Modelling, simulation and identification of the solid state sintering after ceramic injection moulding
|
|
|
- Paula Adams
- 9 years ago
- Views:
Transcription
1 Mollig imlatio a itificatio of th oli tat itrig aftr cramic ijctio molig Jipg Sog * ** Ghaa Aya * hirry Barrir * Ja-Cla Gli* Baohg Li ** Davi Ralt *** * Fmto-S titt LMA ESMM/CRS 4 Chmi l épitaph 5 Baço Frac [email protected] {thirry.barrir ja-cla.gli}@iv-fcomt.fr ** Dpartmt of Appli Mchaic Sothwt Jiaotog Uivrity 611 Chg Sicha P. R. Chia *** O. D. Sim C Chmi palt 5 Baco Frac RÉSUMÉ. U moél coti baé r l voltio loi comportmt vico-platiq t tilié por écrir l procéé ificatio par iffio pha oli por compoat fabriqé par l procéé molag par ijctio por céramiq CM. L moèl a été implémté a co élmt fii vloppé r la platform Matlab. U métho opimiatio t propoé afi itifir l paramétr moél la loi comportmt. La imlatio prothé hach t ralié par c procéé CM t pri comm xmpl poit v mériq t xpérimtal. L réltat mériq ot valié par ai xprimtax. ABSRAC. o crib th itrig proc of oli tat iffio for th compot of cramic powr obtai by th powr ijctio molig a biig a cotim mol ba o th cotittiv law i vicoplatic typ i itroc. hi phyical mol ha b implmt i a Fiit Elmt Softwar vlop o th platform Matlab. h a optimizatio mtho ha b vlop for th itificatio of paramtr i th propo itrig mol. h itificatio by optimizatio oftwar ha b appli o a powr mol compot of th hip implat coit of th almia cramic powr. Ba o th compario btw xprimt a mollig by FE imlatio th itificatio procr giv accrat rlt. MOS-CLÉS : ificatio molag par ijctio por céramiq imlatio mériq itificatio. KEYWORDS: itrig cramic ijctio molig almia cramic mrical imlatio itificatio.
2 1. troctio Cramic ijctio molig CM i a combiatio of tchologi i particlat matrial ijctio molig a itrig proc. t i crrtly i cramic itri to mafactr i larg qatiti th mall complx a ar-t-hap compot with high prformac. CM th itrig tag i o of th mot importat tp i which th bi gr compot ar trat at th tmpratr blow th mltig poit of th mai cotitt to obtai th ir fial proprti by boig th powr particl togthr. h hrikag btw th gr compot a th itr o i grally i th rag 1-% a th ity of th fial compot i i th rag 9-1% Grma Bca of th larg hrikag i itrig proc trmiatio of th imioal chag a itortio i cary i itrial proctio to proc th compot i ar-t-hap a high qality. Bi th covtioal trial a rror mtho mrical imlatio of th itrig tag may b a fat a cotffctiv altrativ to olv thi problm. Svral cotittiv mol ba o th cotim mchaic hav b vlop to crib th itrig proc. A prly phomological mol to Olvky m ay to b implmt i mrical imlatio bt i rtrict for th poibiliti to gt accrat rlt Olvky th xprimtal mol to Bovar Bovar 1996 ata ar irctly obtai from ral matrial bt th ivtigatio o loaig coitio i limit at high tmpratr a th othr tr coitio ar calclat by xtrapolatio. h micromchaical mol to Ril a Kraft Ril t al m comprhiv for oli itrig bca it coir majority of th mchaim a factor i th tir itrig proc bt it i cary to ajt th mol paramtr for vario matrial. thi papr a vicoplatic cotittiv mol a th aociat fiit lmt mtho FEM ar to imlat th itrig proc. h mrical itificatio mtho icorporat with ilatomtr xprimt ar to trmi th paramtr i cotittiv mol. Mor accrat imlatio ca b carri ot ba o thi mol bca th cotittiv paramtr ar trmi with th am oftwar that will b for imlatio. h imlatio ar appli o th compot of almia cramic powr obtai by CM a biig. Compar with th xprimtal ata th imlatio rlt ar raoabl.. Sitrig mol.1. Cotittiv itrig mol o t p th rlatiohip btw th macrocopic trai rat tor a th tr tor i itrig a liar vicoplatic crp law i Ril t al Sch a cotittiv law i xpr: σ σ ε vp tr σ [1] G 9K
3 whr σ i th viatoric tr tor trσ i th trac of tr tor i th itity tor of co orr G i th har vicoity mol K i th blk vicoity mol a σ i th itrig tr. o itify th paramtr i th cotittiv law for itrig proc iffrt mol hav b vlop. th prt ty followig xprio ar McMkig t al. 199: r G 1 [] 9Diff r K 1 [] 54Diff 1 8 σ γ [4] r whr r i th iitial rai of phrical powr particl th iitial rlativ ity i rlativ ityγ i th rfac rgy of th particl. D iff i a iffio trm grally writt i th followig form: Qb R Ωδ D Diff b [5] k whr k i th Boltzma cotat Ω th atomic volm δd b i a iffio cofficit at grai itrfac R th pcific ga cotat a Q b i a activatio rgy. h mai limitatio of rlatiohip i [] [] a [4] ar rlat to thir valiity from th iitial ity of th poro mia to th fial tat.. Govrig qatio h momtm corvatio qatio a ma covratio qatio crib th mchaical bhavior of th powr aggrgatio rig th itrig tag Ralt t al. h momt covratio qatio i writt a : σ f ρ [6] t whr σ i th Cachy tr tor f i xtral appli forc i th iplacmt fil a t i th crrt procig tim. Bca th itrig proc i vry low th irtia forc i th right ha of th qatio [6] ar oft glct. h calclatio of rlativ ity i rlat to th ma corvatio qatio xpr a:
4 4.tr vp ε [7].. FEM oltio procr h copl qatio [1 6 7] ar olv by FEM i th followig form. h vlocity a rlativ ity ar cho a th mai oal variabl: B ε [8] whr ar th matrix of itrpolatio fctio B i trai rat itrpolatio matrix. Galrki mtho i appli to bil th rltig FE qatio xpr a: F K C M [9] h matrix M C K a F ar xpr by th followig rlatiohip: V f V V V Ω Ω Ω Ω tr B F B A B K B C M σ [1] whr ta for th ambly oprator ovr th lmt. A i a tor cribig th vicoplatic cotittiv bhavior: A ε A σ : 4 vp G K G σ [11] whr i th torial proct oprator. For fr itrig f icl oly gravity ffct xpr a:
5 5 f ρ g th [ 1] [1] whr ρ th i th thortical ity a g i gravity acclratio. Galrki mtho i to bil th FEM procr for oltio of th govrig qatio a cotittiv qatio. A xplicit high orr Rg-Ktta chm i mploy for th tim itgratio vlop o th platform of Matlab.. mrical itificatio.1. tificatio algorithm for itrig phyical paramtr h itificatio algorithm i ig for propr trmiatio of th matrial paramtr i th cotittiv mol which i to b i bqt mrical imlatio. h ilatomtr xprimt ar to ty th ificatio bhavior of th pcifi matrial i which th hrikag crv i obtai for 1D ca. O th othr ha th mrical imlatio ba o th abov itrig mol ar carri ot for 1D part with th giv iitial val for th matrial paramtr. A mrical rpo crv i obtai by ma of th FE imlatio. h optimizatio tratgy i propo to miimiz th iffrc btw both th hrikag crv obtai by ilatomtr xprimt a mrical imlatio rpctivly. h matrial paramtr ar th variabl to b optimiz. So th optimizatio i formlat a a miimizatio problm xpr a mi F x F x f i 1 x [ δdb Q b x i γ r ] f x i [1] whr f x i th hrikag crv rltig from th ilatomtr xprimt f x i th hrikag crv of mrical imlatio Fx i th ma rial qar btw both th two crv whr i1 ar itrig tmpratr x i th t of matrial paramtr... tificatio for almia cramic powr h itificatio mtho i appli to gt th matrial paramtr of ijctio mol almia cramic powr. h ata giv i Opfrma t al ar a rfrc for ilatomtr xprimt. h hrikag crv obtai by ig th iitial matrial paramtr i optimiz i orr to approach th crv obtai from ilatomtr xprimt a how i Fig. 1. h iitial val ar cho from th rfrc.
6 6 Shrikag im mi Fig. 1. Compario btw hrikag crv obtai by xprimt a optimizatio h iitial matrial paramtr of almia cramic powr obtai from th rfrc a th o obtai by itificatio ar lit i abl 1. abl1. tifi matrial paramtr Paramtr itial Rfrc tifi Q b KJ/mol 84 H t al δd b m / Cao t al γ J/m.71 Rh S.K r m H t al Ω m Chvalir t al Valiatio xampl h ijctio mol hip implat part of almia cramic powr ar cho a a xampl to valiat th itrig mol a propo itificatio procr. Fig.. Mh of th hip implat compot
7 7 h mh of th part i giv i Fig.. h tmpratr cycl for FE imlatio i hatig to 14 C with th rat 5 C/mi. h itifi matrial paramtr giv i abl.1 ar for FE imlatio. With th itifi paramtr th fial rlativ ity obtai by imlatio i th part i giv i Fig.. Fig.. h fial rlativ ity i hip implat compot h avrag hrikag ratio i 11.85%. h fial rlativ ity i abot 84.5%. Sch a rlt i i goo agrmt with th ilatomtr xprimt. Fig. 4 h photo of th itr hip implat For itrig xprimt th gr part of hip implat aftr biig i itr i a frac. h tmpratr cycl i th am a prcrib i imlatio. h
8 8 photograph o th part of hip implat aftr molig a itrig rpctivly ar how i Figr. xprimt th hrikag i abot 1% a th fial rlativ ity i abot 95%. gral th imlatio rlt agr with th xprimt. Bt th fial rlativ ity obtai by imlatio i l tha th xprimtal o. hi i to th fact that th itrig mol xpr by qatio [-5] i ot totally itabl for th fial itrig tag. 4. Coclio A phomological mol for th itrig by oli tat iffio ha b propo ba o th phyical coiratio a th trmiatio of mai rivig paramtr. h xprimt ig ilatomtr hav b carri ot o almia cramic powr with iffrt tmpratr cycl. h xprimt provi th cary ata for itificatio of th paramtr i th cotittiv mol mploy i imlatio. hi itificatio i rly combi with th of imlatio oftwar a vlop optimizatio tool. hi mtho i jtifi by th compario of xprimtal rlt a th o i by imlatio o a xampl of th itrig of a hip implat compot. Sch a compot i obtai by th ijctio molig a biig of th almia cramic powr. h rlt ar i goo agrmt which valiat th mollig imlatio a th itificatio procr. Ackowlgmt h athor prt thir thak to th pport of Frch Embay i Chia for th altrat octorial catio projct a th Ecatio Miitry of Chia for th octoral catio f 615. Rfrc Grma R. M. Bo A. jctio molig of mtal a cramic USA MPF Olvky E. A. hory of itrig : from icrt to cotim Matrial Scic a Egirig R 1998 p Bovar D. mrical imlatio of itrig a imioal chag of complx part Sitrig Cor ot EPMA 1999 p Ril H. Kozak V. Svoboa J. Eqilibrim por rfac itrig tr a cotittiv qatio for itrmiat a lat tag of itrig Part : Difioal ificatio a crp Acta Mtall. vol p Kraft. Ril H. mbrical imlatio of oli tat itrig mol a applicatio Joral of Erop Cramic Socity vol. 4 4 p
9 9 McMkig R. M. Kh L.. A iffioal crp law for powr compact Acta Mtall. vol p Ralt D. Barrir. a Gli J.C. Exprimt a mrical imlatio ba o a micro-macro cal mol for oli tat itrig h 7th itratioal cofrc o mrical mtho i itrial formig proc UMFORM' 1 oyohahi 18-1 J 1 Eitio Mori K. Japa p. 7-. Opfrma J. Blmm. J Emmrich W. D. Simlatio of itrig bhavior of a cramic gr boy ig avac thrmo-kitic aalyi hrmochimica Acta vol p.1-. H Z. Ma. J Cotittiv mollig of almia itrig: grai-iz ffct o omiat ificatio mchaim Comptatioal Matrial Scic vol i Fbrary 5 p Cao R.M. Rho W.H. Hr A.H. Platic formatio of fi-grai almia AlO: trfac cotroll iffioal crp Joral. of Amrica. Cramic. Socity. vol p Rh S.K. Critical rfac rgi of AlO a graphit Joral of Amrica. Cramic. Sociyt. vol p. -. Chvalir.J. Olago C. Fatozzi G. Gro H. Crp bhavior of almia zircoia a zircoia-togh almia Joral of th Eropa Cramic Socity Vol p
Problem Set 6 Solutions
6.04/18.06J Mathmatics for Computr Scic March 15, 005 Srii Dvadas ad Eric Lhma Problm St 6 Solutios Du: Moday, March 8 at 9 PM Problm 1. Sammy th Shar is a fiacial srvic providr who offrs loas o th followig
BASIC DEFINITIONS AND TERMINOLOGY OF SOILS
1 BASIC DEFINITIONS AND TERMINOLOGY OF SOILS Soil i a thr pha atrial hich coit of olid particl hich ak up th oil klto ad void hich ay b full of atr if th oil i aturatd, ay b full of air if th oil i dry,
PERFORMANCE EVALUATION ON THIN-WHITETOPPING
IJRET: Itratioal Joural of Rsarch i Egirig a Tchology ISSN: 2319-1163 pissn: 2321-7308 PERFORMANCE EVALUATION ON THIN-WHITETOPPING BN Skaa kumar 1, Suhas R 2, Bhava V 3 1 Assistat profssor, Civil girig
Numerical and Experimental Study on Nugget Formation in Resistance Spot Welding for High Strength Steel Sheets in Automobile Bodies
rasactios of JWRI, ol.38 (9), No. rasactios of JWRI, ol.38 (9), No. Numrical ad Exprimtal Study o Nuggt Formatio i Rsistac Spot Wldig for High Strgth Stl Shts i Automobil Bodis MA Nishu* ad MURAKAWA Hidkazu**
TIME VALUE OF MONEY: APPLICATION AND RATIONALITY- AN APPROACH USING DIFFERENTIAL EQUATIONS AND DEFINITE INTEGRALS
MPRA Muich Prsoal RPEc Archiv TIME VALUE OF MONEY: APPLICATION AND RATIONALITY- AN APPROACH USING DIFFERENTIAL EQUATIONS AND DEFINITE INTEGRALS Mahbub Parvz Daffodil Itratioal Uivrsy 6. Dcmbr 26 Oli at
Section 7.4: Exponential Growth and Decay
1 Sction 7.4: Exponntial Growth and Dcay Practic HW from Stwart Txtbook (not to hand in) p. 532 # 1-17 odd In th nxt two ction, w xamin how population growth can b modld uing diffrntial quation. W tart
Basis risk. When speaking about forward or futures contracts, basis risk is the market
Basis risk Whn spaking about forward or futurs contracts, basis risk is th markt risk mismatch btwn a position in th spot asst and th corrsponding futurs contract. Mor broadly spaking, basis risk (also
PREFERRED LIFE INSURANCE NORTH AMERICA
PREFERRED LIFE INSURANCE NORTH AMERICA Dat: Spt, 2011 Ditr Gaubatz Agda 1. Copt 2. History 3. Data 4. Futur 1 Copt No-prfrrd plas Normal mortality risk valuatio pross P r v a l ^ i r a s Issud at stadard
1. Online Event Registration 2. Event Marketing 3. Automated Event Progress Reports 4. Web based Point of Sale Terminal 5. Email Marketing System
2 t v E S d Ivit 3 M o it o r ro la 1 r g 1 Oli Evt Rgitratio 2 Evt Marktig 3 Automatd Evt rogr Rport 4 Wb bad oit of Sal Trmial 5 Email Marktig Sytm ag 1 of 6 Copyright 2004-2011 myvillag oli Evt Maagmt
5.4 Exponential Functions: Differentiation and Integration TOOTLIFTST:
.4 Eponntial Functions: Diffrntiation an Intgration TOOTLIFTST: Eponntial functions ar of th form f ( ) Ab. W will, in this sction, look at a spcific typ of ponntial function whr th bas, b, is.78.... This
Approximate Counters for Flash Memory
Approximat Coutrs for Flash Mmory Jack Cichoń ad Wojcich Macya Istitut of Mathmatics ad Computr Scic Wrocław Uivrsity of Tchology, Polad Abstract Flash mmory bcoms th a vry popular storag dvic Du to its
Punching of flat slabs: Design example
i Mol Co 00 Pnhing o lat la: Dign ampl Stan Lip, Arlio Mttoni, Migl Frnánz Riz Eol Polthniq Fééral Laann, Switzrlan, 6..0 Lip / Mttoni / Frnánz Riz / Eol Polthniq Fééral Laann, Switzrlan Bai ata. Gomtr
ENGINEERING COMPUTATION BY ARTIFICIAL NEURAL NETWORKS. Explaining Neural Networks
SRK oaz Poltcha Pozaa Ittut Mcha Stooa ul. Potroo 3, 6-965 Poza EGIEERIG COMPUAIO BY ARIFICIA EURA EWORKS Eplag ural tor ural tor ar copod o pl lt opratg paralll. h lt ar prd b bologcal rvou t. A atur,
Transistor is a semiconductor device with fast respond and accuracy. There are two types
Tranitor Amplifir Prpard y: Poa Xuan Yap Thory: Tranitor i a miondutor dvi with fat rpond and auray. Thr ar two typ of tranitor, a Bipolar Juntion Tranitor and a Fild Efft Tranitor. Hr, w will looking
Probabilistic maintenance and asset management on moveable storm surge barriers
Probabilistic maintnanc an asst managmnt on movabl storm surg barrirs Patrick Wbbrs Ministry of Transport, Public Works an Watr Managmnt Civil Enginring Division A n a l y s O n r h o u F a a l k a n s
3. Greatest Common Divisor - Least Common Multiple
3 Greatest Commo Divisor - Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd
E X C H A N G E R U L E S A N D C L E A R I N G R U L E S O F N A S D A Q O M X D E R I V A T I V E S M A R K E T S
E X C H A N G E R U L E S A N D C L E A R I N G R U L E S O F N A S D A Q O M X D E R I V A T I V E S M A R K E T S Fair Valu 1 Valuation Variabls Tabl 1 blow shows th variabls us in th rspctiv valuation
Lecture 3: Diffusion: Fick s first law
Lctur 3: Diffusion: Fick s first law Today s topics What is diffusion? What drivs diffusion to occur? Undrstand why diffusion can surprisingly occur against th concntration gradint? Larn how to dduc th
CHAPTER 4c. ROOTS OF EQUATIONS
CHAPTER c. ROOTS OF EQUATIONS A. J. Clark School o Enginring Dpartmnt o Civil and Environmntal Enginring by Dr. Ibrahim A. Aakka Spring 00 ENCE 03 - Computation Mthod in Civil Enginring II Dpartmnt o Civil
CAFA DIVERSITY JURISDICTION
Cla Action 101: CAFA Divrity Juridiction at a Glanc By Kathryn Honckr Jun 20, 2013 In thi dition of Cla Action 101, w giv a viual guid to th Cla Action Fairn Act (CAFA), 28 U.S.C. 1332(d)(2), to hlp you
Finite Dimensional Vector Spaces.
Lctur 5. Ft Dmsoal Vctor Spacs. To b rad to th musc of th group Spac by D.Maruay DEFINITION OF A LINEAR SPACE Dfto: a vctor spac s a st R togthr wth a oprato calld vctor addto ad aothr oprato calld scalar
Learning & Development
Larg & Dvlopmt Offrg ad Proc Updat Octobr 29th, 2012 Roara Torra, L&D Global Soluto Archtct Copyrght 2012 E. I. du Pot d Nmour ad Compay. All rght rrvd. Th DuPot Oval Logo, DuPot, Th mracl of cc ad all
A Combined Continuous/Binary Genetic Algorithm for Microstrip Antenna Design
A Combied Cotiuous/Biary Geetic Algorithm for Microstrip Atea Desig Rady L. Haupt The Pesylvaia State Uiversity Applied Research Laboratory P. O. Box 30 State College, PA 16804-0030 [email protected] Abstract:
Vector Network Analyzer
Cours on Microwav Masurmnts Vctor Ntwork Analyzr Prof. Luca Prrgrini Dpt. of Elctrical, Computr and Biomdical Enginring Univrsity of Pavia -mail: [email protected] wb: microwav.unipv.it Microwav Masurmnts
Why An Event App... Before You Start... Try A Few Apps... Event Management Features... Generate Revenue... Vendors & Questions to Ask...
Mo b i l E v ntap pgui d : Ho wt op ur c ha t hb te v ntap p f o ry o ura o c i a t i o n T he nt i a l Gui d t oe v ntap p E v nt nt i a l b y Tabl of Contnt Why An Evnt App......... o Whr to Start With
Magic Message Maker Amaze your customers with this Gift of Caring communication piece
Magic Mssag Makr maz your customrs with this Gift of aring communication pic Girls larn th powr and impact of crativ markting with this attntion grabbing communication pic that will hlp thm o a World of
www.akcp.com Virtual Sensors
www.akcp.cm Irduci: Virual Ssrs Virual ssrs ca b a vry pwrful l i yur mirig sysm. O h scuriyprb yu ca hav up 80 f hs virual ssrs ad hy allw fr a muliud f applicais. Igrai wih MODBUS wrks wih h scuriyprb
AP Calculus AB 2008 Scoring Guidelines
AP Calculus AB 8 Scoring Guidlins Th Collg Board: Conncting Studnts to Collg Succss Th Collg Board is a not-for-profit mmbrship association whos mission is to connct studnts to collg succss and opportunity.
Student: Entering Program:
Click o Box for catalog Bckr Collg Cours Plar AY 2015-2016 Studt: Etrig Program: BA.IENT-GMDS i Itractiv Mdia Computr Click Hr to s mor o your Major Co-Rq Pr-Rq FR FA ACAD 1001 First Yar Expric 2 Must
GROUP MEDICAL INSURANCE PROPOSAL FORM GROUP MEDICAL INSURANCE PROPOSAL FORM
Call us: 920012331 www.acig.com.sa Allid Cooprativ Isurac Group (ACIG) شركة املجموعة املتحدة للتاأمني التعاوين ) أ سيج( GROUP MEDICAL INSURANCE GROUP MEDICAL INSURANCE Clit Dtails: - GROUP MEDICAL INSURANCE
A Note on Approximating. the Normal Distribution Function
Applid Mathmatical Scincs, Vol, 00, no 9, 45-49 A Not on Approimating th Normal Distribution Function K M Aludaat and M T Alodat Dpartmnt of Statistics Yarmouk Univrsity, Jordan Aludaatkm@hotmailcom and
Question 3: How do you find the relative extrema of a function?
ustion 3: How do you find th rlativ trma of a function? Th stratgy for tracking th sign of th drivativ is usful for mor than dtrmining whr a function is incrasing or dcrasing. It is also usful for locating
Traffic Flow Analysis (2)
Traffic Flow Analysis () Statistical Proprtis. Flow rat distributions. Hadway distributions. Spd distributions by Dr. Gang-Ln Chang, Profssor Dirctor of Traffic safty and Oprations Lab. Univrsity of Maryland,
Category 7: Employee Commuting
7 Catgory 7: Employ Commuting Catgory dscription This catgory includs missions from th transportation of mploys 4 btwn thir homs and thir worksits. Emissions from mploy commuting may aris from: Automobil
B I N G O B I N G O. Hf Cd Na Nb Lr. I Fl Fr Mo Si. Ho Bi Ce Eu Ac. Md Co P Pa Tc. Uut Rh K N. Sb At Md H. Bh Cm H Bi Es. Mo Uus Lu P F.
Hf Cd Na Nb Lr Ho Bi Ce u Ac I Fl Fr Mo i Md Co P Pa Tc Uut Rh K N Dy Cl N Am b At Md H Y Bh Cm H Bi s Mo Uus Lu P F Cu Ar Ag Mg K Thomas Jefferson National Accelerator Facility - Office of cience ducation
Use a high-level conceptual data model (ER Model). Identify objects of interest (entities) and relationships between these objects
Chaptr 3: Entity Rlationship Modl Databas Dsign Procss Us a high-lvl concptual data modl (ER Modl). Idntify objcts of intrst (ntitis) and rlationships btwn ths objcts Idntify constraints (conditions) End
ME 612 Metal Forming and Theory of Plasticity. 6. Strain
Mtal Forming and Thory of Plasticity -mail: [email protected] Makin Mühndisliği Bölümü Gbz Yüksk Tknoloji Enstitüsü 6.1. Uniaxial Strain Figur 6.1 Dfinition of th uniaxial strain (a) Tnsil and (b) Comprssiv.
Introduction to Physical Systems Modelling with Bond Graphs
Introction to Physical Systms Molling with Bon Graphs Jan F. Bronink Univrsity o Twnt, pt EE, Control aboratory PO Box, N-5 AE Ensch Nthrlans -mail: [email protected] Introction Bon graphs ar a omain-inpnnt
1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).
PROCEDIMIENTO DE RECUPERACION Y COPIAS DE SEGURIDAD DEL CORTAFUEGOS LINUX P ar a p od e r re c u p e ra r nu e s t r o c o rt a f u e go s an t e un d es a s t r e ( r ot u r a d e l di s c o o d e l a
Department of Natural Resources
Dpartt o Natura Rsourcs DIVISION OF AGRICULTURE Northr Rio Oic 1648 S. Cusha St. #201 Fairbas, Aasa 99701-6206 Mai: 907.328.190 Far to Schoo Cha Ectroic Appicatio Istructios 1. Pas i out th ctroic survy
1.3 The pressure of maximum 10 bar, temperature of maximum +120 C, the instructions of the. EC-Declaration of conformity EGKE-DG-K100
Fülltadtchik Rad ad follow th afty itructio firt 1. Safty itructio Ho ad TubCouplig Ga+ K 1.1 Itallatio, moutig (fix ito ho), puttig ito opratio, maitac, rmoval ad rpair may carrid out by qualifid xpricd
Effect of Design Parameter on the Performance of Lithium Ion Battery
Aadil Ahmad, Mohd. Parvz / Intrnational Journal of Enginring Rarch and Application Vol. 3, Iu 4, Jul-Aug 2013, pp.1196-1201 Effct of Dign Paramtr on th Prformanc of Lithium Ion Battry Aadil Ahmad 1, Mohd.
Who uses our services? We have a growing customer base. with institutions all around the globe.
not taking xpr Srvic Guid 2013 / 2014 NTE i an affordabl option for audio to txt convrion. Our rvic includ not or dirct trancription rvic from prviouly rcordd audio fil. Our rvic appal pcially to tudnt
CLOUD COMPUTING BUSINESS MODELS
da MODLS Atlir d l iova CLOUD COMPUTING MODLS Chair coomi d l iova - Mourad Zroukhi C d chrch Écoomi t Maagmt Uivrsité d Chair coomi d l iova - da MODLS AGNDA Cloud Computig : What is it? Cloud Dploymt
Econ 371: Answer Key for Problem Set 1 (Chapter 12-13)
con 37: Answr Ky for Problm St (Chaptr 2-3) Instructor: Kanda Naknoi Sptmbr 4, 2005. (2 points) Is it possibl for a country to hav a currnt account dficit at th sam tim and has a surplus in its balanc
Factorials! Stirling s formula
Author s not: This articl may us idas you havn t larnd yt, and might sm ovrly complicatd. It is not. Undrstanding Stirling s formula is not for th faint of hart, and rquirs concntrating on a sustaind mathmatical
In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008
I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces
Entity-Relationship Model
Entity-Rlationship Modl Kuang-hua Chn Dpartmnt of Library and Information Scinc National Taiwan Univrsity A Company Databas Kps track of a company s mploys, dpartmnts and projcts Aftr th rquirmnts collction
i n g S e c u r it y 3 1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his å ] í d : L : g u id e Scanned by CamScanner
í d : r ' " B o m m 1 E x p e r i e n c e L : i i n g S e c u r it y. 1-1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his g u id e å ] - ew i c h P e t e r M u la e n PACKT ' TAÞ$Æo
S. Tanny MAT 344 Spring 1999. be the minimum number of moves required.
S. Tay MAT 344 Sprig 999 Recurrece Relatios Tower of Haoi Let T be the miimum umber of moves required. T 0 = 0, T = 7 Iitial Coditios * T = T + $ T is a sequece (f. o itegers). Solve for T? * is a recurrece,
New Basis Functions. Section 8. Complex Fourier Series
Nw Basis Functions Sction 8 Complx Fourir Sris Th complx Fourir sris is prsntd first with priod 2, thn with gnral priod. Th connction with th ral-valud Fourir sris is xplaind and formula ar givn for convrting
Put the human back in Human Resources.
Put the human back in Human Resources A Co m p l et e Hu m a n Ca p i t a l Ma n a g em en t So l u t i o n t h a t em p o w er s HR p r o f essi o n a l s t o m eet t h ei r co r p o r a t e o b j ect
union scholars program APPLICATION DEADLINE: FEBRUARY 28 YOU CAN CHANGE THE WORLD... AND EARN MONEY FOR COLLEGE AT THE SAME TIME!
union scholars YOU CAN CHANGE THE WORLD... program AND EARN MONEY FOR COLLEGE AT THE SAME TIME! AFSCME Unitd Ngro Collg Fund Harvard Univrsity Labor and Worklif Program APPLICATION DEADLINE: FEBRUARY 28
INFLUENCE OF DEBT FINANCING ON THE EFFECTIVENESS OF THE INVESTMENT PROJECT WITHIN THE MODIGLIANIMILLER THEORY
VOUME 2, 2 NFUENCE OF DEBT FNANCNG ON THE EFFECTVENE OF THE NVETMENT PROJECT WTHN THE MODGANMER THEORY Pr Brusov, Taaa Flaova, Naal Orhova, Pavl Brusov, Nasa Brusova Fac Uvrsy ur h Govrm of h Russa Frao,
Compression Outline. LZ77: Sliding Window Lempel-Ziv. Lempel-Ziv Algorithms. CPS 296.3:Algorithms in the Real World
Cmprssin Outlin CPS 296.3:Algrithms in th Ral Wrl Data Cmprssin III Intrutin: Lssy vs. Lsslss, Bnhmarks, Infrmatin Thry: Entrpy, t. Prbability Cing: Huffman + Arithmti Cing Appliatins f Prbability Cing:
PIN #1 ID FIDUCIAL LOCATED IN THIS AREA TOP VIEW. ccc C SIDE VIEW
Packag iagrams ruary 20 all W Packag Option : i0 P imnsions in illimtrs ata ht r PI # I IUI OT I TI R (X) 2 OTTO VIW. X Ø s TOP VIW Ø.0 Ø.0 I VIW OT:. IIO TOR PR Y. 99. 2. IIO R I IITR. IIO I UR T T XIU
5 2 index. e e. Prime numbers. Prime factors and factor trees. Powers. worked example 10. base. power
Prim numbrs W giv spcial nams to numbrs dpnding on how many factors thy hav. A prim numbr has xactly two factors: itslf and 1. A composit numbr has mor than two factors. 1 is a spcial numbr nithr prim
Temperature Sensors. Thermo-Mechanical Sensors Thermoresistive Sensors Thermocouples Junction-Based Thermal Sensors
mpratur sors hrmo-mchaical sors hrmorsistiv sors hrmocoupls Juctio-Basd hrmal sors hrmo-mchaical sors α L L L Cofficit of thrmal xpasio Opratig pricipl of thrmal bimorph switch hrmorsistiv sors hrmorsistiv
Operation Transform Formulae for the Generalized. Half Canonical Sine Transform
Appl Mhmcl Scnc Vol 7 3 no 33-4 HIKARI L wwwm-hrcom Opron rnorm ormul or h nrl Hl Cnoncl Sn rnorm A S uh # n A V Joh * # ov Vrh Inu o Scnc n Humn Amrv M S In * Shnrll Khnlwl Coll Aol - 444 M S In luh@mlcom
Chapter 20: Database Programming
Chapr 20: Daaa Prgrammig Pag 303 Chapr 20: Daaa Prgrammig Thi chapr wi hw hw BASIC-256 ca cc a imp raia aaa a u i r a rriv ufu ifrmai. Wha i a Daaa: A aaa i impy a rgaiz cci f umr, rig, a hr yp f ifrmai.
Derivation of Annuity and Perpetuity Formulae. A. Present Value of an Annuity (Deferred Payment or Ordinary Annuity)
Aity Deivatios 4/4/ Deivatio of Aity ad Pepetity Fomlae A. Peset Vale of a Aity (Defeed Paymet o Odiay Aity 3 4 We have i the show i the lecte otes ad i ompodi ad Discoti that the peset vale of a set of
Medicaid Eligibility in Michigan: 40 Ways
C E N T E R F O R H E A LT H C A R E R E S E A R C H & T R A N S F O R M AT I O N Policy Papr July 2012 Mdicaid Eligibility i Michiga: 40 Ways 503 id 1 U Pla F irst! hil d k Wor aivr Childr s W N wb to
CONSOLIDATED FINANCIAL SYSTEMS PRIVACY IMPACT ASSESSMENT EXECUTIVE SUMMARY
CONSOLIDATED FINANCIAL SYSTEMS PRIVACY IMPACT ASSESSMENT EXECUTIVE SUMMARY 2.1 Sytm Ovrviw Th CFS i a major iformatio ytm withi FOD. Th CFS ha b idtifid a a tial applicatio for Cotiuity of Opratio Pla
WORKERS' COMPENSATION ANALYST, 1774 SENIOR WORKERS' COMPENSATION ANALYST, 1769
08-16-85 WORKERS' COMPENSATION ANALYST, 1774 SENIOR WORKERS' COMPENSATION ANALYST, 1769 Summary of Dutis : Dtrmins City accptanc of workrs' compnsation cass for injurd mploys; authorizs appropriat tratmnt
CPS 220 Theory of Computation REGULAR LANGUAGES. Regular expressions
CPS 22 Thory of Computation REGULAR LANGUAGES Rgular xprssions Lik mathmatical xprssion (5+3) * 4. Rgular xprssion ar built using rgular oprations. (By th way, rgular xprssions show up in various languags:
Electric power can be transmitted or dis
64 64 Principls of Powr Systm CHAPTER CHAPTER Unrgroun Cabls. Unrgroun Cabls. Construction of Cabls.3 Insulating Matrials for Cabls.4 Classification of Cabls.5 Cabls for 3-Phas Srvic.6 Laying of Unrgroun
Free ACA SOLUTION (IRS 1094&1095 Reporting)
Fr ACA SOLUTION (IRS 1094&1095 Rporting) Th Insuranc Exchang (301) 279-1062 ACA Srvics Transmit IRS Form 1094 -C for mployrs Print & mail IRS Form 1095-C to mploys HR Assist 360 will gnrat th 1095 s for
81-1-ISD Economic Considerations of Heat Transfer on Sheet Metal Duct
Air Handling Systms Enginring & chnical Bulltin 81-1-ISD Economic Considrations of Hat ransfr on Sht Mtal Duct Othr bulltins hav dmonstratd th nd to add insulation to cooling/hating ducts in ordr to achiv
TELL YOUR STORY WITH MYNEWSDESK The world's leading all-in-one brand newsroom and multimedia PR platform
TELL YOUR STORY WITH MYNEWSDESK Th world's lading all-in-on brand nwsroom and multimdia PR platform SO WHAT'S THE STORY WITH MYNEWSDESK? Th world s lading all-in-on nwsroom and digital PR platform. Usd
Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers
Key Questions & Exercises Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers 1. The atomic weight of carbon is 12.0107 u, so a mole of carbon has a mass of 12.0107 g. Why doesn t a mole of
(Analytic Formula for the European Normal Black Scholes Formula)
(Analytic Formula for th Europan Normal Black Schols Formula) by Kazuhiro Iwasawa Dcmbr 2, 2001 In this short summary papr, a brif summary of Black Schols typ formula for Normal modl will b givn. Usually
Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry
Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Why? Chemists are concerned with mass relationships in chemical reactions, usually run on a macroscopic scale (grams, kilograms, etc.). To deal with
Physics 106 Lecture 12. Oscillations II. Recap: SHM using phasors (uniform circular motion) music structural and mechanical engineering waves
Physics 6 Lctur Oscillations II SJ 7 th Ed.: Chap 5.4, Rad only 5.6 & 5.7 Rcap: SHM using phasors (unifor circular otion) Physical pndulu xapl apd haronic oscillations Forcd oscillations and rsonanc. Rsonanc
How To Get A Better Price On A Drug
Biomial approximaio mhos for opio pricig Yasir hrwai U.U.D.M. Proc Rpor 7: Examsarb i mamaik poäg Halar och xamiaor: Joha ysk Ji 7 Dparm of Mahmaics Uppsala Uivrsiy Biomial Approximaio Mhos for Opio Pricig
THE PRINCIPLE OF THE ACTIVE JMC SCATTERER. Seppo Uosukainen
THE PRINCIPLE OF THE ACTIVE JC SCATTERER Seppo Uoukaie VTT Buildig ad Tapot Ai Hadlig Techology ad Acoutic P. O. Bo 1803, FIN 02044 VTT, Filad [email protected] ABSTRACT The piciple of fomulatig the
From Quantum to Matter 2006
From Quantum to Matter 006 Why such a course? Ronald Griessen Vrije Universiteit, Amsterdam AMOLF, May 4, 004 vrije Universiteit amsterdam Why study quantum mechanics? From Quantum to Matter: The main
Studio 24 scan control scan control. professional light desk user s manual rel. 1.41
Studio ca cotrol ca cotrol profioal light dk ur maual rl Gral itructio Rad th itructio i thi hadbook carfully, a thy giv importat iformatio rgardig afty durig itallatio, u ad maitac B ur to kp thi itructio
Long run: Law of one price Purchasing Power Parity. Short run: Market for foreign exchange Factors affecting the market for foreign exchange
Lctur 6: Th Forign xchang Markt xchang Rats in th long run CON 34 Mony and Banking Profssor Yamin Ahmad xchang Rats in th Short Run Intrst Parity Big Concpts Long run: Law of on pric Purchasing Powr Parity
THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n
We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample
STATEMENT OF INSOLVENCY PRACTICE 3.2
STATEMENT OF INSOLVENCY PRACTICE 3.2 COMPANY VOLUNTARY ARRANGEMENTS INTRODUCTION 1 A Company Voluntary Arrangmnt (CVA) is a statutory contract twn a company and its crditors undr which an insolvncy practitionr
Logo Design/Development 1-on-1
Logo Dsign/Dvlopmnt 1-on-1 If your company is looking to mak an imprssion and grow in th marktplac, you ll nd a logo. Fortunatly, a good graphic dsignr can crat on for you. Whil th pric tags for thos famous
LECTURE 13: Cross-validation
LECTURE 3: Cross-validatio Resampli methods Cross Validatio Bootstrap Bias ad variace estimatio with the Bootstrap Three-way data partitioi Itroductio to Patter Aalysis Ricardo Gutierrez-Osua Texas A&M
Foreign Exchange Markets and Exchange Rates
Microconomics Topic 1: Explain why xchang rats indicat th pric of intrnational currncis and how xchang rats ar dtrmind by supply and dmand for currncis in intrnational markts. Rfrnc: Grgory Mankiw s Principls
by John Donald, Lecturer, School of Accounting, Economics and Finance, Deakin University, Australia
Studnt Nots Cost Volum Profit Analysis by John Donald, Lcturr, School of Accounting, Economics and Financ, Dakin Univrsity, Australia As mntiond in th last st of Studnt Nots, th ability to catgoris costs
Dr David Dexter The Parkinson s UK Brain Bank
Dr David Dxtr Th Parkinon UK Brain Bank In aociation with Vrion 1/2011 introducing th brain bank Contnt Uing my tiu 4 Collcting my tiu 6 Storing my tiu 8 Uing my pronal information 10 W r th UK largt brain
Term Structure of Interest Rates: The Theories
Handou 03 Econ 333 Abdul Munasb Trm Srucur of Inrs Ras: Th Thors Trm Srucur Facs Lookng a Fgur, w obsrv wo rm srucur facs Fac : Inrs ras for dffrn maurs nd o mov oghr ovr m Fac : Ylds on shor-rm bond mor
where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return
EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The
SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx
SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval
[ ] These are the motor parameters that are needed: Motor voltage constant. J total (lb-in-sec^2)
MEASURING MOOR PARAMEERS Fil: Motor paramtrs hs ar th motor paramtrs that ar ndd: Motor voltag constant (volts-sc/rad Motor torqu constant (lb-in/amp Motor rsistanc R a (ohms Motor inductanc L a (Hnris
Soving Recurrence Relations
Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree
CPU. Rasterization. Per Vertex Operations & Primitive Assembly. Polynomial Evaluator. Frame Buffer. Per Fragment. Display List.
Elmntary Rndring Elmntary rastr algorithms for fast rndring Gomtric Primitivs Lin procssing Polygon procssing Managing OpnGL Stat OpnGL uffrs OpnGL Gomtric Primitivs ll gomtric primitivs ar spcifid by
Adverse Selection and Moral Hazard in a Model With 2 States of the World
Advrs Slction and Moral Hazard in a Modl With 2 Stats of th World A modl of a risky situation with two discrt stats of th world has th advantag that it can b natly rprsntd using indiffrnc curv diagrams,
Package Information Datasheet for Mature Altera Devices
Packag Information Datasht for Matur Altra Dvics DS-PKG-16.8 This datasht provids packag and thrmal rsistanc information for matur Altra dvics. Packag information includs th ordring cod rfrnc, packag acronym,
A Fuzzy Inventory System with Deteriorating Items under Supplier Credits Linked to Ordering Quantity
JOURNAL OF INFORMAION SCIENCE AND ENGINEERING 6, 3-53 () A Fuzzy Ivtory Syst with Dtrioratig Its udr Supplir Crdits Likd to Ordrig Quatity LIANG-YUH OUYANG, JINN-SAIR ENG AND MEI-CHUAN CHENG 3 Dpartt of
Outside Cut 1 of fabric Cut 1 of interfacing
a a Outsi Cut o abric Cut o intracing a a b b Outsi Cut o abric Cut o intracing Placmnt lin or Mony Pockts Dix Not: F. Cut Fol b. Pin t /8 in 5. Nx bottom pics sw th 6. For t Prss, 7. Lay togth on th 8.
Ra atoms and ions: production and spectroscopy Testing the Standard Model in Heavy Nuclei H.W. Wilschut
atoms and ions: production and spctroscopy Tsting th Standard Modl in Havy Nucli H.W. Wilschut TRIµP group TRIµP =Trappd dioactiv Isotops, µ-laboratoris for fundamntal Physics KVI - Univrsity of Groningn
