grow over the last half-decade, the address allocation methods described in this article have become so efficient that the impetus to move to the real solution IPv6 has slowed somewhat. Thus, network administrators will be expected to make use of the strategies listed above to enable their network to maintain Internet connectivity during the near future.

13 Some helpful references for determining the operation of these protocols are listed below. IPv6: IPv6 FC 2460 is a good start for the technically curious. It can be found, among other places, at ftp://ftp.isi.edu/in-notes/rfc2460.txt. For information on the latest news concerning IPv6, link to IP Addressing and subnetting: If you are concerned that you have lost your edge on the ins and outs of IP addressing, then you need look no further than the best reference on the subject found anywhere: VLSM: FC 1812, equirements for IP outers, at ftp://ftp.isi.edu/in-notes/rfc1812.txt The Private IP address space: FC 1918, Address Allocation for Private Internets, at ftp://ftp.isi.edu/in-notes/bcp/bcp5.txt : FC 3022, Traditional Network Address Translation, at ftp://ftp.isi.edu/in-notes/rfc3022.txt DHCP FC 2131, Dynamic Host Configuration Protocol, at ftp://ftp.isi.edu/in-notes/rfc2131.txt Cliff iggs, CCDP, CCNP, MCSE+I, is a member of the technical staff at Hill Associates, an internationally recognized telecommunications training company, has a master s degree in education and specializes in IP routing and security issues for Hill Associates. He can be reached via at criggs@hill.com.

IP Addressing A Simplified Tutorial

IP Addressing A Simplified Tutorial Application Note IP Addressing A Simplified Tutorial July 2002 COMPAS ID 92962 Avaya Labs 1 All information in this document is subject to change without notice. Although the information is believed to

More information

Chapter 3: IP Addressing and VLSM

Chapter 3: IP Addressing and VLSM Chapter 3: IP Addressing and VLSM QUESTION 54 What is the principle reason to use a private IP address on an internal network? A. Subnet strategy for private companies. B. Manage and scale the growth of

More information

Computer Networks. Introduc)on to Naming, Addressing, and Rou)ng. Week 09. College of Information Science and Engineering Ritsumeikan University

Computer Networks. Introduc)on to Naming, Addressing, and Rou)ng. Week 09. College of Information Science and Engineering Ritsumeikan University Computer Networks Introduc)on to Naming, Addressing, and Rou)ng Week 09 College of Information Science and Engineering Ritsumeikan University MAC Addresses l MAC address is intended to be a unique identifier

More information

UIP1868P User Interface Guide

UIP1868P User Interface Guide UIP1868P User Interface Guide (Firmware version 0.13.4 and later) V1.1 Monday, July 8, 2005 Table of Contents Opening the UIP1868P's Configuration Utility... 3 Connecting to Your Broadband Modem... 4 Setting

More information

AS/400e. TCP/IP routing and workload balancing

AS/400e. TCP/IP routing and workload balancing AS/400e TCP/IP routing and workload balancing AS/400e TCP/IP routing and workload balancing Copyright International Business Machines Corporation 2000. All rights reserved. US Government Users Restricted

More information

Networking TCP/IP routing and workload balancing

Networking TCP/IP routing and workload balancing System i Networking TCP/IP routing and workload balancing Version 5 Release 4 System i Networking TCP/IP routing and workload balancing Version 5 Release 4 Note Before using this information and the product

More information

CCNA Tutorial Series SUBNETTING

CCNA Tutorial Series SUBNETTING CCNA Tutorial Series This document contains the Course Map For The Interactive flash tutorial at: http://www.semsim.com/ccna/tutorial/subnetting/subnetting.html HOME PAGE Course Objectives Pre-test By

More information

Chapter 19 Network Layer: Logical Addressing 19.1

Chapter 19 Network Layer: Logical Addressing 19.1 Chapter 19 Network Layer: Logical Addressing 19.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 19-1 IPv4 ADDRESSES An IPv4 address is a 32-bit address that

More information

Advanced IP Addressing

Advanced IP Addressing Advanced IP Addressing CS-765 A Aspects Of Systems Administration Spring-2005 Instructure: Jan Schauman Stevens Institute Of Technology, NJ. Prepared By: Modh, Jay A. M.S. NIS SID: 999-14-0352 Date: 05/02/2005

More information

Chapter 12 Supporting Network Address Translation (NAT)

Chapter 12 Supporting Network Address Translation (NAT) [Previous] [Next] Chapter 12 Supporting Network Address Translation (NAT) About This Chapter Network address translation (NAT) is a protocol that allows a network with private addresses to access information

More information

Chapter 3 LAN Configuration

Chapter 3 LAN Configuration Chapter 3 LAN Configuration This chapter describes how to configure the advanced LAN features of your ProSafe Dual WAN Gigabit Firewall with SSL & IPsec VPN. This chapter contains the following sections

More information

ERserver. iseries. TCP/IP routing and workload balancing

ERserver. iseries. TCP/IP routing and workload balancing ERserver iseries TCP/IP routing and workload balancing ERserver iseries TCP/IP routing and workload balancing Copyright International Business Machines Corporation 1998, 2001. All rights reserved. US

More information

WHITE PAPER. Understanding IP Addressing: Everything You Ever Wanted To Know

WHITE PAPER. Understanding IP Addressing: Everything You Ever Wanted To Know WHITE PAPER Understanding IP Addressing: Everything You Ever Wanted To Know Understanding IP Addressing: Everything You Ever Wanted To Know CONTENTS Internet Scaling Problems 1 Classful IP Addressing 3

More information

Interconnecting Cisco Network Devices 1 Course, Class Outline

Interconnecting Cisco Network Devices 1 Course, Class Outline www.etidaho.com (208) 327-0768 Interconnecting Cisco Network Devices 1 Course, Class Outline 5 Days Interconnecting Cisco Networking Devices, Part 1 (ICND1) v2.0 is a five-day, instructorled training course

More information

Advanced Internetworking

Advanced Internetworking Hands-On TCP-IP / IPv6 / VoIP Course Description In this Hands-On 3-day course, gives a deeper understanding of internetworking and routed network protocols. The focus of the course is the design, operation,

More information

IP Addressing Introductory material.

IP Addressing Introductory material. IP Addressing Introductory material. A module devoted to IP addresses. Addresses & Names Hardware (Layer 2) Lowest level Ethernet (MAC), Serial point-to-point,.. Network (Layer 3) IP IPX, SNA, others Transport

More information

51-30-60 DATA COMMUNICATIONS MANAGEMENT. Gilbert Held INSIDE

51-30-60 DATA COMMUNICATIONS MANAGEMENT. Gilbert Held INSIDE 51-30-60 DATA COMMUNICATIONS MANAGEMENT PROTECTING A NETWORK FROM SPOOFING AND DENIAL OF SERVICE ATTACKS Gilbert Held INSIDE Spoofing; Spoofing Methods; Blocking Spoofed Addresses; Anti-spoofing Statements;

More information

MINIMUM NETWORK REQUIREMENTS 1. REQUIREMENTS SUMMARY... 1

MINIMUM NETWORK REQUIREMENTS 1. REQUIREMENTS SUMMARY... 1 Table of Contents 1. REQUIREMENTS SUMMARY... 1 2. REQUIREMENTS DETAIL... 2 2.1 DHCP SERVER... 2 2.2 DNS SERVER... 2 2.3 FIREWALLS... 3 2.4 NETWORK ADDRESS TRANSLATION... 4 2.5 APPLICATION LAYER GATEWAY...

More information

iseries TCP/IP routing and workload balancing

iseries TCP/IP routing and workload balancing iseries TCP/IP routing and workload balancing iseries TCP/IP routing and workload balancing Copyright International Business Machines Corporation 2000, 2001. All rights reserved. US Government Users Restricted

More information

Broadband Phone Gateway BPG510 Technical Users Guide

Broadband Phone Gateway BPG510 Technical Users Guide Broadband Phone Gateway BPG510 Technical Users Guide (Firmware version 0.14.1 and later) Revision 1.0 2006, 8x8 Inc. Table of Contents About your Broadband Phone Gateway (BPG510)... 4 Opening the BPG510's

More information

"Charting the Course...

Charting the Course... Description "Charting the Course... Course Summary Interconnecting Cisco Networking Devices: Accelerated (CCNAX), is a course consisting of ICND1 and ICND2 content in its entirety, but with the content

More information

Objectives. Upon completing this chapter, you will be able to

Objectives. Upon completing this chapter, you will be able to 1358_fmi.book Page 30 Thursday, May 27, 2004 2:21 PM Objectives Upon completing this chapter, you will be able to Create and configure IPv4 addresses Understand and resolve IP addressing crises Assign a

More information

Network Address Translation (NAT) Adapted from Tannenbaum s Computer Network Ch.5.6; computer.howstuffworks.com/nat1.htm; Comer s TCP/IP vol.1 Ch.

Network Address Translation (NAT) Adapted from Tannenbaum s Computer Network Ch.5.6; computer.howstuffworks.com/nat1.htm; Comer s TCP/IP vol.1 Ch. Network Address Translation (NAT) Adapted from Tannenbaum s Computer Network Ch.5.6; computer.howstuffworks.com/nat1.htm; Comer s TCP/IP vol.1 Ch.20 Long term and short term solutions to Internet scalability

More information

Networking Basics for Automation Engineers

Networking Basics for Automation Engineers Networking Basics for Automation Engineers Page 1 of 10 mac-solutions.co.uk v1.0 Oct 2014 1. What is Transmission Control Protocol/Internet Protocol (TCP/IP)------------------------------------------------------------

More information

2. IP Networks, IP Hosts and IP Ports

2. IP Networks, IP Hosts and IP Ports 1. Introduction to IP... 1 2. IP Networks, IP Hosts and IP Ports... 1 3. IP Packet Structure... 2 4. IP Address Structure... 2 Network Portion... 2 Host Portion... 3 Global vs. Private IP Addresses...3

More information

CS 348: Computer Networks. - IP addressing; 21 st Aug 2012. Instructor: Sridhar Iyer IIT Bombay

CS 348: Computer Networks. - IP addressing; 21 st Aug 2012. Instructor: Sridhar Iyer IIT Bombay CS 348: Computer Networks - IP addressing; 21 st Aug 2012 Instructor: Sridhar Iyer IIT Bombay Think-Pair-Share: IP addressing What is the need for IP addresses? Why not have only MAC addresses? Given that

More information

Chapter 5. Data Communication And Internet Technology

Chapter 5. Data Communication And Internet Technology Chapter 5 Data Communication And Internet Technology Purpose Understand the fundamental networking concepts Agenda Network Concepts Communication Protocol TCP/IP-OSI Architecture Network Types LAN WAN

More information

How To Learn Cisco Cisco Ios And Cisco Vlan

How To Learn Cisco Cisco Ios And Cisco Vlan Interconnecting Cisco Networking Devices: Accelerated Course CCNAX v2.0; 5 Days, Instructor-led Course Description Interconnecting Cisco Networking Devices: Accelerated (CCNAX) v2.0 is a 60-hour instructor-led

More information

IP Addressing and Subnetting, Including IPv6

IP Addressing and Subnetting, Including IPv6 Untitled Document Page 1 of 1 IP Addressing and Subnetting, Including IPv6 Author: J. D. Wegner, Robert Rockell ISBN: 1928994016 Published: 2000 Publisher: Syngress Media See Table of Contents IP Addressing

More information

Multi-Homing Security Gateway

Multi-Homing Security Gateway Multi-Homing Security Gateway MH-5000 Quick Installation Guide 1 Before You Begin It s best to use a computer with an Ethernet adapter for configuring the MH-5000. The default IP address for the MH-5000

More information

VLSM & IP ADDRESSING EXAMPLE QUESTIONS with answers;

VLSM & IP ADDRESSING EXAMPLE QUESTIONS with answers; VLSM & IP ADDRESSING EXAMPLE QUESTIONS with answers; 1 Given the network address of 112.44.0.0 and the network mask of 255.255.0.0 Would the two stations with addresses 112.44.22.19/16 and 112.44.23.2/16

More information

1 Data information is sent onto the network cable using which of the following? A Communication protocol B Data packet

1 Data information is sent onto the network cable using which of the following? A Communication protocol B Data packet Review questions 1 Data information is sent onto the network cable using which of the following? A Communication protocol B Data packet C Media access method D Packages 2 To which TCP/IP architecture layer

More information

Enabling NAT and Routing in DGW v2.0 June 6, 2012

Enabling NAT and Routing in DGW v2.0 June 6, 2012 Enabling NAT and Routing in DGW v2.0 June 6, 2012 Proprietary 2012 Media5 Corporation Table of Contents Introduction... 3 Starting Services... 4 Distinguishing your WAN and LAN interfaces... 5 Configuring

More information

ICS 351: Today's plan. IP addresses Network Address Translation Dynamic Host Configuration Protocol Small Office / Home Office configuration

ICS 351: Today's plan. IP addresses Network Address Translation Dynamic Host Configuration Protocol Small Office / Home Office configuration ICS 351: Today's plan IP addresses Network Address Translation Dynamic Host Configuration Protocol Small Office / Home Office configuration IP address exhaustion IPv4 addresses are 32 bits long so there

More information

PART IV. Network Layer

PART IV. Network Layer PART IV Network Layer Position of network layer Network layer duties Internetworking : heterogeneous Physical Networks To look Like a single network to he upper layers The address at Network layer must

More information

Internet Protocol Address

Internet Protocol Address SFWR 4C03: Computer Networks & Computer Security Jan 17-21, 2005 Lecturer: Kartik Krishnan Lecture 7-9 Internet Protocol Address Addressing is a critical component of the internet abstraction. To give

More information

WAN Data Link Protocols

WAN Data Link Protocols WAN Data Link Protocols In addition to Physical layer devices, WANs require Data Link layer protocols to establish the link across the communication line from the sending to the receiving device. 1 Data

More information

Transport and Network Layer

Transport and Network Layer Transport and Network Layer 1 Introduction Responsible for moving messages from end-to-end in a network Closely tied together TCP/IP: most commonly used protocol o Used in Internet o Compatible with a

More information

PowerLink Bandwidth Aggregation Redundant WAN Link and VPN Fail-Over Solutions

PowerLink Bandwidth Aggregation Redundant WAN Link and VPN Fail-Over Solutions Bandwidth Aggregation Redundant WAN Link and VPN Fail-Over Solutions Find your network example: 1. Basic network with and 2 WAN lines - click here 2. Add a web server to the LAN - click here 3. Add a web,

More information

CCNA R&S: Introduction to Networks. Chapter 9: Subnetting IP Networks

CCNA R&S: Introduction to Networks. Chapter 9: Subnetting IP Networks CCNA R&S: Introduction to Networks Chapter 9: Subnetting IP Networks Frank Schneemann Chapter 9: Subnetting IP Networks Subnetting IP Networks In this chapter, you will be learning how devices can be grouped

More information

(Refer Slide Time: 02:17)

(Refer Slide Time: 02:17) Internet Technology Prof. Indranil Sengupta Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No #06 IP Subnetting and Addressing (Not audible: (00:46)) Now,

More information

100-101: Interconnecting Cisco Networking Devices Part 1 v2.0 (ICND1)

100-101: Interconnecting Cisco Networking Devices Part 1 v2.0 (ICND1) 100-101: Interconnecting Cisco Networking Devices Part 1 v2.0 (ICND1) Course Overview This course provides students with the knowledge and skills to implement and support a small switched and routed network.

More information

Address Scheme Planning for an ISP backbone Network

Address Scheme Planning for an ISP backbone Network Address Scheme Planning for an ISP backbone Network Philip Smith Consulting Engineering, Office of the CTO Version 0.1 (draft) LIST OF FIGURES 2 INTRODUCTION 3 BACKGROUND 3 BUSINESS MODEL 3 ADDRESS PLAN

More information

This chapter covers four comprehensive scenarios that draw on several design topics covered in this book:

This chapter covers four comprehensive scenarios that draw on several design topics covered in this book: This chapter covers four comprehensive scenarios that draw on several design topics covered in this book: Scenario One: Pearland Hospital Scenario Two: Big Oil and Gas Scenario Three: Beauty Things Store

More information

Introduction to LAN/WAN. Network Layer (part II)

Introduction to LAN/WAN. Network Layer (part II) Introduction to LAN/WAN Network Layer (part II) Topics The Network Layer Introduction Routing (5.2) The Internet (5.5) IP, IP addresses ARP (5.5.4) OSPF (5.5.5) BGP (5.5.6) Congestion Control (5.3) Internetworking

More information

Configuring Network Address Translation (NAT)

Configuring Network Address Translation (NAT) 8 Configuring Network Address Translation (NAT) Contents Overview...................................................... 8-3 Translating Between an Inside and an Outside Network........... 8-3 Local and

More information

TCP/IP works on 3 types of services (cont.): TCP/IP protocols are divided into three categories:

TCP/IP works on 3 types of services (cont.): TCP/IP protocols are divided into three categories: Due to the number of hardware possibilities for a network, there must be a set of rules for how data should be transmitted across the connection media. A protocol defines how the network devices and computers

More information

Verizon Wireless White Paper. Verizon Wireless Broadband Network Connectivity and Data Transport Solutions

Verizon Wireless White Paper. Verizon Wireless Broadband Network Connectivity and Data Transport Solutions Verizon Wireless White Paper Verizon Wireless Broadband Network Connectivity and Data Transport Solutions Verizon Wireless White Paper Verizon Wireless Broadband Network Connectivity and Data Transport

More information

Understand Wide Area Networks (WANs)

Understand Wide Area Networks (WANs) Understand Wide Area Networks (WANs) Lesson Overview In this lesson, you will review: Dial-up Integrated services digital networks (ISDN) Leased lines Virtual private networks (VPN) Wide area networks

More information

GPRS / 3G Services: VPN solutions supported

GPRS / 3G Services: VPN solutions supported GPRS / 3G Services: VPN solutions supported GPRS / 3G VPN soluti An O2 White Paper An O2 White Paper Contents Page No. 3 4-6 4 5 6 6 7-10 7-8 9 9 9 10 11-14 11-12 13 13 13 14 15 16 Chapter No. 1. Executive

More information

Guide to TCP/IP, Third Edition. Chapter 2: IP Addressing and Related Topics

Guide to TCP/IP, Third Edition. Chapter 2: IP Addressing and Related Topics Guide to TCP/IP, Third Edition Chapter 2: IP Addressing and Related Topics Objectives Understand IP addressing, anatomy and structures, and addresses from a computer s point of view Recognize and describe

More information

INTERCONNECTING CISCO NETWORK DEVICES PART 1 V2.0 (ICND 1)

INTERCONNECTING CISCO NETWORK DEVICES PART 1 V2.0 (ICND 1) INTERCONNECTING CISCO NETWORK DEVICES PART 1 V2.0 (ICND 1) COURSE OVERVIEW: Interconnecting Cisco Networking Devices, Part 1 (ICND1) v2.0 is a five-day, instructor-led training course that teaches learners

More information

Chapter 4 Customizing Your Network Settings

Chapter 4 Customizing Your Network Settings Chapter 4 Customizing Your Network Settings This chapter describes how to configure advanced networking features of the RangeMax Dual Band Wireless-N Router WNDR3300, including LAN, WAN, and routing settings.

More information

COURSE AGENDA. Lessons - CCNA. CCNA & CCNP - Online Course Agenda. Lesson 1: Internetworking. Lesson 2: Fundamentals of Networking

COURSE AGENDA. Lessons - CCNA. CCNA & CCNP - Online Course Agenda. Lesson 1: Internetworking. Lesson 2: Fundamentals of Networking COURSE AGENDA CCNA & CCNP - Online Course Agenda Lessons - CCNA Lesson 1: Internetworking Internetworking models OSI Model Discuss the OSI Reference Model and its layers Purpose and function of different

More information

IP ALLOCATION AND USAGE POLICY FOR NETWORK SPACE FROM INTEGRA

IP ALLOCATION AND USAGE POLICY FOR NETWORK SPACE FROM INTEGRA Introduction IP ALLOCATION AND USAGE POLICY FOR NETWORK SPACE FROM INTEGRA This site is intended for additional allocations of IP addresses to current customers only and is unable to track circuit installs.

More information

The Internet/Network Layer

The Internet/Network Layer IP Addresses and Routing Tables Destination Gateway Genmask Flags MSS Window Irtt Iface 138.38.96.0 0.0.0.0 255.255.248.0 U 0 0 0 eth0 127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo default 138.38.103.254 0.0.0.0

More information

Technical Support Information Belkin internal use only

Technical Support Information Belkin internal use only The fundamentals of TCP/IP networking TCP/IP (Transmission Control Protocol / Internet Protocols) is a set of networking protocols that is used for communication on the Internet and on many other networks.

More information

Digi Connect WAN Application Helper NAT, GRE, ESP and TCP/UPD Forwarding and IP Filtering

Digi Connect WAN Application Helper NAT, GRE, ESP and TCP/UPD Forwarding and IP Filtering Introduction Digi Connect Application Helper NAT, GRE, ESP and TCP/UPD Forwarding and IP Filtering The Digi Connect supports five features which provide security and IP traffic forwarding when using incoming

More information

IPv4 Addressing Simplified. by Ken Foster B.S. IT Information; Security and Forensics Kaplan University January 23, 2011

IPv4 Addressing Simplified. by Ken Foster B.S. IT Information; Security and Forensics Kaplan University January 23, 2011 IPv4 Addressing Simplified by Ken Foster B.S. IT Information; Security and Forensics Kaplan University January 23, 2011 The concept of IP Addressing is foundational to overall routing in general. Without

More information

Efficient Addressing. Outline. Addressing Subnetting Supernetting CS 640 1

Efficient Addressing. Outline. Addressing Subnetting Supernetting CS 640 1 Efficient Addressing Outline Addressing Subnetting Supernetting CS 640 1 IPV4 Global Addresses Properties IPv4 uses 32 bit address space globally unique hierarchical: network + host 7 24 Dot Notation 10.3.2.4

More information

IP Subnetting and Addressing

IP Subnetting and Addressing Indian Institute of Technology Kharagpur IP Subnetting and Addressing Prof Indranil Sengupta Computer Science and Engineering Indian Institute of Technology Kharagpur Lecture 6: IP Subnetting and Addressing

More information

Technical papers Virtual private networks

Technical papers Virtual private networks Technical papers Virtual private networks This document has now been archived Virtual private networks Contents Introduction What is a VPN? What does the term virtual private network really mean? What

More information

Internetworking and Internet-1. Global Addresses

Internetworking and Internet-1. Global Addresses Internetworking and Internet Global Addresses IP servcie model has two parts Datagram (connectionless) packet delivery model Global addressing scheme awaytoidentifyall H in the internetwork Properties

More information

Computer Networks By Bahaa Q. Al-Mussawi Subnetting Basics Reduced network traffic Optimized network performance Simplified management

Computer Networks By Bahaa Q. Al-Mussawi Subnetting Basics Reduced network traffic Optimized network performance Simplified management Subnetting Basics You learned previously how to define and find the valid host ranges used in a Class A, Class B, and Class C network address by turning the host bits all off and then all on. This is very

More information

1.0 Basic Principles of TCP/IP Network Communications

1.0 Basic Principles of TCP/IP Network Communications Section 1 Basic Principles of TCP/IP Network Communications Section 2 Introduction to Doors NetXtreme Section 3 Common Connection Issues Section 4 Common Causes Section 5 Tools Section 6 Contact Keri Systems

More information

Guideline for setting up a functional VPN

Guideline for setting up a functional VPN Guideline for setting up a functional VPN Why do I want a VPN? VPN by definition creates a private, trusted network across an untrusted medium. It allows you to connect offices and people from around the

More information

IP Addressing and Subnetting. 2002, Cisco Systems, Inc. All rights reserved.

IP Addressing and Subnetting. 2002, Cisco Systems, Inc. All rights reserved. IP Addressing and Subnetting 2002, Cisco Systems, Inc. All rights reserved. 1 Objectives Upon completion, you will be able to: Discuss the Types of Network Addressing Explain the Form of an IP Address

More information

Chapter 2 TCP/IP Networking Basics

Chapter 2 TCP/IP Networking Basics Chapter 2 TCP/IP Networking Basics A network in your home or small business uses the same type of TCP/IP networking that is used for the Internet. This manual provides an overview of IP (Internet Protocol)

More information

Scaling the Network: Subnetting and Other Protocols. Networking CS 3470, Section 1

Scaling the Network: Subnetting and Other Protocols. Networking CS 3470, Section 1 Scaling the Network: Subnetting and Other Protocols Networking CS 3470, Section 1 Today CIDR Subnetting Private IP addresses ICMP, IMAP, and DHCP Protocols 2 Packet Encapsulation ** Creative Commons: http://en.wikipedia.org/wiki/file:udp_encapsulation.svg

More information

Galileo International. Firewall & Proxy Specifications

Galileo International. Firewall & Proxy Specifications Galileo International Technical Support Documentation Firewall & Proxy Specifications For Focalpoint, Viewpoint & Focalpoint Print Manager (GALILEO and APOLLO PRODUCTION SYSTEMS) Copyright Copyright 2001

More information

Basic IPv6 WAN and LAN Configuration

Basic IPv6 WAN and LAN Configuration Basic IPv6 WAN and LAN Configuration This quick start guide provides basic IPv6 WAN and LAN configuration information for the ProSafe Wireless-N 8-Port Gigabit VPN Firewall FVS318N. For complete IPv6 configuration

More information

LAN TCP/IP and DHCP Setup

LAN TCP/IP and DHCP Setup CHAPTER 2 LAN TCP/IP and DHCP Setup 2.1 Introduction In this chapter, we will explain in more detail the LAN TCP/IP and DHCP Setup. 2.2 LAN IP Network Configuration In the Vigor 2900 router, there are

More information

Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ

Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ 1 Lecture 7: Network Layer in the Internet Reference: Chapter 5 - Computer Networks, Andrew S. Tanenbaum, 4th Edition, Prentice Hall,

More information

INTRODUCTION TO VOICE OVER IP

INTRODUCTION TO VOICE OVER IP 52-30-20 DATA COMMUNICATIONS MANAGEMENT INTRODUCTION TO VOICE OVER IP Gilbert Held INSIDE Equipment Utilization; VoIP Gateway; Router with Voice Modules; IP Gateway; Latency; Delay Components; Encoding;

More information

Chapter 4 Customizing Your Network Settings

Chapter 4 Customizing Your Network Settings . Chapter 4 Customizing Your Network Settings This chapter describes how to configure advanced networking features of the Wireless-G Router Model WGR614v9, including LAN, WAN, and routing settings. It

More information

Guide to TCP/IP, Third Edition. Chapter 3: Data Link and Network Layer TCP/IP Protocols

Guide to TCP/IP, Third Edition. Chapter 3: Data Link and Network Layer TCP/IP Protocols Guide to TCP/IP, Third Edition Chapter 3: Data Link and Network Layer TCP/IP Protocols Objectives Understand the role that data link protocols, such as SLIP and PPP, play for TCP/IP Distinguish among various

More information

BroadCloud PBX Customer Minimum Requirements

BroadCloud PBX Customer Minimum Requirements BroadCloud PBX Customer Minimum Requirements Service Guide Version 2.0 1009 Pruitt Road The Woodlands, TX 77380 Tel +1 281.465.3320 WWW.BROADSOFT.COM BroadCloud PBX Customer Minimum Requirements Service

More information

Lab 10.4.1 IP Addressing Overview

Lab 10.4.1 IP Addressing Overview Lab 10.4.1 IP ing Overview Estimated time: 30 min. Objectives: Background: This lab will focus on your ability to accomplish the following tasks: Name the five different classes of IP addresses Describe

More information

Computer Networking Networks

Computer Networking Networks Page 1 of 8 Computer Networking Networks 9.1 Local area network A local area network (LAN) is a network that connects computers and devices in a limited geographical area such as a home, school, office

More information

Introduction. Technology background

Introduction. Technology background White paper: Redundant IP-VPN networks Introduction IP VPN solutions based on the IPsec protocol are already available since a number of years. The main driver for these kinds of solutions is of course

More information

Advanced Topics: IP Subnetting A WHITE PAPER PREPARED FOR ASPE TECHNOLOGY. www.aspetech.com toll-free: 877-800-5221

Advanced Topics: IP Subnetting A WHITE PAPER PREPARED FOR ASPE TECHNOLOGY. www.aspetech.com toll-free: 877-800-5221 Advanced Topics: IP Subnetting A WHITE PAPER PREPARED FOR ASPE TECHNOLOGY www.aspetech.com toll-free: 877-800-5221 Advanced Topics IP Subnetting It is almost impossible to lay out an IP network without

More information

Basic Network Configuration

Basic Network Configuration Basic Network Configuration 2 Table of Contents Basic Network Configuration... 25 LAN (local area network) vs WAN (wide area network)... 25 Local Area Network... 25 Wide Area Network... 26 Accessing the

More information

How to Create Subnets To create subnetworks, you take bits from the host portion of the IP address and reserve them to define the subnet address.

How to Create Subnets To create subnetworks, you take bits from the host portion of the IP address and reserve them to define the subnet address. SUBNET MASK To define the network and host portions of an address, the devices use a separate 32-bit pattern called a subnet mask. We express the subnet mask in the same dotted decimal format as the IPv4

More information

H0/H2/H4 -ECOM100 DHCP & HTML Configuration. H0/H2/H4--ECOM100 DHCP Disabling DHCP and Assigning a Static IP Address Using HTML Configuration

H0/H2/H4 -ECOM100 DHCP & HTML Configuration. H0/H2/H4--ECOM100 DHCP Disabling DHCP and Assigning a Static IP Address Using HTML Configuration H0/H2/H4 -ECOM100 DHCP & HTML 6 H0/H2/H4--ECOM100 DHCP Disabling DHCP and Assigning a Static IP Address Using HTML 6-2 H0/H2/H4 -ECOM100 DHCP DHCP Issues The H0/H2/H4--ECOM100 is configured at the factory

More information

Chapter 4 Virtual Private Networking

Chapter 4 Virtual Private Networking Chapter 4 Virtual Private Networking This chapter describes how to use the virtual private networking (VPN) features of the FVL328 Firewall. VPN tunnels provide secure, encrypted communications between

More information

1:1 NAT in ZeroShell. Requirements. Overview. Network Setup

1:1 NAT in ZeroShell. Requirements. Overview. Network Setup 1:1 NAT in ZeroShell Requirements The version of ZeroShell used for writing this document is Release 1.0.beta11. This document does not describe installing ZeroShell, it is assumed that the user already

More information

Accessing Remote Devices via the LAN-Cell 2

Accessing Remote Devices via the LAN-Cell 2 Accessing Remote Devices via the LAN-Cell 2 Technote LCTN0017 Proxicast, LLC 312 Sunnyfield Drive Suite 200 Glenshaw, PA 15116 1-877-77PROXI 1-877-777-7694 1-412-213-2477 Fax: 1-412-492-9386 E-Mail: support@proxicast.com

More information

GPRS and 3G Services: Connectivity Options

GPRS and 3G Services: Connectivity Options GPRS and 3G Services: Connectivity Options An O2 White Paper Contents Page No. 3-4 5-7 5 6 7 7 8-10 8 10 11-12 11 12 13 14 15 15 15 16 17 Chapter No. 1. Executive Summary 2. Bearer Service 2.1. Overview

More information

We will give some overview of firewalls. Figure 1 explains the position of a firewall. Figure 1: A Firewall

We will give some overview of firewalls. Figure 1 explains the position of a firewall. Figure 1: A Firewall Chapter 10 Firewall Firewalls are devices used to protect a local network from network based security threats while at the same time affording access to the wide area network and the internet. Basically,

More information

Zarząd (7 osób) F inanse (13 osób) M arketing (7 osób) S przedaż (16 osób) K adry (15 osób)

Zarząd (7 osób) F inanse (13 osób) M arketing (7 osób) S przedaż (16 osób) K adry (15 osób) QUESTION NO: 8 David, your TestKing trainee, asks you about basic characteristics of switches and hubs for network connectivity. What should you tell him? A. Switches take less time to process frames than

More information

CONFIGURING TCP/IP ADDRESSING AND SECURITY

CONFIGURING TCP/IP ADDRESSING AND SECURITY 1 Chapter 11 CONFIGURING TCP/IP ADDRESSING AND SECURITY Chapter 11: CONFIGURING TCP/IP ADDRESSING AND SECURITY 2 OVERVIEW Understand IP addressing Manage IP subnetting and subnet masks Understand IP security

More information

IP Subnetting. Subnetting

IP Subnetting. Subnetting IP Subnetting Shailesh N. Sisat Prajkta S. Bhopale Vishwajit K. Barbudhe Abstract - Network management becomes more and more important as computer-networks grow steadily. A critical skill for any network

More information

SURF Feed Connection Guide

SURF Feed Connection Guide SURF Feed Connection Guide Tullett Prebon Information Ltd A wholly owned subsidiary of Tullett Prebon Version 6.0 3 rd August 2005 Contents 1. Introduction...3 1.1 General...3 2. Connectivity via the Internet...4

More information

How to Configure an Initial Installation of the VMware ESXi Hypervisor

How to Configure an Initial Installation of the VMware ESXi Hypervisor How to Configure an Initial Installation of the VMware ESXi Hypervisor I am not responsible for your actions or their outcomes, in any way, while reading and/or implementing this tutorial. I will not provide

More information

CREATING AN IKE IPSEC TUNNEL BETWEEN AN INTERNET SECURITY ROUTER AND A WINDOWS 2000/XP PC

CREATING AN IKE IPSEC TUNNEL BETWEEN AN INTERNET SECURITY ROUTER AND A WINDOWS 2000/XP PC CREATING AN IKE IPSEC TUNNEL BETWEEN AN INTERNET SECURITY ROUTER AND A WINDOWS 2000/XP PC 1 Introduction Release date: 11/12/2003 This application note details the steps for creating an IKE IPSec VPN tunnel

More information

IP Addressing. IP Addresses. Introductory material.

IP Addressing. IP Addresses. Introductory material. IP Addressing Introductory material. An entire module devoted to IP addresses. IP Addresses Structure of an IP address Classful IP addresses Limitations and problems with classful IP addresses Subnetting

More information

Secured Voice over VPN Tunnel and QoS. Feature Paper

Secured Voice over VPN Tunnel and QoS. Feature Paper Secured Voice over VPN Tunnel and QoS Feature Paper Table of Contents Introduction...3 Preface...3 Chapter 1: The Introduction of Virtual Private Network (VPN) 3 1.1 The Functions and Types of VPN...3

More information

Internet Working 5 th lecture. Chair of Communication Systems Department of Applied Sciences University of Freiburg 2004

Internet Working 5 th lecture. Chair of Communication Systems Department of Applied Sciences University of Freiburg 2004 5 th lecture Chair of Communication Systems Department of Applied Sciences University of Freiburg 2004 1 43 Last lecture Lecture room hopefully all got the message lecture on tuesday and thursday same

More information

Computer Network Foundation. Chun-Jen (James) Chung. Arizona State University

Computer Network Foundation. Chun-Jen (James) Chung. Arizona State University Computer Network Foundation Chun-Jen (James) Chung 1 Outline Network Addressing Subnetting Classless Inter-Domain Routing (CIDR) Route Aggregation Network Addressing How does the network decide where to

More information