Computación I: intro to Matlab. Francesca Maria Marchetti
|
|
|
- Megan Holmes
- 10 years ago
- Views:
Transcription
1 Computación I: intro to Matlab Francesca Maria Marchetti UAM, 15 September 2014
2 Subgroup 5165 Units 1, 2, 3, 5 (control 1) Francesca Maria Marchetti Departamento de Física Teórica de la Materia Condensada Facultad de Ciencias - modulo 05 6 th floor office 606 tel.: [email protected] web: 15-Sept till 11 Dec Units 4 (controls 2&3) & project Jorge Bravo Abad Departamento de Física Teórica de la Materia Condensada Facultad de Ciencias - modulo 05 5 th floor office tel.: [email protected] web: 19 Jan till 17 Apr
3 Web page 1. Contacts 2. Course contents 3. Bibliography & useful links 4. Evaluation 5. Timetable & calendar 6. Complementary material: notes & handouts exercises solutions
4 Web page
5 Web page computacion1_14-15.html
6 Objectives of the course To understand how to write and use a program (in a language relevant for scientific calculations) To process, interpret, and present numerical data graphically To understand how to use computers as a tool to solve physical problems To develop to capability to model and implement a simple physical problems Public presentation of scientific results
7 Content Unit 1: Basic Numerical Concepts & First Applications Unit 2: Matrices, functions & Advanced Plotting/Scripting Unit 3: Linear Systems & Root Finding Unit 4: Probability, Data Analysis & Statistics Unit 5: Differential Equations, integration of Newton law Applications: Physical Systems
8 Unit 1 Introduction and basic concepts introduction to MATLAB MATLAB as a calculator (command line usage) variables, vectors, and (in-built) functions plotting scripts numerical derivatives numerical integration Application examples: Tiro parabolico, movimiento harmonico simple, moviemiento armonico amortiguado Posicion, aceleracion, trayectoria, energia
9 Unit 2 Matrices & functions matrix operations and representations user-defined functions loops: for & while if-else conditions representation of scalar and vector fields Application examples: translation and rotation of vectors discrete charge and mass distributions
10 Unit 3 Solving equations linear systems root finding Application examples: conservation of energy circuitos con resistencias y/o fuentes de voltaje que pueden variarse
11 Unit 5 Differential equations 1 st and 2 nd ordinary differential equations Euler method & Runge-Kutta method systems of coupled equations Application examples: Harmonic oscillator, friction, damping,... 1D equations of motion
12 Unit 4 Data analysis & statistics handling of large data sets statistical analysis of data sets data fitting probability distribution functions and random numbers Application examples: your lab (Técnicas Experimentales I) data analysis! lanzamiento de monedas, dados caminos aleatorios calculos de areas y volumenes
13 Project Physical systems Physical applications: some examples in the class, but most importantly: your very own project!!!
14 Content Unit 1: Basic Numerical Concepts & First Applications Unit 2: Matrices, functions & Advanced Plotting/Scripting Unit 3: Linear Systems & Root Finding Unit 4: Probability, Data Analysis & Statistics Unit 5: Differential Equations, integration of Newton law Applications: Physical Systems
15 Evaluation Unit 1: Basic Numerical Concepts & First Applications Unit 2: Matrices, functions & Advanced Plotting/Scripting Unit 3: Linear Systems & Root Finding Unit 4: Probability, Data Analysis & Statistics Unit 5: Differential Equations, integration of Newton law Applications: Physical Systems control #1 (common to all groups) 15% control #2 (separate for each group) 20% project 40% control #3 (common) 25%
16 When and where Grupo :30-13:30 Aula: CIE5 modulo 8 5 a planta aula 503 Sala Gauss (45 ordenadores) learning by doing: essential to also work at home
17 Why useful?..,i.e., why you should care...
18 Computation in physics Graphic representation of trajectories
19 Computation in physics Graphic representation of trajectories
20 Computation in physics Graphic representation of trajectories
21 Computation in physics Graphic representation of trajectories
22 2D and 3D plotting
23 2D and 3D plotting
24 Computation in physics Analysis of complex functions Zeros Max & min
25 Computation in physics Analysis of complex functions: energy conservation
26 Computation in physics Analysis of complex functions: energy conservation
27 Computation in physics Numerical solutions of differential equations Mechanics (Newton) Quantum mechanics (Schrödinger) Fluidodynamics (Navier-Stokes) Electrodynamics (Maxwell)
28 Pendulum Not soluble in terms of elementary functions, but you will be able to solve it numerically before the end of the course
29 Pendulum: small angle approximation Analytical solution (harmonic oscillator): compare with previous results
30 Double pendulum
31 Advanced numerics
32 How?
33 Matlab MATLAB = MATrix LABoratory interactive program computation and visualization...not a programming language array processing language tool to understand physics better very user friendly as well as powerful (1 million users in academia & industry only in 2004)
34 Free alternative
35 Example Graphic representation of trajectories
36 Example Graphic representation of trajectories
37 Example Graphic representation of trajectories 1. Definition of a vector t in a given interval 2. Definition of the vectors x(t) and y(t) 3. Plot
38 Bibliography launchpad.html idp=3338&id=132&texto=matlab 5. contenidos/introduccion-matlab/ 6. getstart.pdf 7. matlab70primero.pdf and many more Built-in help!!!!!
Pre-requisites 2012-2013
Pre-requisites 2012-2013 Engineering Computation The student should be familiar with basic tools in Mathematics and Physics as learned at the High School level and in the first year of Engineering Schools.
Vector Spaces; the Space R n
Vector Spaces; the Space R n Vector Spaces A vector space (over the real numbers) is a set V of mathematical entities, called vectors, U, V, W, etc, in which an addition operation + is defined and in which
The integrating factor method (Sect. 2.1).
The integrating factor method (Sect. 2.1). Overview of differential equations. Linear Ordinary Differential Equations. The integrating factor method. Constant coefficients. The Initial Value Problem. Variable
both double. A. T and v max B. T remains the same and v max doubles. both remain the same. C. T and v max
Q13.1 An object on the end of a spring is oscillating in simple harmonic motion. If the amplitude of oscillation is doubled, how does this affect the oscillation period T and the object s maximum speed
AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?
1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The
Numerical Methods for Differential Equations
1 Numerical Methods for Differential Equations 1 2 NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS Introduction Differential equations can describe nearly all systems undergoing change. They are ubiquitous
An Introduction to Applied Mathematics: An Iterative Process
An Introduction to Applied Mathematics: An Iterative Process Applied mathematics seeks to make predictions about some topic such as weather prediction, future value of an investment, the speed of a falling
Online Courses for High School Students 1-888-972-6237
Online Courses for High School Students 1-888-972-6237 PHYSICS Course Description: This course provides a comprehensive survey of all key areas: physical systems, measurement, kinematics, dynamics, momentum,
Cooling and Euler's Method
Lesson 2: Cooling and Euler's Method 2.1 Applied Problem. Heat transfer in a mass is very important for a number of objects such as cooling of electronic parts or the fabrication of large beams. Although
Solving ODEs in Matlab. BP205 M.Tremont 1.30.2009
Solving ODEs in Matlab BP205 M.Tremont 1.30.2009 - Outline - I. Defining an ODE function in an M-file II. III. IV. Solving first-order ODEs Solving systems of first-order ODEs Solving higher order ODEs
APPLIED MATHEMATICS ADVANCED LEVEL
APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications
ME 7103: Theoretical Vibrations Course Notebook
ME 7103: Theoretical Vibrations Course Notebook Instructor: Jeremy S. Daily, Ph.D., P.E. Fall 2009 1 Syllabus Instructor: Dr. Jeremy S. Daily E-mail: [email protected] Phone: 631-3056 Office: L173
Computers in Science Education A new Way to teach Science?
Computers in Science Education A new Way to teach Science? Morten Hjorth-Jensen 1,2 1 Department of Physics and Center of Mathematics for Applications, University of Oslo, Norway 2 Department of Physics
Computer programming course in the Department of Physics, University of Calcutta
Computer programming course in the Department of Physics, University of Calcutta Parongama Sen with inputs from Prof. S. Dasgupta and Dr. J. Saha and feedback from students Computer programming course
EDUMECH Mechatronic Instructional Systems. Ball on Beam System
EDUMECH Mechatronic Instructional Systems Ball on Beam System Product of Shandor Motion Systems Written by Robert Hirsch Ph.D. 998-9 All Rights Reserved. 999 Shandor Motion Systems, Ball on Beam Instructional
NUMERICAL METHODS TOPICS FOR RESEARCH PAPERS
Faculty of Civil Engineering Belgrade Master Study COMPUTATIONAL ENGINEERING Fall semester 2004/2005 NUMERICAL METHODS TOPICS FOR RESEARCH PAPERS 1. NUMERICAL METHODS IN FINITE ELEMENT ANALYSIS - Matrices
Applied Linear Algebra
Applied Linear Algebra OTTO BRETSCHER http://www.prenhall.com/bretscher Chapter 7 Eigenvalues and Eigenvectors Chia-Hui Chang Email: [email protected] National Central University, Taiwan 7.1 DYNAMICAL
KERN COMMUNITY COLLEGE DISTRICT CERRO COSO COLLEGE PHYS C111 COURSE OUTLINE OF RECORD
KERN COMMUNITY COLLEGE DISTRICT CERRO COSO COLLEGE PHYS C111 COURSE OUTLINE OF RECORD 1. DISCIPLINE AND COURSE NUMBER: PHYS C111 2. COURSE TITLE: Mechanics 3. SHORT BANWEB TITLE: Mechanics 4. COURSE AUTHOR:
Sample lab procedure and report. The Simple Pendulum
Sample lab procedure and report The Simple Pendulum In this laboratory, you will investigate the effects of a few different physical variables on the period of a simple pendulum. The variables we consider
PHYS 1624 University Physics I. PHYS 2644 University Physics II
PHYS 1624 Physics I An introduction to mechanics, heat, and wave motion. This is a calculus- based course for Scientists and Engineers. 4 hours (3 lecture/3 lab) Prerequisites: Credit for MATH 2413 (Calculus
250325 - METNUMER - Numerical Methods
Coordinating unit: 250 - ETSECCPB - Barcelona School of Civil Engineering Teaching unit: 751 - ECA - Department of Civil and Environmental Engineering Academic year: Degree: 2015 BACHELOR'S DEGREE IN GEOLOGICAL
Mathematical Modeling and Engineering Problem Solving
Mathematical Modeling and Engineering Problem Solving Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University Reference: 1. Applied Numerical Methods with
PS 320 Classical Mechanics Embry-Riddle University Spring 2010
PS 320 Classical Mechanics Embry-Riddle University Spring 2010 Instructor: M. Anthony Reynolds email: [email protected] web: http://faculty.erau.edu/reynolds/ps320 (or Blackboard) phone: (386) 226-7752
AMATH 352 Lecture 3 MATLAB Tutorial Starting MATLAB Entering Variables
AMATH 352 Lecture 3 MATLAB Tutorial MATLAB (short for MATrix LABoratory) is a very useful piece of software for numerical analysis. It provides an environment for computation and the visualization. Learning
Dynamic Process Modeling. Process Dynamics and Control
Dynamic Process Modeling Process Dynamics and Control 1 Description of process dynamics Classes of models What do we need for control? Modeling for control Mechanical Systems Modeling Electrical circuits
SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595. l. Course #: PHYSC 111 2. NAME OF ORIGINATOR /REVISOR: Dr.
SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595 l. Course #: PHYSC 111 2. NAME OF ORIGINATOR /REVISOR: Dr. Neil Basescu NAME OF COURSE: College Physics 1 with Lab 3. CURRENT DATE: 4/24/13
Assessment Plan for Learning Outcomes for BA/BS in Physics
Department of Physics and Astronomy Goals and Learning Outcomes 1. Students know basic physics principles [BS, BA, MS] 1.1 Students can demonstrate an understanding of Newton s laws 1.2 Students can demonstrate
USING MS EXCEL FOR DATA ANALYSIS AND SIMULATION
USING MS EXCEL FOR DATA ANALYSIS AND SIMULATION Ian Cooper School of Physics The University of Sydney [email protected] Introduction The numerical calculations performed by scientists and engineers
Numerical Solution of Differential Equations
Numerical Solution of Differential Equations Dr. Alvaro Islas Applications of Calculus I Spring 2008 We live in a world in constant change We live in a world in constant change We live in a world in constant
Modeling Mechanical Systems
chp3 1 Modeling Mechanical Systems Dr. Nhut Ho ME584 chp3 2 Agenda Idealized Modeling Elements Modeling Method and Examples Lagrange s Equation Case study: Feasibility Study of a Mobile Robot Design Matlab
Tutorial Program. 1. Basics
1. Basics Working environment Dealing with matrices Useful functions Logical operators Saving and loading Data management Exercises 2. Programming Basics graphics settings - ex Functions & scripts Vectorization
General Physics belongs to the core course module of the Degree of Telecommunication Technologies and Services Engineering.
1. COURSE TITLE General Physics 1.1. Course number 18465 1.2. Course area Physics 1.3. Course type Core course 1.4. Course level Undergraduate 1.5. Year 1º 1.6. Semester 1º 1.7. ECTS 6 1.8. Prerequisites
PSTricks. pst-ode. A PSTricks package for solving initial value problems for sets of Ordinary Differential Equations (ODE), v0.7.
PSTricks pst-ode A PSTricks package for solving initial value problems for sets of Ordinary Differential Equations (ODE), v0.7 27th March 2014 Package author(s): Alexander Grahn Contents 2 Contents 1 Introduction
University of Nicosia, Cyprus
University of Nicosia, Cyprus Course Code Course Title ECTS Credits MENG-492 Capstone Design Project II 6 Department Semester Prerequisites Engineering Fall, Spring Senior Standing and Approval by the
Introduction to Matlab
Introduction to Matlab Social Science Research Lab American University, Washington, D.C. Web. www.american.edu/provost/ctrl/pclabs.cfm Tel. x3862 Email. [email protected] Course Objective This course provides
State of Stress at Point
State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,
EASTERN ARIZONA COLLEGE Differential Equations
EASTERN ARIZONA COLLEGE Differential Equations Course Design 2015-2016 Course Information Division Mathematics Course Number MAT 260 (SUN# MAT 2262) Title Differential Equations Credits 3 Developed by
DRAFT. Further mathematics. GCE AS and A level subject content
Further mathematics GCE AS and A level subject content July 2014 s Introduction Purpose Aims and objectives Subject content Structure Background knowledge Overarching themes Use of technology Detailed
MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION)
MASTER OF SCIENCE IN PHYSICS Admission Requirements 1. Possession of a BS degree from a reputable institution or, for non-physics majors, a GPA of 2.5 or better in at least 15 units in the following advanced
2.5 Physically-based Animation
2.5 Physically-based Animation 320491: Advanced Graphics - Chapter 2 74 Physically-based animation Morphing allowed us to animate between two known states. Typically, only one state of an object is known.
Aim : To study how the time period of a simple pendulum changes when its amplitude is changed.
Aim : To study how the time period of a simple pendulum changes when its amplitude is changed. Teacher s Signature Name: Suvrat Raju Class: XIID Board Roll No.: Table of Contents Aim..................................................1
Numerical Methods for Differential Equations
Numerical Methods for Differential Equations Course objectives and preliminaries Gustaf Söderlind and Carmen Arévalo Numerical Analysis, Lund University Textbooks: A First Course in the Numerical Analysis
Dynamics. Basilio Bona. DAUIN-Politecnico di Torino. Basilio Bona (DAUIN-Politecnico di Torino) Dynamics 2009 1 / 30
Dynamics Basilio Bona DAUIN-Politecnico di Torino 2009 Basilio Bona (DAUIN-Politecnico di Torino) Dynamics 2009 1 / 30 Dynamics - Introduction In order to determine the dynamics of a manipulator, it is
Copyright 2011 Casa Software Ltd. www.casaxps.com
Table of Contents Variable Forces and Differential Equations... 2 Differential Equations... 3 Second Order Linear Differential Equations with Constant Coefficients... 6 Reduction of Differential Equations
Essential Mathematics for Computer Graphics fast
John Vince Essential Mathematics for Computer Graphics fast Springer Contents 1. MATHEMATICS 1 Is mathematics difficult? 3 Who should read this book? 4 Aims and objectives of this book 4 Assumptions made
(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7)
Chapter 4. Lagrangian Dynamics (Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7 4.1 Important Notes on Notation In this chapter, unless otherwise stated, the following
Euler s Method and Functions
Chapter 3 Euler s Method and Functions The simplest method for approximately solving a differential equation is Euler s method. One starts with a particular initial value problem of the form dx dt = f(t,
3.2 Sources, Sinks, Saddles, and Spirals
3.2. Sources, Sinks, Saddles, and Spirals 6 3.2 Sources, Sinks, Saddles, and Spirals The pictures in this section show solutions to Ay 00 C By 0 C Cy D 0. These are linear equations with constant coefficients
Lab 8: Ballistic Pendulum
Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally
Adequate Theory of Oscillator: A Prelude to Verification of Classical Mechanics Part 2
International Letters of Chemistry, Physics and Astronomy Online: 213-9-19 ISSN: 2299-3843, Vol. 3, pp 1-1 doi:1.1852/www.scipress.com/ilcpa.3.1 212 SciPress Ltd., Switzerland Adequate Theory of Oscillator:
COWLEY COLLEGE & Area Vocational Technical School
COWLEY COLLEGE & Area Vocational Technical School COURSE PROCEDURE FOR DIFFERENTIAL EQUATIONS MTH 4465 3 Credit Hours Student Level: This course is open to students on the college level in the sophomore
ORDINARY DIFFERENTIAL EQUATIONS
ORDINARY DIFFERENTIAL EQUATIONS GABRIEL NAGY Mathematics Department, Michigan State University, East Lansing, MI, 48824. SEPTEMBER 4, 25 Summary. This is an introduction to ordinary differential equations.
Unit - 6 Vibrations of Two Degree of Freedom Systems
Unit - 6 Vibrations of Two Degree of Freedom Systems Dr. T. Jagadish. Professor for Post Graduation, Department of Mechanical Engineering, Bangalore Institute of Technology, Bangalore Introduction A two
Experiment: Static and Kinetic Friction
PHY 201: General Physics I Lab page 1 of 6 OBJECTIVES Experiment: Static and Kinetic Friction Use a Force Sensor to measure the force of static friction. Determine the relationship between force of static
CS 1340 Sec. A Time: TR @ 8:00AM, Location: Nevins 2115. Instructor: Dr. R. Paul Mihail, 2119 Nevins Hall, Email: rpmihail@valdosta.
CS 1340 Sec. A Time: TR @ 8:00AM, Location: Nevins 2115 Course title: Computing for Scientists, Spring 2015 Instructor: Dr. R. Paul Mihail, 2119 Nevins Hall, Email: [email protected] Class meeting
Appendix 3 IB Diploma Programme Course Outlines
Appendix 3 IB Diploma Programme Course Outlines The following points should be addressed when preparing course outlines for each IB Diploma Programme subject to be taught. Please be sure to use IBO nomenclature
(!' ) "' # "*# "!(!' +,
MATLAB is a numeric computation software for engineering and scientific calculations. The name MATLAB stands for MATRIX LABORATORY. MATLAB is primarily a tool for matrix computations. It was developed
SCHWEITZER ENGINEERING LABORATORIES, COMERCIAL LTDA.
Pocket book of Electrical Engineering Formulas Content 1. Elementary Algebra and Geometry 1. Fundamental Properties (real numbers) 1 2. Exponents 2 3. Fractional Exponents 2 4. Irrational Exponents 2 5.
AP Physics C. Oscillations/SHM Review Packet
AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete
THE UNIVERSITY OF TEXAS AT AUSTIN Department of Aerospace Engineering and Engineering Mechanics. EM 311M - DYNAMICS Spring 2012 SYLLABUS
THE UNIVERSITY OF TEXAS AT AUSTIN Department of Aerospace Engineering and Engineering Mechanics EM 311M - DYNAMICS Spring 2012 SYLLABUS UNIQUE NUMBERS: 13815, 13820, 13825, 13830 INSTRUCTOR: TIME: Dr.
Numerical Methods for Engineers
Steven C. Chapra Berger Chair in Computing and Engineering Tufts University RaymondP. Canale Professor Emeritus of Civil Engineering University of Michigan Numerical Methods for Engineers With Software
PCHS ALGEBRA PLACEMENT TEST
MATHEMATICS Students must pass all math courses with a C or better to advance to the next math level. Only classes passed with a C or better will count towards meeting college entrance requirements. If
System of First Order Differential Equations
CHAPTER System of First Order Differential Equations In this chapter, we will discuss system of first order differential equations. There are many applications that involving find several unknown functions
Sample Questions for the AP Physics 1 Exam
Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each
Content. Chapter 4 Functions 61 4.1 Basic concepts on real functions 62. Credits 11
Content Credits 11 Chapter 1 Arithmetic Refresher 13 1.1 Algebra 14 Real Numbers 14 Real Polynomials 19 1.2 Equations in one variable 21 Linear Equations 21 Quadratic Equations 22 1.3 Exercises 28 Chapter
Mean value theorem, Taylors Theorem, Maxima and Minima.
MA 001 Preparatory Mathematics I. Complex numbers as ordered pairs. Argand s diagram. Triangle inequality. De Moivre s Theorem. Algebra: Quadratic equations and express-ions. Permutations and Combinations.
Prerequisite: High School Chemistry.
ACT 101 Financial Accounting The course will provide the student with a fundamental understanding of accounting as a means for decision making by integrating preparation of financial information and written
Pendulum Investigations. Level A Investigations. Level B Investigations
Pendulum Investigations Level A Investigations The Pendulum How can you change the period of a pendulum? Students are introduced to the vocabulary used to describe harmonic motion: cycle, period, and amplitude.
NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES
Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: [email protected] Research field: Statics and Dynamics Fluids mechanics
Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks
Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson
Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014
Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,
Mechanics 1: Conservation of Energy and Momentum
Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation
Financial Econometrics MFE MATLAB Introduction. Kevin Sheppard University of Oxford
Financial Econometrics MFE MATLAB Introduction Kevin Sheppard University of Oxford October 21, 2013 2007-2013 Kevin Sheppard 2 Contents Introduction i 1 Getting Started 1 2 Basic Input and Operators 5
CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION
No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August
Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
Computer Animation. Lecture 2. Basics of Character Animation
Computer Animation Lecture 2. Basics of Character Animation Taku Komura Overview Character Animation Posture representation Hierarchical structure of the body Joint types Translational, hinge, universal,
Metrics on SO(3) and Inverse Kinematics
Mathematical Foundations of Computer Graphics and Vision Metrics on SO(3) and Inverse Kinematics Luca Ballan Institute of Visual Computing Optimization on Manifolds Descent approach d is a ascent direction
Coffeyville Community College #MATH 202 COURSE SYLLABUS FOR DIFFERENTIAL EQUATIONS. Ryan Willis Instructor
Coffeyville Community College #MATH 202 COURSE SYLLABUS FOR DIFFERENTIAL EQUATIONS Ryan Willis Instructor COURSE NUMBER: MATH 202 COURSE TITLE: Differential Equations CREDIT HOURS: 3 INSTRUCTOR: OFFICE
CS 294-73 Software Engineering for Scientific Computing. http://www.cs.berkeley.edu/~colella/cs294fall2013. Lecture 16: Particle Methods; Homework #4
CS 294-73 Software Engineering for Scientific Computing http://www.cs.berkeley.edu/~colella/cs294fall2013 Lecture 16: Particle Methods; Homework #4 Discretizing Time-Dependent Problems From here on in,
Control and Simulation. in LabVIEW
Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics Control and Simulation HANS-PETTER HALVORSEN, 2011.08.12 in LabVIEW Faculty of Technology, Postboks
Orbits. Chapter 17. Dynamics of many-body systems.
Chapter 7 Orbits Dynamics of many-body systems. Many mathematical models involve the dynamics of objects under the influence of both their mutual interaction and the surrounding environment. The objects
2+2 Just type and press enter and the answer comes up ans = 4
Demonstration Red text = commands entered in the command window Black text = Matlab responses Blue text = comments 2+2 Just type and press enter and the answer comes up 4 sin(4)^2.5728 The elementary functions
Matlab Practical: Solving Differential Equations
Matlab Practical: Solving Differential Equations Introduction This practical is about solving differential equations numerically, an important skill. Initially you will code Euler s method (to get some
2014-15 CURRICULUM GUIDE
DUAL DEGREE PROGRAM COLUMBIA UNIVERSITY 2014-15 CURRICULUM GUIDE FOR WESLEYAN UNIVERSITY STUDENTS (September 4, 2014) The following tables list the courses that University requires for acceptance into
Experiment 7 ~ Conservation of Linear Momentum
Experiment 7 ~ Conservation of Linear Momentum Purpose: The purpose of this experiment is to reproduce a simple experiment demonstrating the Conservation of Linear Momentum. Theory: The momentum p of an
The Fourth International DERIVE-TI92/89 Conference Liverpool, U.K., 12-15 July 2000. Derive 5: The Easiest... Just Got Better!
The Fourth International DERIVE-TI9/89 Conference Liverpool, U.K., -5 July 000 Derive 5: The Easiest... Just Got Better! Michel Beaudin École de technologie supérieure 00, rue Notre-Dame Ouest Montréal
Contents. Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 1
Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors
GRADES 7, 8, AND 9 BIG IDEAS
Table 1: Strand A: BIG IDEAS: MATH: NUMBER Introduce perfect squares, square roots, and all applications Introduce rational numbers (positive and negative) Introduce the meaning of negative exponents for
Oscillations. Vern Lindberg. June 10, 2010
Oscillations Vern Lindberg June 10, 2010 You have discussed oscillations in Vibs and Waves: we will therefore touch lightly on Chapter 3, mainly trying to refresh your memory and extend the concepts. 1
CHAPTER 3. INTRODUCTION TO MATRIX METHODS FOR STRUCTURAL ANALYSIS
1 CHAPTER 3. INTRODUCTION TO MATRIX METHODS FOR STRUCTURAL ANALYSIS Written by: Sophia Hassiotis, January, 2003 Last revision: February, 2015 Modern methods of structural analysis overcome some of the
PHYS 050. Principle of Physics 84 HOURS 3 CREDITS
Division of Applied Science and Management School of Access PHYS 050 Fall 2011 COURSE OUTLINE PHYS 050 Principle of Physics 84 HOURS 3 CREDITS PREPARED BY: Tom McBee, Instructor DATE: APPROVED BY: Shelagh
AP1 Electricity. 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to
1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to (A) a force of repulsion between the shoes and the floor due to macroscopic gravitational forces.
Fluid Dynamics and the Navier-Stokes Equation
Fluid Dynamics and the Navier-Stokes Equation CMSC498A: Spring 12 Semester By: Steven Dobek 5/17/2012 Introduction I began this project through a desire to simulate smoke and fire through the use of programming
NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS
NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document
1 Finite difference example: 1D implicit heat equation
1 Finite difference example: 1D implicit heat equation 1.1 Boundary conditions Neumann and Dirichlet We solve the transient heat equation ρc p t = ( k ) (1) on the domain L/2 x L/2 subject to the following
Física Computacional Conceptos de programación.
Física Computacional Conceptos de programación. F. A. Velázquez-Muñoz Departamento de Física CUCEI UdeG 6 de febrero de 2015 Sistemas Operativos ms-dos windows linux suse; redhat; ubuntu; etc. unix Mac
