SARAL ACCESS TO OFF-LINE DATA
|
|
|
- Garry Richards
- 9 years ago
- Views:
Transcription
1 SARAL AltiKa
2 introduction Plot of the SARAL/AltiKa ground track over Africa (Credits: Google). S ARAL/AltiKa is a new mission in cooperation between CNES and ISRO (Indian Space Research Organization), conducted with the collaboration of EUMETSAT. In Hindi, SARAL means simple ; in English, SARAL stands for SAtellite for ARgos and ALtiKa. Carrying in particular a new-generation altimeter, the satellite will follow the same ground tracks as Envisat (ESA). This mission renews the series of successful altimetric missions such as TOPEX/Poseidon and Jason missions, conducted in cooperation between CNES, NASA, EUMETSAT and NOAA. All altimeters previously launched operated in Ku-band (13.6 GHz) coupled with S or C band. The idea of using Ka-band (35 GHz) is that the altimeter would be much less affected by the ionosphere than one operating at Ku-band, and would have enhanced performance in terms of vertical resolution, time decorrelation of echoes, spatial resolution and range noise. With the design of an adapted tracker algorithm, near-continuous altimetric tracking above all kinds of surface could be performed, which is especially important when approaching or leaving coasts. Among the expected advantages, a better observation of ice, rain, coastal zones, lakes, rivers and wave heights is foreseen. The SARAL/Altika satellite will be launched by a PSLV vehicle from India in It is planned to operate for a nominal period of 5 years, with an objective at 7 years.
3 ISRO / CNES responsibilities ISRO responsibilities > Project Management, shared with CNES >SARAL satellite engineering > Small Satellite Bus/Indian Mini Satellite - 2 Platform >SARAL Satellite Integration and Tests >PSLV Launch vehicle and services >Ground System & Operations Flight Operations Control Center S-band network stations X-band Hyderabad station Data communication network NRT and OFL products processing and distribution to users within India Archiving of all telemetry and products and auxiliary data >User services CNES responsibilities > Project Management, shared with ISRO > Overall SARAL system engineering >Integrated Payload Module including AltiKa mission payload ARGOS-3 mission payload > Support for SARAL Payload Module Integration and Tests >Ground System & Operations 2 Polar X-band stations [Swedish Space Corp.] Compatibility of L-band stations network required for the ARGOS-3/SARAL mission Data communication network AltiKa Mission Center NRT and OFL product processing software development, installation, training and support to operations (ISRO and EUMETSAT) NRT product processing, archiving, distribution to users outside India with the support of EUMETSAT OFL product processing and distribution to users outside India DORIS products processing and distribution Data providing to the ARGOS Global Processing Centers Archiving of all telemetry and products and auxiliary data >User services > ALTIKA System Coordination with other altimetry missions; expertise and long term CALVAL
4 Payload overview SARAL satellite in integration / CNES/JALBY Pierre, 2010 The SARAL payload includes the following instruments: An altimeter, provided by CNES (the main mission instrument) and a dual frequency microwave radiometer, provided by CNES (to correct the altimeter measurement for atmospheric range delays induced by water vapour). The AltiKa instrument consists of a Kaband altimeter and an embedded dual frequency radiometer (23.8 GHz / 37 GHz), both sharing the same antenna. The radiopositioning DORIS system, provided by CNES (for precise orbit determination using dedicated ground stations). A Laser Reflector Array (LRA), provided by CNES (to calibrate the orbit determination system). And the ARGOS-3 instrument (and associated components) that has its own mission on-board the SARAL satellite as part of the ARGOS system. View of the SARAL satellite (AltiKa & Argos-3 payloads accommodation on the platform)
5 T he AltiKa payload is based on a Ka-band altimeter (35.75 GHz), 1 st oceanographic altimeter using such a high frequency. At this frequency, the ionospheric attenuation can be considered as low and can be corrected by model, including in NRT processing. This feature eliminates the need for a dual-frequency altimeter. The use of Ka-band induces a reduced altimeter footprint that leads to a better spatial resolution (8 km footprint diameter). The decorrelation time of sea echoes at Ka-band is shorter than at Ku-band. So the number of independent echoes per second measured per second can be significantly increased to provide a high pulse repetition frequency (4 khz). Thanks to the use of Ka-band, a larger bandwidth is available compared to other altimeters. The 500 MHz bandwidth can provide a high vertical resolution (0.3 m). Parameter Altimeter band Pulse bandwidth Pulse duration The AltiKa instrument has the main following characteristics: Value GHz +/- 250 MHz 500 MHz 110 μs Artist view of the SARAL satellite / CNES/ill./SATTLER Oliver, 2010 Compared to Ku-band, a lower signal penetration of snow and ice is expected. The altimetric observation and height restitution thus correspond to a thin subsurface layer. This should improve measurements of snowpack with respect to ice aging in the surface layers of the polar ice caps. Moreover, ice grain size would also be measurable. Combined with better spatial resolution, Ka-band would therefore allow closer monitoring of sea and continental ice. Altimeter pulse repetition frequency Echo averaging (altimeter) Spectrum analyser (altimeter) Altimeter link budget Antenna diameter Focal length Offset Radiometer band Radiometric sensitivity Radiometric bias ~3.8 khz (automatically adjusted) ~25 ms 128 points 11 db (sigma naught = 6.5 db) 1000 mm 700 mm 100 mm 23.8 GHz +/- 200 MHz 37 GHz +/- 500 MHz < 0.3 K < 1 K Radiometric averaging 200 ms Data rate 38 kbits/s Mass (altimeter+radiometer) < 42 kg Power consumption (altimeter+radiometer) < 100 W
6 The SARAL / AltiKa orbit The SARAL / AltiKa satellite flies on the same ground-track as Envisat with a 501-pass, 35-day exact repeat cycle on a sun-synchronous orbit. The mean classical orbit elements are given in the table below: Orbit element Repeat period Number of revolution within a cycle Apogee altitude Perigee altitude Inclination Argument of perigee Local time at ascending node Earth Longitude of equator ascending crossing of pass1 Ground track control band Value 35 days km 786 km deg 90.0 deg 06:00 AM deg +/- 1 km The orbit auxiliary data are given in the table below: Auxiliary Data Semi major axis Values km Eccentricity Nodal period mn Number of orbits per day 14+11/35 Equatorial cross track separation Inertial nodal rate Mean Orbital speed 75 km deg/ day 7.47 km/s Due to the orbit eccentricity and Earth shape, the altimeter is designed to cover altitude range of +/- 25 km max. Plot of the SARAL/AltiKa ground track on the Antarctica (Credits: Google). Zoom on the French/Italian/Corsican coasts (Credits: CLS / Google).
7 saral / altika mission objectives SARAL/AltiKa main scientific objective is divided in sub-themes including: Intrinsic scientific studies of ocean at meso-scale dynamics: observations, theoretical analyses, modelling, data assimilation, parameterization, etc. Improvement of our understanding of the oceanic component in the climate system: investigation of local processes at small or medium scale poorly known and understood at present, but which have an impact on the modelling of climate variability at large spatial and temporal scales. Contribution to the study of coastal dynamic processes, especially small or medium scale phenomena, whose retrieval will enable to anticipate many downstream applications. Contribution to operational oceanography which requires large amounts of in situ and space observation data. S A R A L / A l t i K a s e c o n d a r y objectives are notably the m o n i t o r i n g o f t h e m a i n continental waters level (lakes, rivers, closed seas), the monitoring of mean sea level variations, the observation of polar oceans, the analysis and forecast of wave and wind fields, the study of continental ices and sea ices (thanks to improved performances of Ka-band over this kind of surfaces), the access to low rains climatology (enabled in counterpart to the sensitivity of Ka-band to clouds and low rains) and the marine biogeochemistry (notably through the role of the meso and sub-meso-scale physics). SARAL satellite in integration / CNES/JALBY Pierre, 2010
8 The SARAL/AltiKa Level-2 products The SARAL/AltiKa products will follow the same logic and scheme than Jason-2, with three latencies and three complexities. Note, however, that the high rate data will be 40 Hz (instead of 20 Hz classically). OGDR family IGDR family GDR family Reduced: 1 Hz OGDR-SSHA IGDR-SSHA GDR-SSHA Native: 1 Hz + 40 Hz OGDR IGDR GDR Sensor: 1 Hz + 40 Hz + waveforms - S-IGDR S-GDR Latency 3-5 Hours < 1.5 days ~40 days The products will be given in NetCDF standard to be consistent with other altimetric missions and altimetry toolbox such as BRAT (Basic Radar Altimetry Toolbox), developed by CNES & ESA. The Near Real Time products are also available in BUFR format for meteorological users. Orbit Auxiliary Data Meteo Fields Impacted Parameter Satellite altitude, Doppler correction Dry/wet tropospheric corrections, U/V wind vector, Surface pressure, Inverted barometer correction OGDR IGDR GDR DORIS Navigator Predicted Preliminary (DORIS MOE) Restituted Precise (DORIS+Laser POE) Pole Location Pole tide height Predicted Restituted Mog2D HF ocean dealiasing correction Not available Preliminary Precise GIM Ionosphere correction Available ACCESS TO NRT DATA The OGDR files are produced at ISRO and EUMETSAT. The official NRT products release will occurred about 6 months after launch, after the NRT verification phase. In near real time, EUMETSAT disseminates OGDR files on EUMETCast or via ftp (UMARF org/umarf) and ISRO disseminates OGDR files via ftp (MOSDAC ACCESS TO OFF-LINE DATA The official OFL products release will occur about 10 months after launch, after the OFL verification phase. The IGDR family is produced solely by CNES while GDR families are produced by CNES and ISRO. They are available on the AVISO ftp server ( oceanobs.com) and on MOSDAC ( CNES and ISRO archival facilities also provide a variety of auxiliary files used to produce the O/I/GDR datasets. Réalisation ACM CNES Toulouse - couverture Artist view of the SARAL satellite GEKO / CNES / Impression Messages FOR FURTHER INFORMATION > AVISO website ( oceanobs.com) & AVISO Users Service ([email protected]) French Scientific Missions of the French National Space Agency ( CNES website ( & ISRO website (
SARAL/AltiKa Products Handbook
References: CNES : SALP-MU-M-OP-15984-CN ISRO: xxx Issue: 2 rev 4 Date: December 9, 2013 Iss : 2.4 - date : December 9, 2013 i.1 Chronology Issues: Issue: Date: Reason for change: 1rev0 March 9, 2011
How To Monitor Sea Level With Satellite Radar
Satellite Altimetry Wolfgang Bosch Deutsches Geodätisches Forschungsinstitut (DGFI), München email: [email protected] Objectives You shall recognize satellite altimetry as an operational remote sensing
SARAL Project Overview ----------- CNES Activities Progress Status
SARAL Project Overview ----------- CNES Activities Progress Status Dr. J. Noubel, P. Sengenes 2nd SARAL-AltiKa Science Workshop Ahmedabad 15-17, March, 2011 ISRO/SAC Ahmedabad - India SARAL Program SARAL
Jason-2 GDR Quality Assessment Report. Cycle 059 07-02-2010 / 17-02-2010. M. Ablain, CLS. P. Thibaut, CLS
Jason-2 GDR Quality Assessment Report Cycle 059 07-02-2010 / 17-02-2010 Prepared by : S. Philipps, CLS M. Ablain, CLS P. Thibaut, CLS Accepted by : Approved by : DT/AQM, CLS E. Bronner, CNES Edition 01.0,
Jason-2 GDR Quality Assessment Report. Cycle 243 05-02-2015 / 15-02-2015. S. Philipps, CLS. M. Ablain, CLS. P. Thibaut, CLS
Jason-2 GDR Quality Assessment Report Cycle 243 05-02-2015 / 15-02-2015 Prepared by : H. Roinard, CLS S. Philipps, CLS M. Ablain, CLS P. Thibaut, CLS Accepted by : Approved by : DT/AQM, CLS E. Bronner,
Satellite Altimetry Missions
Satellite Altimetry Missions SINGAPORE SPACE SYMPOSIUM 30 TH SEPTEMBER 2015 AUTHORS: LUCA SIMONINI/ ERICK LANSARD/ JOSE M GONZALEZ www.thalesgroup.com Table of Content General Principles and Applications
Update on EUMETSAT ocean colour services. Ewa J. Kwiatkowska
Update on EUMETSAT ocean colour services Ewa J. Kwiatkowska 1 st International Ocean Colour Science meeting, 6 8 May, 2013 EUMETSAT space data provider for operational oceanography Operational data provider
16 th IOCCG Committee annual meeting. Plymouth, UK 15 17 February 2011. mission: Present status and near future
16 th IOCCG Committee annual meeting Plymouth, UK 15 17 February 2011 The Meteor 3M Mt satellite mission: Present status and near future plans MISSION AIMS Satellites of the series METEOR M M are purposed
CryoSat Product Handbook
CryoSat Product Handbook April 2012 ESRIN - ESA and Mullard Space Science Laboratory University College London Table of Content 1. Introduction... 5 1.1. Purpose and Scope of this User Guide... 5 1.2.
Indian Diplomacy At Work
Indian Diplomacy At Work 50 YEARS OF INDO-FRENCH SPACE CO-OPERATION BRINGING BENEFITS TO MANKIND 50 YEARS OF INDO-FRENCH SPACE CO-OPERATION Bringing Benefits to Mankind A time-tested partnership India
Marine route optimization. Jens Olaf Pepke Pedersen Polar DTU / DTU Space www.polar.dtu.dk www.space.dtu.dk
Marine route optimization Jens Olaf Pepke Pedersen Polar DTU / DTU Space www.polar.dtu.dk www.space.dtu.dk Early attempt at route optimization Jens Munk (1579-1628) Tries to find a way to India through
THE CURRENT EVOLUTIONS OF THE DORIS SYSTEM
THE CURRENT EVOLUTIONS OF THE DORIS SYSTEM TAVERNIER, G.; GRANIER, J.P.; JAYLES, C.; SENGENES, P. (CNES) ROZO, F. (COFRAMI) presented by P. VINCENT (CNES) Table of Contents System and Missions Satellites:
AltiKa Radiometer performance assessment
AltiKa Radiometer performance assessment R. Rodriguez Suquet & N. Steunou, J.L. Courrière DCT/SI/AR 2 nd SARAL/AltiKa Science Workshop March 15 th -17 st, 2011 - AHMEDABAD 1 Overview Radiometer Instrument
Examination Space Missions and Applications I (AE2103) Faculty of Aerospace Engineering Delft University of Technology SAMPLE EXAM
Examination Space Missions and Applications I AE2103 Faculty of Aerospace Engineering Delft University of Technology SAMPLE EXAM Please read these instructions first: This are a series of multiple-choice
DT CorSSH and DT SLA Product Handbook
AVISO DT CorSSH and DT SLA Product Handbook Reference: CLS-DOS-NT-08.341 Nomenclature: - Issue: 2 rev 0 Date: October 2012 Aviso Altimetry 8-10 rue Hermès, 31520 Ramonville St Agne, France [email protected]
Estimating Firn Emissivity, from 1994 to1998, at the Ski Hi Automatic Weather Station on the West Antarctic Ice Sheet Using Passive Microwave Data
Estimating Firn Emissivity, from 1994 to1998, at the Ski Hi Automatic Weather Station on the West Antarctic Ice Sheet Using Passive Microwave Data Mentor: Dr. Malcolm LeCompte Elizabeth City State University
1. Introduction. FER-Zagreb, Satellite communication systems 2011/12
1. Introduction Topics History Characteristics of satellite communications Frequencies Application 1 History Arthur C. Clark suggested in 1945. Earth coverage with 3 geostationary satellites. On 4th of
SSALTO/DUACS User Handbook:
Reference : CLS-DOS-NT-06-034 Nomenclature : SALP-MU-P-EA-21065- CLS Issue : 4rev 4 Date : 2015/06/30 CLS-DOS-NT-06-034 - Issue 4.4 - Date : 2015/06/30 - Nomenclature : SALP-MU-P-EA-21065-CLS i.1 Chronology
VIIRS-CrIS mapping. NWP SAF AAPP VIIRS-CrIS Mapping
NWP SAF AAPP VIIRS-CrIS Mapping This documentation was developed within the context of the EUMETSAT Satellite Application Facility on Numerical Weather Prediction (NWP SAF), under the Cooperation Agreement
Sentinel-1 Mission Overview
Sentinel-1 Mission Overview Pierre Potin Sentinel-1 Mission Manager, ESA Advanced Course on Radar Polarimetry ESRIN, Frascati, 19 January 2011 Global Monitoring for Environment and Security GMES is established
Radar Interferometric and Polarimetric Possibilities for Determining Sea Ice Thickness
Radar Interferometric and Polarimetric Possibilities for Determining Sea Ice Thickness by Scott Hensley, Ben Holt, Sermsak Jaruwatanadilok, Jeff Steward, Shadi Oveisgharan Delwyn Moller, Jim Reis, Andy
A Microwave Retrieval Algorithm of Above-Cloud Electric Fields
A Microwave Retrieval Algorithm of Above-Cloud Electric Fields Michael J. Peterson The University of Utah Chuntao Liu Texas A & M University Corpus Christi Douglas Mach Global Hydrology and Climate Center
An Introduction to the MTG-IRS Mission
An Introduction to the MTG-IRS Mission Stefano Gigli, EUMETSAT IRS-NWC Workshop, Eumetsat HQ, 25-0713 Summary 1. Products and Performance 2. Design Overview 3. L1 Data Organisation 2 Part 1 1. Products
RPG MWR PRO TN03 2012 09 Page 1 / 12 www.radiometer physics.de Radiometer Physics GmbH +49 2225 99981 0
Applications Tropospheric profiling of temperature, humidity and liquid water High resolution boundary layer temperature profiles, better resolution than balloons Input for weather and climate models (data
8. Communications Subsystem
PM-1.1-03 Rev C 8. Communications Subsystem The GOES-NOP spacecraft communications subsystem provides requisite conditioning, transmission, reception, and routing of mission data signals and telemetry
Studying cloud properties from space using sounder data: A preparatory study for INSAT-3D
Studying cloud properties from space using sounder data: A preparatory study for INSAT-3D Munn V. Shukla and P. K. Thapliyal Atmospheric Sciences Division Atmospheric and Oceanic Sciences Group Space Applications
Two primary advantages of radars: all-weather and day /night imaging
Lecture 0 Principles of active remote sensing: Radars. Objectives: 1. Radar basics. Main types of radars.. Basic antenna parameters. Required reading: G: 8.1, p.401-40 dditional/advanced reading: Online
Satellite Derived Dynamic Ocean Currents in the Arctic. Jens Olaf Pepke Pedersen Polar DTU / DTU Space www.polar.dtu.dk www.space.dtu.
Satellite Derived Dynamic Ocean Currents in the Arctic Jens Olaf Pepke Pedersen Polar DTU / DTU Space www.polar.dtu.dk www.space.dtu.dk Benefits of exploiting ocean currents Benjamin Franklins map of the
Real-time Ocean Forecasting Needs at NCEP National Weather Service
Real-time Ocean Forecasting Needs at NCEP National Weather Service D.B. Rao NCEP Environmental Modeling Center December, 2005 HYCOM Annual Meeting, Miami, FL COMMERCE ENVIRONMENT STATE/LOCAL PLANNING HEALTH
Günter Seeber. Satellite Geodesy 2nd completely revised and extended edition
Günter Seeber Satellite Geodesy 2nd completely revised and extended edition Walter de Gruyter Berlin New York 2003 Contents Preface Abbreviations vii xvii 1 Introduction 1 1.1 Subject of Satellite Geodesy...
RS platforms. Fabio Dell Acqua - Gruppo di Telerilevamento
RS platforms Platform vs. instrument Sensor Platform Instrument The remote sensor can be ideally represented as an instrument carried by a platform Platforms Remote Sensing: Ground-based air-borne space-borne
AUTOMATED OPERATIONAL MULTI-TRACKING HIGH PRECISION ORBIT DETERMINATION FOR LEO MISSIONS
AUTOMATED OPERATIONAL MULTI-TRACKING HIGH PRECISION ORBIT DETERMINATION FOR LEO MISSIONS J. Fernández Sánchez, F. M. Martínez Fadrique, A. Águeda Maté, D. Escobar Antón GMV S.A., Isaac Newton 11, 876 Tres
NASA Earth System Science: Structure and data centers
SUPPLEMENT MATERIALS NASA Earth System Science: Structure and data centers NASA http://nasa.gov/ NASA Mission Directorates Aeronautics Research Exploration Systems Science http://nasascience.nasa.gov/
COASTAL WIND ANALYSIS BASED ON ACTIVE RADAR IN QINGDAO FOR OLYMPIC SAILING EVENT
COASTAL WIND ANALYSIS BASED ON ACTIVE RADAR IN QINGDAO FOR OLYMPIC SAILING EVENT XIAOMING LI a, b, * a Remote Sensing Technology Institute, German Aerospace Center (DLR), Oberpfaffenhofen, 82234, Germany
Satellite Communications
Satellite Communications Department of Electrical Engineering Faculty of Engineering Chiangmai University Origin of Satellite Communications Arthur C. Clark (1945) British Science fiction writer propose
Development of an Integrated Data Product for Hawaii Climate
Development of an Integrated Data Product for Hawaii Climate Jan Hafner, Shang-Ping Xie (PI)(IPRC/SOEST U. of Hawaii) Yi-Leng Chen (Co-I) (Meteorology Dept. Univ. of Hawaii) contribution Georgette Holmes
http://www.isac.cnr.it/~ipwg/
The CGMS International Precipitation Working Group: Experience and Perspectives Vincenzo Levizzani CNR-ISAC, Bologna, Italy and Arnold Gruber NOAA/NESDIS & Univ. Maryland, College Park, MD, USA http://www.isac.cnr.it/~ipwg/
Ensuring the Preparedness of Users: NOAA Satellites GOES R, JPSS Laura K. Furgione
Ensuring the Preparedness of Users: NOAA Satellites GOES R, JPSS Laura K. Furgione U.S. Permanent Representative with the WMO Deputy Director, NOAA s s National Weather Service WMO Executive Council 65
Flight and Orbital Mechanics
Flight and Orbital Mechanics Lecture slides Challenge the future 1 Material for exam: this presentation (i.e., no material from text book). Sun-synchronous orbit: used for a variety of earth-observing
Frequencies for Mars Local High-Rate Links
IPN Progress Report 42-153 May 15, 2003 Frequencies for Mars Local High-Rate Links D. Hansen, 1 M. Sue, 1 T. Peng, 2 and F. Manshadi 2 This article considers the options for frequency choice for high-data-rate
APOPHIS 2029 A UNIQUE MISSION OPPORTUNITY
APOPHIS 2029 A UNIQUE MISSION OPPORTUNITY Jean-Yves Prado CNES Toulouse - France Presentation Outline APOPHIS reminder The April 2029 flyby Mission objectives Sequence of events Launch Orbit transfer Relative
25 Years of Indian Remote Sensing Satellite (IRS) Series
25 Years of Indian Remote Sensing Satellite (IRS) Series Vinay K Dadhwal Director National Remote Sensing Centre (NRSC), ISRO Hyderabad, INDIA 50 th Session of Scientific & Technical Subcommittee of COPUOS,
Algorithm Theoretical Basis Document (ATBD) of the CPP SAR numerical retracker for oceans
Réf. : S3A-NT-SRAL-00099-CNES Page : 1 / 16 Algorithm Theoretical Basis Document (ATBD) of the CPP SAR numerical retracker for oceans Nom et Sigle Date et Visa Rédigé par François BOY Thomas MOREAU (CLS)
Coriolis, a French project for operational oceanography
Coriolis, a French project for operational oceanography S Pouliquen *1,T Carval *1,L Petit de la Villéon *1, L Gourmelen *2, Y Gouriou *3 1 Ifremer Brest France 2 Shom Brest France 3 IRD Brest France Abstract
Near Real Time Blended Surface Winds
Near Real Time Blended Surface Winds I. Summary To enhance the spatial and temporal resolutions of surface wind, the remotely sensed retrievals are blended to the operational ECMWF wind analyses over the
Introduction to teledection
Introduction to teledection Formation Sébastien Clerc, ACRI-ST [email protected] ACRI-ST Earth Observation Actors and Markets 2 Earth Observation economic importance Earth Observation is one of
Hyperspectral Satellite Imaging Planning a Mission
Hyperspectral Satellite Imaging Planning a Mission Victor Gardner University of Maryland 2007 AIAA Region 1 Mid-Atlantic Student Conference National Institute of Aerospace, Langley, VA Outline Objective
Astronomical applications of the over-the-horizon radar NOSTRADAMUS
Astronomical applications of the over-the-horizon radar NOSTRADAMUS J-F. Degurse 1,2, J-Ph. Molinié 1, V. Rannou 1,S. Marcos 2 1 ONERA, Département Electromagnétisme et Radar 2 L2S Supéléc, CNRS UMR 8506,
Volcanic Ash Monitoring: Product Guide
Doc.No. Issue : : EUM/TSS/MAN/15/802120 v1a EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49 6151 807 555 Date : 2 June 2015 http://www.eumetsat.int WBS/DBS : EUMETSAT
Norwegian Satellite Earth Observation Database for Marine and Polar Research http://normap.nersc.no USE CASES
Norwegian Satellite Earth Observation Database for Marine and Polar Research http://normap.nersc.no USE CASES The NORMAP Project team has prepared this document to present functionality of the NORMAP portal.
Evolution of Satellite Communication Systems
Mathieu DERVIN Brussels, 6th May 2015 Brussels, May 2015 Agenda I. From Sputnik to wideband satellite services: The key technological evolutions II. Increase the satellite system capacity: A global system
SHARING BETWEEN TERRESTRIAL FLIGHT TELEPHONE SYSTEM (TFTS) AND RADIO ASTRONOMY IN THE 1.6 GHz BAND. Paris, May 1992
European Radiocommunications Committee (ERC) within the European Conference of Postal and Telecommunications Administrations (CEPT) SHARING BETWEEN TERRESTRIAL FLIGHT TELEPHONE SYSTEM (TFTS) AND RADIO
Communication Satellite Systems Trends and Network Aspects
Communication Satellite Systems Trends and Network Aspects Paul Anderson Communication Architectures Department The Aerospace Corporation [email protected] http://www.aero.org/ Lee Center, Caltech
The NASA Global Differential GPS System (GDGPS) and The TDRSS Augmentation Service for Satellites (TASS)
The Global Differential GPS System (GDGPS) and The TDRSS Augmentation Service for Satellites (TASS) Yoaz Bar-Sever, Larry Young, Frank Stocklin, Paul Heffernan and John Rush s Global Differential GPS System
Joint Polar Satellite System (JPSS)
Joint Polar Satellite System (JPSS) John Furgerson, User Liaison Joint Polar Satellite System National Environmental Satellite, Data, and Information Service National Oceanic and Atmospheric Administration
Mission Operations and Ground Segment
ESA Earth Observation Info Days Mission Operations and Ground Segment ESA EO Ground Segment and Mission Operations department (EOP-G) May 2013 EOEP 2013 Page 1 ESA Unclassified For Official Use MISSION
C-S TEAM. Page 1 of 5
Title: Medium/large vehicle tracking system Primary POC: Jacoba Auret Organization: C-S Team (Cape Peninsula University of Technology-Stellenbosch University) POC email: [email protected] Need We exist
Satellite Snow Monitoring Activities Project CRYOLAND
Satellite Snow Monitoring Activities Project CRYOLAND Background material for participants to the Workshop on European Snow Monitoring Perspectives, Darmstadt, 4-5 December 2012. CryoLand provides Snow,
SATELLITE IMAGES IN ENVIRONMENTAL DATA PROCESSING
SATELLITE IMAGES IN ENVIRONMENTAL DATA PROCESSING Magdaléna Kolínová Aleš Procházka Martin Slavík Prague Institute of Chemical Technology Department of Computing and Control Engineering Technická 95, 66
Description of Scatterometer Data Products
Scatterometer Data:// Description of Scatterometer Data Products QuikScat is no longer operational - last data recorded: 2009-Nov-23 REMSS QuikScat data set currently ends on 2009-11-19; data after that
Propagation Channel Emulator ECP_V3
Navigation simulators Propagation Channel Emulator ECP_V3 1 Product Description The ECP (Propagation Channel Emulator V3) synthesizes the principal phenomena of propagation occurring on RF signal links
ABSTRACT INTRODUCTION
Observing Fog And Low Cloud With A Combination Of 78GHz Cloud Radar And Laser Met Office: Darren Lyth 1, John Nash. Rutherford Appleton Laboratory: M.Oldfield ABSTRACT Results from two demonstration tests
Precision on earth. Reliability in space. RUAG Space.
Precision on earth. Reliability in space. RUAG Space. Image: ESA Precision on earth. Reliability in space. RUAG Space is the leading supplier of products for the space industry in Europe. Experience, outstanding
Interaction of Energy and Matter Gravity Measurement: Using Doppler Shifts to Measure Mass Concentration TEACHER GUIDE
Interaction of Energy and Matter Gravity Measurement: Using Doppler Shifts to Measure Mass Concentration TEACHER GUIDE EMR and the Dawn Mission Electromagnetic radiation (EMR) will play a major role in
Intra-seasonal and Annual variability of the Agulhas Current from satellite observations
Intra-seasonal and Annual variability of the Agulhas Current from satellite observations Marjolaine Krug Ecosystem Earth Observation (CSIR NRE) Pierrick Penven Laboratoire de Physique des Océans (IRD)
The National Strategy, Current Activities for Space Technology Development and Application
14-18 November 2011, Putrajaya, Malaysia The National Strategy, Current Activities for Space Technology Development and Application Lai Anh Khoi Space Technology Institute, VAST, Vietnam Bief History Space
Proba-V: Earthwatch Mission as part of ESA s Earth Observation Programmes
Proba-V: Earthwatch Mission as part of ESA s Earth Observation Programmes Antwerp 05.07.2013 Bianca Hoersch Proba-V Mission Manager Third Party Mission & Sentinel-2 Mission Manager Earth Observation Directorate,
Bi-Directional DGPS for Range Safety Applications
Bi-Directional DGPS for Range Safety Applications Ranjeet Shetty 234-A, Avionics Engineering Center, Russ College of Engineering and Technology, Ohio University Advisor: Dr. Chris Bartone Outline Background
Active and Passive Microwave Remote Sensing
Active and Passive Microwave Remote Sensing Passive remote sensing system record EMR that was reflected (e.g., blue, green, red, and near IR) or emitted (e.g., thermal IR) from the surface of the Earth.
Space Environment and Satellite Systems: Removing Clutter from Ground-to-Satellite Signals. Sigrid Close
Space Environment and Satellite Systems: Removing Clutter from Ground-to-Satellite Signals Sigrid Close Background Overview RF propagation through ionosphere can be problematic Goals Traditionally too
CBERS Program Update Jacie 2011. Frederico dos Santos Liporace AMS Kepler [email protected]
CBERS Program Update Jacie 2011 Frederico dos Santos Liporace AMS Kepler [email protected] Overview CBERS 3 and 4 characteristics Differences from previous CBERS satellites (CBERS 1/2/2B) Geometric
Towards assimilating IASI satellite observations over cold surfaces - the cloud detection aspect
Towards assimilating IASI satellite observations over cold surfaces - the cloud detection aspect Tuuli Perttula, FMI + Thanks to: Nadia Fourrié, Lydie Lavanant, Florence Rabier and Vincent Guidard, Météo
Monitoring a Changing Environment with Synthetic Aperture Radar. Alaska Satellite Facility National Park Service Don Atwood
Monitoring a Changing Environment with Synthetic Aperture Radar Don Atwood Alaska Satellite Facility 1 Entering the SAR Age 2 SAR Satellites RADARSAT-1 Launched 1995 by CSA 5.6 cm (C-Band) HH Polarization
IOMASA DTU Status October 2003
IOMASA DTU Status October 2003 Leif Toudal Pedersen Dorthe Hofman-Bang Roberto Saldo LTP - 04/11/2003-1 DTU IOMASA Web site http://www.seaice.dk/iomasa LTP - 04/11/2003-2 OI-SAF products in browser LTP
Mobile Communications: Satellite Systems
Mobile Communications: Satellite Systems Mobile Communication: Satellite Systems - Jochen Schiller http://www.jochenschiller.de 1 History of satellite communication 1945 Arthur C. Clarke publishes an essay
Coverage Characteristics of Earth Satellites
Coverage Characteristics of Earth Satellites This document describes two MATLAB scripts that can be used to determine coverage characteristics of single satellites, and Walker and user-defined satellite
Monitoring and Early Management of Emergences: New Instruments
Monitoring and Early Management of Emergences: New Instruments Daniele Caviglia, DITEN - University of Genoa Domenico Sguerso, DICCA - University of Genoa Bianca Federici, DICCA - University of Genoa Andrea
MI oceanographic data
Marine Institute Oceanographic Data SMARTSkills 2013 Postgraduate Workshop Galway, Oct 2013 Kieran Lyons ([email protected]) MI oceanographic data Measured Operational metocean time series (weather
Overview of NASA s Laser Communications Relay Demonstration
Overview of NASA s Laser Communications Relay Demonstration April 2012 Bernard Edwards NASA Goddard Space Flight Center (301) 286-8926 [email protected] 1 LCRD Demonstration Scenarios Mission
SATELLITE COMMUNICATION
SATELLITE COMMUNICATION By Gaurish Kumar Tripathi. 1.0 INTRODUCTION: The use of satellite in communication system is very much a fact of everyday in life. This is evidence by the many homes, which are
LANDSAT 7 - GROUND SEGMENT ACTIVITIES AT THE GERMAN REMOTE SENSING DATA CENTER. Deutsches Fernerkundungsdatenzentrum (DFD) DLR (*)
LANDSAT 7 - GROUND SEGMENT ACTIVITIES AT THE GERMAN REMOTE SENSING DATA CENTER Günter Strunz (*), Hans-Dietrich Bettac (**), Jörg Gredel (*), Klaus-Dieter Reiniger (*) & Gunter Schreier (*) Deutsches Fernerkundungsdatenzentrum
CCAR Near Real Time and Historical Altimeter Data Server
CCAR Near Real Time and Historical Altimeter Data Server http://eddy.colorado.edu/ccar/data_viewer/index Bob Leben March 2015 GCOOS BOD Meeting CCAR Near Real Time Altimeter Data System! In late 1995,
Jason-1 Project Status
2009 Ocean Surface Topography Science Team Meeting (Seattle) Jason-1 Project Status Glenn M. Shirtliffe NASA/JPL Jason-1 Project Manager GMS - 1 Jason-1 Mission Overview The 17+ year combined data record
Orbital Mechanics and Space Geometry
Orbital Mechanics and Space Geometry AERO4701 Space Engineering 3 Week 2 Overview First Hour Co-ordinate Systems and Frames of Reference (Review) Kepler s equations, Orbital Elements Second Hour Orbit
Apogee Series. > > Motion Compensation and Data Georeferencing. > > Smooth Workflow. Mobile Mapping. > > Precise Trajectory and Direct Georeferencing
Ultimate accuracy MEMS Apogee Series Inertial Navigation System Motion Sensing and Georeferencing > INS > MRU > AHRS ITAR free 0,005 RMS Apogee Series High quality, high accuracy Hydrography > > Motion
Obtaining and Processing MODIS Data
Obtaining and Processing MODIS Data MODIS is an extensive program using sensors on two satellites that each provide complete daily coverage of the earth. The data have a variety of resolutions; spectral,
