Internet Working 5 th lecture. Chair of Communication Systems Department of Applied Sciences University of Freiburg 2004

Save this PDF as:

Size: px
Start display at page:

Download "Internet Working 5 th lecture. Chair of Communication Systems Department of Applied Sciences University of Freiburg 2004"

Transcription

1 5 th lecture Chair of Communication Systems Department of Applied Sciences University of Freiburg

2 Last lecture Lecture room hopefully all got the message lecture on tuesday and thursday same time this room Last lecture need for universal service IP operating on OSI layer 3 packet switched media independent (IP could be run on fast ethernets, slow modem lines, satellite connections, ATM fiber links...) looked into IP header (version, length, TOS, TTL, frag.,...) segmentation in IP networks > fragmentation 2 43

3 Last lecture Remember: layering of protocols i.e. TCP service (layer 4) on top of IP (layer 3) on top of ethernet (layer 2&1) 3 43

4 plan fot this lecture IP addresses addressing schemas, classes Sub / supernetting Datagram delivery Local Global ARP (address resolution protocol), IP helper 4 43

5 ip addressing scheme We saw that IP packet header reserved two 32 bit fields for source and destination address For computation for delivery decicions the binary form is used only Programs and operating systems implementing IP automatically convert the addresses between the two representations IP addresses are topologically sensitive Interfaces on same network share prefix Prefix is assigned via ISP/local network administrator 32 bit globally unique 5 43

6 ip addressing scheme cont. Address is split into two virtual parts: network and host part See later how division is done For better reading the binary representation could be splitted into four octets, which are transferred into the decimal system 6 43

7 ip addressing scheme cont. The early IP standard defined five address classes: A, B, C, D and E An IP address should be selfexplanatory, it should countain information on the networking sub structures History by now In this view the address consists of a pattern of high order bits, which shows their class, the network and the host component Machines in the same network share a common prefix (the class definition and network component of IP) and must have unique suffix (the host component of IP) 7 43

8 ip (historic) address classes 8 43

9 ip address classes cont. Class A: (high order bits: 0) Large Organisations, few nets (127), huge number of hosts (16.7 million) Address range in dezimal notation Class B: (high order bits: 10) Medium sized organisations and firms, i.e. University of Freiburg, some nets (16,384) and large number of hosts (65,536) Address range Class C: (high order bits: 110) Small organisations and firms, relatively large number of nets (2,097,152) with a small number of hosts per net (256) Ranging from

10 ip address classes cont. Class D: (high order bits: 1110) Multicast addresses, but service are not very often used Address range Class E: (high order bits: 1111) Declared for experimental use only Address range Theoretical address space is 4,294,967,296 (seems a lot : ) but population on earth is higher by now) But the address space usable for the internet is limited to addresses from 1.X.Y.Z up to 223.X.Y.Z 10 43

11 ip addressing scheme But you will loose some more addresses: Special addresses like: defines the default route (explained later, route for the whole internet ) or the start address of a host searching for a dynamically provided IP local broadcast address (and destination for hosts seeking an IP via DHCP) loop back network address (you will need only one address within this range and use typically ). This address is used by every host implementing IP (software using IP for communication is useable without internet connection) 11 43

12 ip private addresses Addresses reserved for private use many organizations, enterprises, flat sharing communities need IP communication for their applications without or restricted internet access (within the class A range) (16 class B networks) (65,536 class C networks) University WLAN, private LAN is using 10.X.Y.Z addresses Addresses within these ranges should be discarded on internet routers Address classifying helped in the beginning for faster network decicion computation, routers had limited memory and cpu power 12 43

13 ip addressing For addressing whole subnets or addressing all hosts within a given subnet (potenciality depends on the underlying physical network) special IP addresses are introduced Network number is the smallest IP address in a given (sub) network. it does not address a single machine and may not assigned to a host. It is used with routing tables (explained later in detail) Broadcast address is the largest possible IP in a network. It should be not assigned to a host, but is the possibility to reach all hosts in a network with just one packet If we use the example class B address , this machine is a member of a network with the network number and a broadcast address

14 ip subnetting Networks with huge number of hosts could be split into subnets for better administration and considerations on physical topology and global spanning net The example class B network with host ip numbers in it, allows 256 subnetworks with 256 hosts in it if splitted on the byte boundary But: The resulting 256 class C networks have the same high order bit like the original class B network 14 43

15 ip new subnetting scheme The number of class B networks was much to small (Germany has around 100(?) universities and colleges and therefore would need for them at least 100 class B networks out of 16,384) There is no need for class A networks There is great need for bigger networks than class C but much smaller then B The waste of addresses with the old scheme was enormous and the need for IP v6 seemed very urgent : ) Subnetting and supernetting was introduced 15 43

16 ip new subnetting scheme Introduction of netmasks (were implicit with old addressing scheme) Supernetting means the combining of address ranges into larger ones with just one common network and broadcast address The IP addresses arn't self explanatory any more For the information of the span of subnetworks netmasks where introduced: 1 marks prefix part of IP (network) 0 marks suffix part of IP (host) 16 43

17 ip new subnetting scheme cont. The netmask of just marks an old class B network depicts class A and class C The netmask may be abbreviated with the numbers of 1 in the netmask (i.e. Class A: 8, B: 16, C: 24) If you combine two class C networks into a larger one, i.e. Network with broadcast and Network with broadcast The result is: Network with broadcast and netmask

18 ip new subnetting scheme cont

19 ip new subnetting scheme principles Split of netmasks into prefix and suffix is done on the boundary between the 1 and 0 i.e is We would split that way the network / into two subnets: and But we could split that network another way: i.e is and get two subnets, one with the even (in the last octet) IP addresses and one with the odd IP addresses in it Managing networks that way implements a lot of riscs : ) 19 43

20 ip new subnetting scheme conclusion Networks may combined into larger ones, large networks may be split Splitting networks means adding a 1 to the netmask (increasing prefix and decreasing suffix) Combining networks via removing 1 from netmask and adding 0 Therefore at the moment are enough blocks of class C networks still available for assignment (the need for IP v6 declined) Additional information is needed, routers need more memory to store netmasks in combination with net names Routing tables could be simplified through aggregation of routes 20 43

21 datagram delivery Why the long introduction on addressing schemes, network names and netmasks? Packet switched networks depend on routing decision for every packet (network taxonomy) How datagrams sent through (global) network to end systems? Two types of delivery in IP networks: local delivery (no router involved) non local delivery (router needed) determined by common prefix Routers may or may not additionally switch packets between different LAN or WAN protocols 21 43

22 datagram delivery We need a rule to decide how to deliver packets in IP networks Every router and host maintains a routing table Read destination address of given packet Get the netmask of the smallest network (we will see why we start with the biggest netmask and descend to smallest) Compute: netmask AND destination address Compare the result against the network address connected with the used netmask Match: deliver packet that route Not matched: start the algorithm with the netmask of next bigger network 22 43

23 datagram delivery When you got the route the packet should take If no gateway is given > deliver locally (we will see how later on) See if gateway is given > deliver the packet to the router (use locally specific mechanism for delivery to the router) Example: network address: class C netmask ( ) Broadcast Host machine: , router:

24 datagram delivery Described simple example ethernet network 24 43

25 datagram delivery Routing table of a standard host machine in a subnet (LAN) normally consists of three entries (you should have seen that in the practical course): Route to the local LAN Loopback route Default route 25 43

26 datagram delivery Now lets see how a packet to the host would be routed Take routing entry with the smallest netmask (here: ) & > (match!!) Local delivery Packet to Take routing entry with the smallest netmask (here: ) & > (miss!) Try next entry: & > (miss!) Try next: & > (match!) 26 43

27 datagram delivery Local delivery to the router Default route matches every packet, thatswhy its to be tested last Local delivery takes place in every case Directly to the destination machine Directly to the router Router/gateway IP has to be part of the subnet For packet delivery only the destination address is checked! Security hazards because of possible IP spoofing Most of modern routers do source address checking (but that is not part of the protocol definition) 27 43

28 universal service address and size adaptation Seldomly one single network spans between two end systems IP runnable on top of many different hardware types and software protocols Address and size adaptation needed Mapping from Internet standard addresses (IP addresses) to link specific addresses Datagram size adaptation Internet datagram has universal common size (64KByte for IP) Mapping from common size to link specific MTU requires fragmentation Fragmentation allows the splitting of packets into smaller units with reassembling at the receiving station 28 43

29 addressing schemas IP addresses are topologically sensitive Interfaces on same network share prefix Prefix is assigned via ISP/local network administrator 32bit globally unique Address is implemented in software i.e. 802.x addresses are vendor specific Interfaces made by same vendor share prefix 48bit globally unique Networks may have ethernet adaptors from a wide range of distributors with completely different prefixes Prefix is put in hardware 29 43

30 datagram delivery cont. Local delivery with point to point connections is easy, just send the packet to the other end of the connection Modem addressing is done other ways: device number of serial port, telephone number of the telephone system,... PPP point to point route (network consisting of just two IP addresses) 30 43

31 datagram delivery cont. Routing table looks a little bit different (compared to LAN i.e. ethernet connection) Netmask is (just one address in network) Addresses do not have to share same prefix i.e for the local machine and for the providers gateway Seen with modem, ISDN, PPPoE (ADSL) connections for individuals toward end user ISPs Default gateway is just the machine at the other end of connection 31 43

32 address mapping in broadcast nets But what to do in broadcast nets with many connected hosts? In broadcast nets every host gets every packet sent out in the segment (switching may reduce traffic, but for some services packets to all are inevitable) For local delivery, need to map network layer address to link layer address: consider the machines and (netmask i.e )... [on same network] 32 43

33 address mapping cont. Encapsulate IP datagram within link layer frame What lower level destination (MAC) address to use? Helper protocol is needed IP has no feature to do mapping itself Such mapping is not needed in PPP environments This protocol is specific to the underlying hardware / software protocol ARP is for address mapping in ethernets and tokenrings 33 43

34 IP to MAC and vice versa Address Mapping: IP to MAC to get the host where to deliver a given packet locally Simple solution could just broadcast everything unnecessary, burdens uninterested stations with others' traffic, congests the network IP to MAC address mapping mechanisms Configured by hand [cumbersome] Dynamic [learned by system automatically] Address Mapping IP to MAC: Learning 34 43

35 address resolution protocol (ARP) Dynamic approach Each station runs Address Resolution Protocol (ARP) Client/server architecture, each station is both client and server, routers have to implement the same mechanism too Cache lookups with timeouts on each resolution Introduction of an intermediate protocol operating between layer 2 & 3 Address Resolution Protocol is basically address independent (at both network & link layer) Protocol is specialized for each particular network/link address pairing 35 43

36 address resolution cont. The term address resolution refers to the process of finding an address of a computer in a network Address is "resolved" using a protocol in which a piece of information is sent by a client process executing on the local computer to a server process executing on a remote computer The information received by the server allows the server to uniquely identify the network system for which the address was required and therefore to provide the required address Procedure is completed when the client receives a response from the server containing the required address 36 43

37 ARP operation Step by Step operation 0 Requesting station A has IP address I, wants the associated MAC address M 1 Check the own ARP cache 2 A broadcasts the query: who has I? tell A 3 B adds MAC for A to its cache 4 Machine assigned address I responds directly to A with its MAC address M 5 A adds the (I,M) entry to its ARP cache 37 43

38 ARP operation cont

39 ARP on ethernet with IP payload Common example is Ethernet/IPv4 Ethernet MAC: 6byte (48bit), IP v4: 4byte (32bit) 39 43

40 ARP on ethernet with IP payload cont. ARP frames marked with FrameType 0x0806 IP frames marked 0x0800 Ethernet frame on wire with all headers and ARP payload 40 43

41 ARP cache table (example) Contains hostname or IP address, hardware type, MAC, flag (c for cached), interface (use of arp command presented in practical course) 41 43

Lecture Computer Networks

Lecture Computer Networks Prof. Dr. H. P. Großmann mit M. Rabel sowie H. Hutschenreiter und T. Nau Sommersemester 2012 Institut für Organisation und Management von Informationssystemen Thomas Nau, kiz Lecture Computer Networks

More information

IP Addressing Introductory material.

IP Addressing Introductory material. IP Addressing Introductory material. A module devoted to IP addresses. Addresses & Names Hardware (Layer 2) Lowest level Ethernet (MAC), Serial point-to-point,.. Network (Layer 3) IP IPX, SNA, others Transport

More information

Computer Networks. Lecture 3: IP Protocol. Marcin Bieńkowski. Institute of Computer Science University of Wrocław

Computer Networks. Lecture 3: IP Protocol. Marcin Bieńkowski. Institute of Computer Science University of Wrocław Computer Networks Lecture 3: IP Protocol Marcin Bieńkowski Institute of Computer Science University of Wrocław Computer networks (II UWr) Lecture 3 1 / 24 In previous lectures We learned about layer 1

More information

Internetworking and IP Address

Internetworking and IP Address Lecture 8 Internetworking and IP Address Motivation of Internetworking Internet Architecture and Router Internet TCP/IP Reference Model and Protocols IP Addresses - Binary and Dotted Decimal IP Address

More information

Guide to TCP/IP, Third Edition. Chapter 3: Data Link and Network Layer TCP/IP Protocols

Guide to TCP/IP, Third Edition. Chapter 3: Data Link and Network Layer TCP/IP Protocols Guide to TCP/IP, Third Edition Chapter 3: Data Link and Network Layer TCP/IP Protocols Objectives Understand the role that data link protocols, such as SLIP and PPP, play for TCP/IP Distinguish among various

More information

Lecture 8. IP Fundamentals

Lecture 8. IP Fundamentals Lecture 8. Internet Network Layer: IP Fundamentals Outline Layer 3 functionalities Internet Protocol (IP) characteristics IP packet (first look) IP addresses Routing tables: how to use ARP Layer 3 functionalities

More information

Internet Protocol Address

Internet Protocol Address SFWR 4C03: Computer Networks & Computer Security Jan 17-21, 2005 Lecturer: Kartik Krishnan Lecture 7-9 Internet Protocol Address Addressing is a critical component of the internet abstraction. To give

More information

Lecture 15. IP address space managed by Internet Assigned Numbers Authority (IANA)

Lecture 15. IP address space managed by Internet Assigned Numbers Authority (IANA) Lecture 15 IP Address Each host and router on the Internet has an IP address, which consist of a combination of network number and host number. The combination is unique; no two machines have the same

More information

Zarząd (7 osób) F inanse (13 osób) M arketing (7 osób) S przedaż (16 osób) K adry (15 osób)

Zarząd (7 osób) F inanse (13 osób) M arketing (7 osób) S przedaż (16 osób) K adry (15 osób) QUESTION NO: 8 David, your TestKing trainee, asks you about basic characteristics of switches and hubs for network connectivity. What should you tell him? A. Switches take less time to process frames than

More information

Ch.9 Classless And Subnet Address Extensions (CIDR)

Ch.9 Classless And Subnet Address Extensions (CIDR) CSC521 Communication Protocols 網 路 通 訊 協 定 Ch.9 Classless And Subnet Address Extensions (CIDR) 吳 俊 興 國 立 高 雄 大 學 資 訊 工 程 學 系 Outline 1. Introduction 2. Review Of Relevant Facts 3. Minimizing Network Numbers

More information

IP Addressing. IP Addresses. Introductory material.

IP Addressing. IP Addresses. Introductory material. IP Addressing Introductory material. An entire module devoted to IP addresses. IP Addresses Structure of an IP address Classful IP addresses Limitations and problems with classful IP addresses Subnetting

More information

8.2 The Internet Protocol

8.2 The Internet Protocol TCP/IP Protocol Suite HTTP SMTP DNS RTP Distributed applications Reliable stream service TCP UDP User datagram service Best-effort connectionless packet transfer Network Interface 1 IP Network Interface

More information

Technical Support Information Belkin internal use only

Technical Support Information Belkin internal use only The fundamentals of TCP/IP networking TCP/IP (Transmission Control Protocol / Internet Protocols) is a set of networking protocols that is used for communication on the Internet and on many other networks.

More information

RARP: Reverse Address Resolution Protocol

RARP: Reverse Address Resolution Protocol SFWR 4C03: Computer Networks and Computer Security January 19-22 2004 Lecturer: Kartik Krishnan Lectures 7-9 RARP: Reverse Address Resolution Protocol When a system with a local disk is bootstrapped it

More information

IP Addressing A Simplified Tutorial

IP Addressing A Simplified Tutorial Application Note IP Addressing A Simplified Tutorial July 2002 COMPAS ID 92962 Avaya Labs 1 All information in this document is subject to change without notice. Although the information is believed to

More information

PART IV. Network Layer

PART IV. Network Layer PART IV Network Layer Position of network layer Network layer duties Internetworking : heterogeneous Physical Networks To look Like a single network to he upper layers The address at Network layer must

More information

2. What is the maximum value of each octet in an IP address? A. 28 B. 255 C. 256 D. None of the above

2. What is the maximum value of each octet in an IP address? A. 28 B. 255 C. 256 D. None of the above CCNA1 V3.0 Mod 10 (Ch 8) 1. How many bits are in an IP C. 64 2. What is the maximum value of each octet in an IP A. 28 55 C. 256 3. The network number plays what part in an IP A. It specifies the network

More information

Introduction to IP v6

Introduction to IP v6 IP v 1-3: defined and replaced Introduction to IP v6 IP v4 - current version; 20 years old IP v5 - streams protocol IP v6 - replacement for IP v4 During developments it was called IPng - Next Generation

More information

UPPER LAYER SWITCHING

UPPER LAYER SWITCHING 52-20-40 DATA COMMUNICATIONS MANAGEMENT UPPER LAYER SWITCHING Gilbert Held INSIDE Upper Layer Operations; Address Translation; Layer 3 Switching; Layer 4 Switching OVERVIEW The first series of LAN switches

More information

TCP/IP Fundamentals. OSI Seven Layer Model & Seminar Outline

TCP/IP Fundamentals. OSI Seven Layer Model & Seminar Outline OSI Seven Layer Model & Seminar Outline TCP/IP Fundamentals This seminar will present TCP/IP communications starting from Layer 2 up to Layer 4 (TCP/IP applications cover Layers 5-7) IP Addresses Data

More information

CCNA Tutorial Series SUBNETTING

CCNA Tutorial Series SUBNETTING CCNA Tutorial Series This document contains the Course Map For The Interactive flash tutorial at: http://www.semsim.com/ccna/tutorial/subnetting/subnetting.html HOME PAGE Course Objectives Pre-test By

More information

This tutorial will help you in understanding IPv4 and its associated terminologies along with appropriate references and examples.

This tutorial will help you in understanding IPv4 and its associated terminologies along with appropriate references and examples. About the Tutorial Internet Protocol version 4 (IPv4) is the fourth version in the development of the Internet Protocol (IP) and the first version of the protocol to be widely deployed. IPv4 is described

More information

IP - The Internet Protocol

IP - The Internet Protocol Orientation IP - The Internet Protocol IP (Internet Protocol) is a Network Layer Protocol. IP s current version is Version 4 (IPv4). It is specified in RFC 891. TCP UDP Transport Layer ICMP IP IGMP Network

More information

Introduction To Computer Networking

Introduction To Computer Networking Introduction To Computer Networking Alex S. 1 Introduction 1.1 Serial Lines Serial lines are generally the most basic and most common communication medium you can have between computers and/or equipment.

More information

04 Internet Protocol (IP)

04 Internet Protocol (IP) SE 4C03 Winter 2007 04 Internet Protocol (IP) William M. Farmer Department of Computing and Software McMaster University 29 January 2007 Internet Protocol (IP) IP provides a connectionless packet delivery

More information

Internetworking. Problem: There is more than one network (heterogeneity & scale)

Internetworking. Problem: There is more than one network (heterogeneity & scale) Internetworking Problem: There is more than one network (heterogeneity & scale) Hongwei Zhang http://www.cs.wayne.edu/~hzhang Internetworking: Internet Protocol (IP) Routing and scalability Group Communication

More information

IP address format: Dotted decimal notation: 10000000 00001011 00000011 00011111 128.11.3.31

IP address format: Dotted decimal notation: 10000000 00001011 00000011 00011111 128.11.3.31 IP address format: 7 24 Class A 0 Network ID Host ID 14 16 Class B 1 0 Network ID Host ID 21 8 Class C 1 1 0 Network ID Host ID 28 Class D 1 1 1 0 Multicast Address Dotted decimal notation: 10000000 00001011

More information

CCNA R&S: Introduction to Networks. Chapter 9: Subnetting IP Networks

CCNA R&S: Introduction to Networks. Chapter 9: Subnetting IP Networks CCNA R&S: Introduction to Networks Chapter 9: Subnetting IP Networks Frank Schneemann Chapter 9: Subnetting IP Networks Subnetting IP Networks In this chapter, you will be learning how devices can be grouped

More information

Chapter 3. TCP/IP Networks. 3.1 Internet Protocol version 4 (IPv4)

Chapter 3. TCP/IP Networks. 3.1 Internet Protocol version 4 (IPv4) Chapter 3 TCP/IP Networks 3.1 Internet Protocol version 4 (IPv4) Internet Protocol version 4 is the fourth iteration of the Internet Protocol (IP) and it is the first version of the protocol to be widely

More information

cnds@napier Slide 1 Introduction cnds@napier 1 Lecture 6 (Network Layer)

cnds@napier Slide 1 Introduction cnds@napier 1 Lecture 6 (Network Layer) Slide 1 Introduction In today s and next week s lecture we will cover two of the most important areas in networking and the Internet: IP and TCP. These cover the network and transport layer of the OSI

More information

IP Networking. Overview. Networks Impact Daily Life. IP Networking - Part 1. How Networks Impact Daily Life. How Networks Impact Daily Life

IP Networking. Overview. Networks Impact Daily Life. IP Networking - Part 1. How Networks Impact Daily Life. How Networks Impact Daily Life Overview Dipl.-Ing. Peter Schrotter Institute of Communication Networks and Satellite Communications Graz University of Technology, Austria Fundamentals of Communicating over the Network Application Layer

More information

Chapter 5. Data Communication And Internet Technology

Chapter 5. Data Communication And Internet Technology Chapter 5 Data Communication And Internet Technology Purpose Understand the fundamental networking concepts Agenda Network Concepts Communication Protocol TCP/IP-OSI Architecture Network Types LAN WAN

More information

IP Network Layer. Datagram ID FLAG Fragment Offset. IP Datagrams. IP Addresses. IP Addresses. CSCE 515: Computer Network Programming TCP/IP

IP Network Layer. Datagram ID FLAG Fragment Offset. IP Datagrams. IP Addresses. IP Addresses. CSCE 515: Computer Network Programming TCP/IP CSCE 515: Computer Network Programming TCP/IP IP Network Layer Wenyuan Xu Department of Computer Science and Engineering University of South Carolina IP Datagrams IP is the network layer packet delivery

More information

Networking Test 4 Study Guide

Networking Test 4 Study Guide Networking Test 4 Study Guide True/False Indicate whether the statement is true or false. 1. IPX/SPX is considered the protocol suite of the Internet, and it is the most widely used protocol suite in LANs.

More information

Internet Packets. Forwarding Datagrams

Internet Packets. Forwarding Datagrams Internet Packets Packets at the network layer level are called datagrams They are encapsulated in frames for delivery across physical networks Frames are packets at the data link layer Datagrams are formed

More information

Internet Addresses (You should read Chapter 4 in Forouzan)

Internet Addresses (You should read Chapter 4 in Forouzan) Internet Addresses (You should read Chapter 4 in Forouzan) IP Address is 32 Bits Long Conceptually the address is the pair (NETID, HOSTID) Addresses are assigned by the internet company for assignment

More information

Networking Basics for Automation Engineers

Networking Basics for Automation Engineers Networking Basics for Automation Engineers Page 1 of 10 mac-solutions.co.uk v1.0 Oct 2014 1. What is Transmission Control Protocol/Internet Protocol (TCP/IP)------------------------------------------------------------

More information

Subnetting,Supernetting, VLSM & CIDR

Subnetting,Supernetting, VLSM & CIDR Subnetting,Supernetting, VLSM & CIDR WHAT - IP Address Unique 32 or 128 bit Binary, used to identify a system on a Network or Internet. Network Portion Host Portion CLASSFULL ADDRESSING IP address space

More information

IP Addressing and Subnetting. 2002, Cisco Systems, Inc. All rights reserved.

IP Addressing and Subnetting. 2002, Cisco Systems, Inc. All rights reserved. IP Addressing and Subnetting 2002, Cisco Systems, Inc. All rights reserved. 1 Objectives Upon completion, you will be able to: Discuss the Types of Network Addressing Explain the Form of an IP Address

More information

Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network.

Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network. Course Name: TCP/IP Networking Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network. TCP/IP is the globally accepted group of protocols

More information

Efficient Addressing. Outline. Addressing Subnetting Supernetting CS 640 1

Efficient Addressing. Outline. Addressing Subnetting Supernetting CS 640 1 Efficient Addressing Outline Addressing Subnetting Supernetting CS 640 1 IPV4 Global Addresses Properties IPv4 uses 32 bit address space globally unique hierarchical: network + host 7 24 Dot Notation 10.3.2.4

More information

Interconnection of Heterogeneous Networks. Internetworking. Service model. Addressing Address mapping Automatic host configuration

Interconnection of Heterogeneous Networks. Internetworking. Service model. Addressing Address mapping Automatic host configuration Interconnection of Heterogeneous Networks Internetworking Service model Addressing Address mapping Automatic host configuration Wireless LAN network@home outer Ethernet PPS Internet-Praktikum Internetworking

More information

MANAGEMENT INFORMATION SYSTEMS 8/E

MANAGEMENT INFORMATION SYSTEMS 8/E MANAGEMENT INFORMATION SYSTEMS 8/E Raymond McLeod, Jr. and George Schell Chapter 10 Data Communications Copyright 2001 Prentice-Hall, Inc. 10-1 Objectives Understand data communication basics. Know the

More information

Internet Control Protocols Reading: Chapter 3

Internet Control Protocols Reading: Chapter 3 Internet Control Protocols Reading: Chapter 3 ARP - RFC 826, STD 37 DHCP - RFC 2131 ICMP - RFC 0792, STD 05 1 Goals of Today s Lecture Bootstrapping an end host Learning its own configuration parameters

More information

IP Sub Networking Mini Howto

IP Sub Networking Mini Howto Table of Contents IP Sub Networking Mini Howto...1 Robert Hart, hartr@interweft.com.au...1 1. Copyright...1 2. Introduction...1 3. The Anatomy of IP numbers...1 4. What are subnets?...1 5. Why subnetwork?...1

More information

VXLAN: Scaling Data Center Capacity. White Paper

VXLAN: Scaling Data Center Capacity. White Paper VXLAN: Scaling Data Center Capacity White Paper Virtual Extensible LAN (VXLAN) Overview This document provides an overview of how VXLAN works. It also provides criteria to help determine when and where

More information

Computer Networks. Introduc)on to Naming, Addressing, and Rou)ng. Week 09. College of Information Science and Engineering Ritsumeikan University

Computer Networks. Introduc)on to Naming, Addressing, and Rou)ng. Week 09. College of Information Science and Engineering Ritsumeikan University Computer Networks Introduc)on to Naming, Addressing, and Rou)ng Week 09 College of Information Science and Engineering Ritsumeikan University MAC Addresses l MAC address is intended to be a unique identifier

More information

Module 2: Assigning IP Addresses in a Multiple Subnet Network

Module 2: Assigning IP Addresses in a Multiple Subnet Network Module 2: Assigning IP Addresses in a Multiple Subnet Network Contents Overview 1 Lesson: Assigning IP Addresses 2 Lesson: Creating a Subnet 19 Lesson: Using IP Routing Tables 29 Lesson: Overcoming Limitations

More information

The IP Transmission Process. V1.4: Geoff Bennett

The IP Transmission Process. V1.4: Geoff Bennett The IP Transmission Process V1.4: Geoff Bennett Contents Communication Between Hosts Through a MAC Bridge Through a LAN Switch Through a Router The tutorial is divided into four sections. Section 1 looks

More information

Expert Reference Series of White Papers. Basics of IP Address Subnetting

Expert Reference Series of White Papers. Basics of IP Address Subnetting Expert Reference Series of White Papers Basics of IP Address Subnetting 1-800-COURSES www.globalknowledge.com Basics of IP Address Subnetting Norbert Gregorio, Global Knowledge Instructor Introduction

More information

IP Subnetting. Subnetting

IP Subnetting. Subnetting IP Subnetting Shailesh N. Sisat Prajkta S. Bhopale Vishwajit K. Barbudhe Abstract - Network management becomes more and more important as computer-networks grow steadily. A critical skill for any network

More information

Internet Protocols. Addressing & Services. Updated: 9-29-2012

Internet Protocols. Addressing & Services. Updated: 9-29-2012 Internet Protocols Addressing & Services Updated: 9-29-2012 Virtual vs. Physical Networks MAC is the part of the underlying network MAC is used on the LAN What is the addressing mechanism in WAN? WAN is

More information

Future Internet Technologies

Future Internet Technologies Future Internet Technologies Traditional Internet Dr. Dennis Pfisterer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Internet Protocol v4 (IPv4) IPv4 Model

More information

JOB READY ASSESSMENT BLUEPRINT COMPUTER NETWORKING FUNDAMENTALS - PILOT. Test Code: 4514 Version: 01

JOB READY ASSESSMENT BLUEPRINT COMPUTER NETWORKING FUNDAMENTALS - PILOT. Test Code: 4514 Version: 01 JOB READY ASSESSMENT BLUEPRINT COMPUTER NETWORKING FUNDAMENTALS - PILOT Test Code: 4514 Version: 01 Specific Competencies and Skills Tested in this Assessment: PC Principles Identify physical and equipment

More information

TCP/IP Network Essentials. Linux System Administration and IP Services

TCP/IP Network Essentials. Linux System Administration and IP Services TCP/IP Network Essentials Linux System Administration and IP Services Layers Complex problems can be solved using the common divide and conquer principle. In this case the internals of the Internet are

More information

(Refer Slide Time: 02:17)

(Refer Slide Time: 02:17) Internet Technology Prof. Indranil Sengupta Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No #06 IP Subnetting and Addressing (Not audible: (00:46)) Now,

More information

TCP/IP Basis. OSI Model

TCP/IP Basis. OSI Model TCP/IP Basis 高 雄 大 學 資 訊 工 程 學 系 嚴 力 行 Source OSI Model Destination Application Presentation Session Transport Network Data-Link Physical ENCAPSULATION DATA SEGMENT PACKET FRAME BITS 0101010101010101010

More information

NetFlow Subinterface Support

NetFlow Subinterface Support NetFlow Subinterface Support Feature History Release Modification 12.2(14)S This feature was introduced. 12.2(15)T This feature was integrated into Cisco IOS Release 12.2 T. This document describes the

More information

Internetworking and Internet-1. Global Addresses

Internetworking and Internet-1. Global Addresses Internetworking and Internet Global Addresses IP servcie model has two parts Datagram (connectionless) packet delivery model Global addressing scheme awaytoidentifyall H in the internetwork Properties

More information

Dynamic Host Configuration Protocol (DHCP) 02 NAT and DHCP Tópicos Avançados de Redes

Dynamic Host Configuration Protocol (DHCP) 02 NAT and DHCP Tópicos Avançados de Redes Dynamic Host Configuration Protocol (DHCP) 1 1 Dynamic Assignment of IP addresses Dynamic assignment of IP addresses is desirable for several reasons: IP addresses are assigned on-demand Avoid manual IP

More information

Classful IP Addressing (cont.)

Classful IP Addressing (cont.) Classful IP Addressing (cont.) 1 Address Prefix aka Net ID defines the network Address Suffix aka Host ID defines the node In Classful addressing, prefix is of fixed length (1, 2, or 3 bytes)! Classful

More information

Internet Protocols Fall 2005. Lectures 7-8 Andreas Terzis

Internet Protocols Fall 2005. Lectures 7-8 Andreas Terzis Internet Protocols Fall 2005 Lectures 7-8 Andreas Terzis Outline Internet Protocol Service Model Fragmentation Addressing Original addressing scheme Subnetting CIDR Forwarding ICMP ARP Address Shortage

More information

Ethernet. Ethernet. Network Devices

Ethernet. Ethernet. Network Devices Ethernet Babak Kia Adjunct Professor Boston University College of Engineering ENG SC757 - Advanced Microprocessor Design Ethernet Ethernet is a term used to refer to a diverse set of frame based networking

More information

Computer Networks. Definition of LAN. Connection of Network. Key Points of LAN. Lecture 06 Connecting Networks

Computer Networks. Definition of LAN. Connection of Network. Key Points of LAN. Lecture 06 Connecting Networks Computer Networks Lecture 06 Connecting Networks Kuang-hua Chen Department of Library and Information Science National Taiwan University Local Area Networks (LAN) 5 kilometer IEEE 802.3 Ethernet IEEE 802.4

More information

Network Basics GRAPHISOFT. for connecting to a BIM Server. 2009 (version 1.0)

Network Basics GRAPHISOFT. for connecting to a BIM Server. 2009 (version 1.0) for connecting to a BIM Server GRAPHISOFT 2009 (version 1.0) Basic Vocabulary...3 Local Area Networks...5 Examples of Local Area Networks...5 Example 1: LAN of two computers without any other network devices...5

More information

Chapter 3: Review of Important Networking Concepts. Magda El Zarki Dept. of CS UC Irvine elzarki@uci.edu http://www.ics.uci.

Chapter 3: Review of Important Networking Concepts. Magda El Zarki Dept. of CS UC Irvine elzarki@uci.edu http://www.ics.uci. Chapter 3: Review of Important Networking Concepts Magda El Zarki Dept. of CS UC Irvine elzarki@uci.edu http://www.ics.uci.edu/~magda 1 Networking Concepts Protocol Architecture Protocol Layers Encapsulation

More information

The Internet/Network Layer

The Internet/Network Layer IP Addresses and Routing Tables Destination Gateway Genmask Flags MSS Window Irtt Iface 138.38.96.0 0.0.0.0 255.255.248.0 U 0 0 0 eth0 127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo default 138.38.103.254 0.0.0.0

More information

Introduction to Routing and Packet Forwarding. Routing Protocols and Concepts Chapter 1

Introduction to Routing and Packet Forwarding. Routing Protocols and Concepts Chapter 1 Introduction to Routing and Packet Forwarding Routing Protocols and Concepts Chapter 1 1 1 Objectives Identify a router as a computer with an OS and hardware designed for the routing process. Demonstrate

More information

11/22/2013 1. komwut@siit

11/22/2013 1. komwut@siit 11/22/2013 1 Week3-4 Point-to-Point, LAN, WAN Review 11/22/2013 2 What will you learn? Representatives for Point-to-Point Network LAN Wired Ethernet Wireless Ethernet WAN ATM (Asynchronous Transfer Mode)

More information

Protocols. Packets. What's in an IP packet

Protocols. Packets. What's in an IP packet Protocols Precise rules that govern communication between two parties TCP/IP: the basic Internet protocols IP: Internet Protocol (bottom level) all packets shipped from network to network as IP packets

More information

Transport and Network Layer

Transport and Network Layer Transport and Network Layer 1 Introduction Responsible for moving messages from end-to-end in a network Closely tied together TCP/IP: most commonly used protocol o Used in Internet o Compatible with a

More information

You can probably work with decimal. binary numbers needed by the. Working with binary numbers is time- consuming & error-prone.

You can probably work with decimal. binary numbers needed by the. Working with binary numbers is time- consuming & error-prone. IP Addressing & Subnetting Made Easy Working with IP Addresses Introduction You can probably work with decimal numbers much easier than with the binary numbers needed by the computer. Working with binary

More information

CHAPTER 3 STATIC ROUTING

CHAPTER 3 STATIC ROUTING CHAPTER 3 STATIC ROUTING This chapter addresses the end-to-end delivery service of IP and explains how IP routers and hosts handle IP datagrams. The first section discusses how datagrams are forwarded

More information

Lab 10.4.1 IP Addressing Overview

Lab 10.4.1 IP Addressing Overview Lab 10.4.1 IP ing Overview Estimated time: 30 min. Objectives: Background: This lab will focus on your ability to accomplish the following tasks: Name the five different classes of IP addresses Describe

More information

How To Understand and Configure Your Network for IntraVUE

How To Understand and Configure Your Network for IntraVUE How To Understand and Configure Your Network for IntraVUE Summary This document attempts to standardize the methods used to configure Intrauve in situations where there is little or no understanding of

More information

One of the most important topics in any discussion of TCP/IP is IP. IP Addressing

One of the most important topics in any discussion of TCP/IP is IP. IP Addressing IP Addressing 125 machine, called a RARP server, responds with the answer, and the identity crisis is over. RARP uses the information it does know about the machine s MAC address to learn its IP address

More information

BASIC ANALYSIS OF TCP/IP NETWORKS

BASIC ANALYSIS OF TCP/IP NETWORKS BASIC ANALYSIS OF TCP/IP NETWORKS INTRODUCTION Communication analysis provides powerful tool for maintenance, performance monitoring, attack detection, and problems fixing in computer networks. Today networks

More information

IP Address Classes (Some are Obsolete) 15-441 Computer Networking. Important Concepts. Subnetting 15-441 15-641. Lecture 8 IP Addressing & Packets

IP Address Classes (Some are Obsolete) 15-441 Computer Networking. Important Concepts. Subnetting 15-441 15-641. Lecture 8 IP Addressing & Packets Address Classes (Some are Obsolete) 15-441 15-441 Computer Networking 15-641 Class A 0 Network ID Network ID 8 16 Host ID Host ID 24 32 Lecture 8 Addressing & Packets Peter Steenkiste Fall 2013 www.cs.cmu.edu/~prs/15-441-f13

More information

CS335 Sample Questions for Exam #2

CS335 Sample Questions for Exam #2 CS335 Sample Questions for Exam #2.) Compare connection-oriented with connectionless protocols. What type of protocol is IP? How about TCP and UDP? Connection-oriented protocols Require a setup time to

More information

Guide to TCP/IP, Third Edition. Chapter 2: IP Addressing and Related Topics

Guide to TCP/IP, Third Edition. Chapter 2: IP Addressing and Related Topics Guide to TCP/IP, Third Edition Chapter 2: IP Addressing and Related Topics Objectives Understand IP addressing, anatomy and structures, and addresses from a computer s point of view Recognize and describe

More information

2. IP Networks, IP Hosts and IP Ports

2. IP Networks, IP Hosts and IP Ports 1. Introduction to IP... 1 2. IP Networks, IP Hosts and IP Ports... 1 3. IP Packet Structure... 2 4. IP Address Structure... 2 Network Portion... 2 Host Portion... 3 Global vs. Private IP Addresses...3

More information

Application Protocols for TCP/IP Administration

Application Protocols for TCP/IP Administration Application Protocols for TCP/IP Administration BootP, TFTP, DHCP Agenda BootP TFTP DHCP BootP, TFTP, DHCP, v4.4 2 Page 60-1 BootP (RFC 951, 1542, 2132) BootP was developed to replace RARP capabilities

More information

Chapter 2 TCP/IP Networking Basics

Chapter 2 TCP/IP Networking Basics Chapter 2 TCP/IP Networking Basics A network in your home or small business uses the same type of TCP/IP networking that is used for the Internet. This manual provides an overview of IP (Internet Protocol)

More information

Lab 10.3.5a Basic Subnetting

Lab 10.3.5a Basic Subnetting Lab 10.3.5a Basic Subnetting Objective How to identify reasons to use a subnet mask How to distinguish between a default subnet mask and a custom subnet mask What given requirements determine the subnet

More information

Overview of Computer Networks

Overview of Computer Networks Overview of Computer Networks Client-Server Transaction Client process 4. Client processes response 1. Client sends request 3. Server sends response Server process 2. Server processes request Resource

More information

Network layer: Overview. Network layer functions IP Routing and forwarding

Network layer: Overview. Network layer functions IP Routing and forwarding Network layer: Overview Network layer functions IP Routing and forwarding 1 Network layer functions Transport packet from sending to receiving hosts Network layer protocols in every host, router application

More information

hp ProLiant network adapter teaming

hp ProLiant network adapter teaming hp networking june 2003 hp ProLiant network adapter teaming technical white paper table of contents introduction 2 executive summary 2 overview of network addressing 2 layer 2 vs. layer 3 addressing 2

More information

Internet Protocol: IP packet headers. vendredi 18 octobre 13

Internet Protocol: IP packet headers. vendredi 18 octobre 13 Internet Protocol: IP packet headers 1 IPv4 header V L TOS Total Length Identification F Frag TTL Proto Checksum Options Source address Destination address Data (payload) Padding V: Version (IPv4 ; IPv6)

More information

100-101: Interconnecting Cisco Networking Devices Part 1 v2.0 (ICND1)

100-101: Interconnecting Cisco Networking Devices Part 1 v2.0 (ICND1) 100-101: Interconnecting Cisco Networking Devices Part 1 v2.0 (ICND1) Course Overview This course provides students with the knowledge and skills to implement and support a small switched and routed network.

More information

Data Link Protocols. TCP/IP Suite and OSI Reference Model

Data Link Protocols. TCP/IP Suite and OSI Reference Model Data Link Protocols Relates to Lab. This module covers data link layer issues, such as local area networks (LANs) and point-to-point links, Ethernet, and the Point-to-Point Protocol (PPP). 1 TCP/IP Suite

More information

Interconnecting Cisco Network Devices 1 Course, Class Outline

Interconnecting Cisco Network Devices 1 Course, Class Outline www.etidaho.com (208) 327-0768 Interconnecting Cisco Network Devices 1 Course, Class Outline 5 Days Interconnecting Cisco Networking Devices, Part 1 (ICND1) v2.0 is a five-day, instructorled training course

More information

Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme. Auxiliary Protocols

Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme. Auxiliary Protocols Auxiliary Protocols IP serves only for sending packets with well-known addresses. Some questions however remain open, which are handled by auxiliary protocols: Address Resolution Protocol (ARP) Reverse

More information

ESSENTIALS. Understanding Ethernet Switches and Routers. April 2011 VOLUME 3 ISSUE 1 A TECHNICAL SUPPLEMENT TO CONTROL NETWORK

ESSENTIALS. Understanding Ethernet Switches and Routers. April 2011 VOLUME 3 ISSUE 1 A TECHNICAL SUPPLEMENT TO CONTROL NETWORK VOLUME 3 ISSUE 1 A TECHNICAL SUPPLEMENT TO CONTROL NETWORK Contemporary Control Systems, Inc. Understanding Ethernet Switches and Routers This extended article was based on a two-part article that was

More information

- IPv4 Addressing and Subnetting -

- IPv4 Addressing and Subnetting - 1 Hardware Addressing - IPv4 Addressing and Subnetting - A hardware address is used to uniquely identify a host within a local network. Hardware addressing is a function of the Data-Link layer of the OSI

More information

Data Communication Networks and Converged Networks

Data Communication Networks and Converged Networks Data Communication Networks and Converged Networks The OSI Model and Encapsulation Layer traversal through networks Protocol Stacks Converged Data/Telecommunication Networks From Telecom to Datacom, Asynchronous

More information

CS101 Lecture 19: Internetworking. What You ll Learn Today

CS101 Lecture 19: Internetworking. What You ll Learn Today CS101 Lecture 19: Internetworking Internet Protocol IP Addresses Routing Domain Name Services Aaron Stevens (azs@bu.edu) 6 March 2013 What You ll Learn Today What is the Internet? What does Internet Protocol

More information

CHAPTER 0 INTRODUCTION TO TCP/IP

CHAPTER 0 INTRODUCTION TO TCP/IP CHAPTER 0 INTRODUCTION TO TCP/IP This chapter gives an overview of TCP/IP networking principles that form the basis of discussion for many of the laboratories that are covered in this text. Using the example

More information

Protocols and Architecture. Protocol Architecture.

Protocols and Architecture. Protocol Architecture. Protocols and Architecture Protocol Architecture. Layered structure of hardware and software to support exchange of data between systems/distributed applications Set of rules for transmission of data between

More information

TCP/IP Fundamentals. Edmund Lam IT Audit Manager University of California edmund.lam@ucop.edu 7/25/99 1

TCP/IP Fundamentals. Edmund Lam IT Audit Manager University of California edmund.lam@ucop.edu 7/25/99 1 TCP/IP Fundamentals Edmund Lam IT Audit Manager University of California edmund.lam@ucop.edu 7/25/99 1 What we will discuss: TCP/IP related to OSI Layers History of TCP/IP and what is it? TCP/IP Structure

More information

How do I get to www.randomsite.com?

How do I get to www.randomsite.com? Networking Primer* *caveat: this is just a brief and incomplete introduction to networking to help students without a networking background learn Network Security. How do I get to www.randomsite.com? Local

More information