Satellite Communications
|
|
|
- Melina Griffin
- 10 years ago
- Views:
Transcription
1 Satellite Communications Department of Electrical Engineering Faculty of Engineering Chiangmai University Origin of Satellite Communications Arthur C. Clark (1945) British Science fiction writer propose the idea of a synchronous satellite communication 3 satellites in an equatorial orbit, radius of about 42,242 km. spaced 120 apart from each other could cover the whole world to transmit and receive signals that relayed between the satellites Brief History 1957 SPUTNIKS USSR 1958 SCORE USA 1965 Early Bird or USA INTELSAT 1 The first commercial satellite Satellite Communications System is growing so rapidly Difficult to summarize the list of satellites in space Satellite positions are assigned by ITU (International Telecommunication Union) which is part of UN -1-
2 Components of Satellite Communications Frequency Band Designations Frequency range, GHz Band Designation VHF UHF L S C X Ku K Ka mm Satellite Orbit -2-
3 Kepler s First Law radius of orbit r 0 p = semilatus rectum = h 2 / e = eccentricity = h 2 C / h = magnitude of angular momentum vector(constant) = Kepler s constant = 3.98x10 5 km 3 / s 2 C = Boundary condition(constant) For e < 1, the orbit is an ellipse e = 0, the orbit is circle Kepler s Second Law The differential area swept out by vector r 0 da = 0.5 h dt The radius vector to the Satellite sweeps out equal areas in equal times The orbital period T Kepler s Third Law The square of the period of revolution is proportional to the cube of the semimajor axis -3-
4 Types of Orbits Polar Orbit Circular movement from N to S, LEO or MEO Navigation, Weather Forecasting, Resources Surveying Inclined Orbit Elliptical inclined orbit, LEO or MEO Navigation, Weather Forecasting, Resources Surveying Equatorial Orbit Lies in equatorial plane and appear stationary relative to the earth Geosynchronous orbit or geostationary orbit Most widely used and more larger Orbital Perturbation Effects of a nonspherical Earth The earth s gravitational potential is not uniform drift toward and circulate around the nearer of longitudes of 105 W and 75 E called graveyards (they collect old satellites) Effects of the Sun and Moon Gravitational attractions change the orbital inclination, the Moon > the Sun Orbital Effects in Communication Doppler Shift The change in transmitting and receiving frequency due to the different of their velocities negligible for geosynchronous satellites quite effected for low earth orbit satellites compensated by tracking in narrow receiver -4-
5 Orbital Effects in Communication Eclipse earth prevents sunlight from reaching satellite no power from its solar cell use batteries stop using some transponders Orbital Effects in Communication Sun Transit Outage satellite stay between the sun and the earth noise rise up and interfere normal operation using other satellites to help prevent from losing itself due to no control signal Satellite Launching Methods 1. ELV (Expendable Launch Vehicles) Delta (USA) Ariane (France) # put satellite on transfer orbit from 300 km to their real orbit 38,600 km by its AKM (apogee kick motor) -5-
6 Satellite Launching Methods 2. STS (Space Transportation System) The Space Shuttle by NASA 296 km circular orbit put satellite to transfer orbit using PAM (Payload Assist Module) using AKM for geosynchronous orbit The Steps in Launching 1. Spinner Cylindrical satellite spin around the axis that is parallel to the N S axis rev/min decrease disturbance torques Types of Satellites -6-
7 Types of Satellites 2. The three axis stabilization stabilizing for each of the three axis body stabilization 3 flywheels react disturbance torques from each axis Controlling the orbit and attitude Telemetry Tracking and Command (TT&C) Telemetry Collect data from many sensors and send to earth station Tracking observe and determine position of satellite Command message from earth station to control attitude, position (using gas jet to correct them) and control all communication systems Antennas for Earth Station 1. Offset Paraboloidal Refector Antenna feeder is on the focal point of the dish suitable for small diameter antenna often used in direct satellite TV such as UBC -7-
8 Antennas for Earth Station 2. Cassegrain Antenna very large dia. up to 30 m. high gain suitable for control station Signal Impairments Propagation Impairment Rain Attenuation Atmospheric Losses Refraction Signal Scintillations Reflection Multipath Propagation Delays Intersymbol Interference Signal Depolarization Interference Physical Cause rain and cloud O 2, H 2 O Atmospheric gases Refractivity Fluctuations Objects on the earth surfaces Distance Ducting, Scatter, Diffraction Ice Crystals Signals from other systems Types A B C E F Types of Interference -8-
9 Satellite Access 1. Frequency Division Multiple Access (FDMA) assign specific frequency for each earth station Satellite Access 2. Time Division Multiple Access (TDMA) assign time slot for each earth station Satellite Access 3. Code Division Multiple Access (CDMA) each earth station use its own code -9-
10 VSAT Very Small Aperture Antenna Diameter of antenna 2 meters Such as UBC Mobile Satellite Transportation Logistic TV station MSAT GPS Global Positioning Satellite System Navigation Mapping Surveying -10-
11 Satellite for Earth Observation Natural Resource Surveying 2 Technologies Remote Sensing Using electromagnetic spectrum Need data interpretation Camera Real picture Such as THEOS Thailand Earth Observation System Meteorological Satellite Weather Forecasting Cloud, Rain, Wind, Temperature and Turbidity Various effects in atmosphere Ozone For Disaster prevention Aviation Education Video Conference via Satellite Distance meeting Distance learning -11-
12 More about Orbits GEO Geostationary orbit Satellite appears stationary related to the earth 35,800 km., equatorial plane MEO Medium earth orbit 10,000 km., Inclined orbit or polar orbit LEO Low earth orbit 1,000 km., Inclined orbit or polar orbit Sun synchronous orbit Remains fixed relative to the sun Orbit plane incline with constant angle to the sun Satellite Systems in Thailand THAICOM THAICOM 1A : Spinner, 120 E, for TV, Telephone,Cable TV THAICOM 2: Spinner, 78.5 E, for TV, Telephone, Cable TV THAICOM 3: 3 axis stabilization, damage => released THAICOM 4: IPSTAR, 3 axis, E, more efficiency due to frequency reused, for high speed Internet THAICOM 5: 3 axis, 78.5 E, instead of THAICOM 3, most users are cable TV Satellite Systems in Thailand THEOS Thailand Earth Observation Satellite Owner = GISTDA: Geo Informatics and Space Technology Development Agency LEO Low Earth Orbit and Sun synchronous Orbit 5 years lifetime and 822 km. from surface Time period in 1 round = minutes Use for natural resource management agriculture surveying 2 cameras Panchromatic Telescope(B&W) Multispectral Camera(color) resolution 2 meters resolution 15 meters -12-
13 Satellite Systems in Thailand TMSAT(thai pat) Thai Micro SATellite (50 kg.) Owner = Mahanakorn University of Technology + United Communication Co.Ltd. (UCOM) LEO and Sun synchronous orbit 815 km. Digital Signal with Frequency MHz/ MHz Use for : Engineering Education and Amateur Radio Satellite Systems in Thailand INTELSAT (I VIII) International Telecommunication Satellite Organization GEO : both spinners and 3 axis stabilizations 35,800 km. from earth Early Bird = The first commercial satellite(1965) There are 52 satellites in orbits still be used Use for : International Telephone and Television Satellite Systems in Thailand INMARSAT International Maritime Satellite Organization 7 satellites in GEO Communication services for mobile terminals Provided by CAT telecom Aeroplane, cargo ship, patrol tanker, train Thai Navy, Army, Air Force Video conference, national resource surveying Etc. -13-
14 Satellite Systems in Thailand Others PALAPA Indonesia Commercial services, TV stations etc. ASIASAT Hongkong Commercial services, TV stations etc. THE END -14-
1. Introduction. FER-Zagreb, Satellite communication systems 2011/12
1. Introduction Topics History Characteristics of satellite communications Frequencies Application 1 History Arthur C. Clark suggested in 1945. Earth coverage with 3 geostationary satellites. On 4th of
Mobile Communications: Satellite Systems
Mobile Communications: Satellite Systems Mobile Communication: Satellite Systems - Jochen Schiller http://www.jochenschiller.de 1 History of satellite communication 1945 Arthur C. Clarke publishes an essay
Mobile Computing. Chapter 5: Satellite Systems
Mobile Computing Chapter 5: Satellite Systems Prof. Sang-Jo Yoo History of satellite communication 1945 Arthur C. Clarke publishes an essay about Extra Terrestrial Relays 1957 First satellite SPUTNIK by
2. Orbits. FER-Zagreb, Satellite communication systems 2011/12
2. Orbits Topics Orbit types Kepler and Newton laws Coverage area Influence of Earth 1 Orbit types According to inclination angle Equatorial Polar Inclinational orbit According to shape Circular orbit
Second International Symposium on Advanced Radio Technologies Boulder Co, September 8-10, 1999
Second International Symposium on Advanced Radio Technologies Boulder Co, September 8-10, 1999 Overview of Satellite Communications Tim Pratt Center for Wireless Telecommunications Virginia Tech History
5. Satellite Systems. History of Satellite Communications
5. Satellite Systems History and Orbits Routing, Localization, and Hand-over Systems 2005 Burkhard Stiller and Jochen Schiller FU Berlin M5 1 History of Satellite Communications 1945 Arthur C. Clarke about
Mobile Communications Chapter 5: Satellite Systems
Mobile Communications Chapter 5: Satellite Systems History Basics Localization Handover Routing Systems History of satellite communication 1945 Arthur C. Clarke publishes an essay about Extra Terrestrial
ANALOG SATELLITE COMMUNICATION : Introduction, Base band analog (Voice) signal,
Section-A PRINCIPLES OF SATELLITE COMMUNICATION: Evolution & growth of communication satellite, Synchronous satellite, Satellite frequency allocation & Band spectrum, advantages of satellite communication,
Satellite Communication Systems. mgr inż. Krzysztof Włostowski Instytut Telekomunikacji PW [email protected]
Satellite Communication Systems mgr inż. Krzysztof Włostowski Instytut Telekomunikacji PW [email protected] Satellite Communication Satellite Communication combines the missile and microwave technologies
Mobile Communications Chapter 5: Satellite Systems
History of satellite communication Mobile Communications Chapter 5: Satellite Systems History Basics Orbits LEO, MEO, GEO Examples Handover, Routing 1945 Arthur C. Clarke publishes an essay about Extra
Satellite technology
Satellite technology Overview What is a satellite? The key elements of orbital position Satellite manufacturers and design The components of a satellite: payload and bus Digital versus analogue How do
Orbital Mechanics and Space Geometry
Orbital Mechanics and Space Geometry AERO4701 Space Engineering 3 Week 2 Overview First Hour Co-ordinate Systems and Frames of Reference (Review) Kepler s equations, Orbital Elements Second Hour Orbit
Artificial Satellites Earth & Sky
Artificial Satellites Earth & Sky Name: Introduction In this lab, you will have the opportunity to find out when satellites may be visible from the RPI campus, and if any are visible during the activity,
RS platforms. Fabio Dell Acqua - Gruppo di Telerilevamento
RS platforms Platform vs. instrument Sensor Platform Instrument The remote sensor can be ideally represented as an instrument carried by a platform Platforms Remote Sensing: Ground-based air-borne space-borne
SATELLITE COMMUNICATION
SATELLITE COMMUNICATION By Gaurish Kumar Tripathi. 1.0 INTRODUCTION: The use of satellite in communication system is very much a fact of everyday in life. This is evidence by the many homes, which are
Hacking a Bird in the Sky
Hacking a Bird in the Sky 2.0 Exploiting Satellite Trust Relationship Jim Geovedi [email protected] Raditya Iryandi [email protected] Anthony Zboralski [email protected] Disclaimer
Section 4: The Basics of Satellite Orbits
Section 4: The Basics of Satellite Orbits MOTION IN SPACE VS. MOTION IN THE ATMOSPHERE The motion of objects in the atmosphere differs in three important ways from the motion of objects in space. First,
Chapter 11 Satellite Systems
Chapter 11 Satellite Systems 1 Outline Introduction Types of Satellite Characteristic of Satellite Systems Satellite System Infrastructures Call Setup GPS Limitations of GPS Beneficiaries of GPS Applications
Satellite Basics. Benefits of Satellite
Satellite Basics Benefits of Satellite People need access to enterprise-class, high-speed voice, video and data applications wherever they happen to be. Satellite connectivity has the power to drive communications
Penn State University Physics 211 ORBITAL MECHANICS 1
ORBITAL MECHANICS 1 PURPOSE The purpose of this laboratory project is to calculate, verify and then simulate various satellite orbit scenarios for an artificial satellite orbiting the earth. First, there
Environmental Monitoring: Guide to Selecting Wireless Communication Solutions
Environmental Monitoring: Guide to Selecting Wireless Communication Solutions By: Scott South Published in WaterWorld, January 2005 (Page 48) Rapidly growing demands for information and increased productivity
Communication Satellite Systems Trends and Network Aspects
Communication Satellite Systems Trends and Network Aspects Paul Anderson Communication Architectures Department The Aerospace Corporation [email protected] http://www.aero.org/ Lee Center, Caltech
Evolution of Satellite Communication Systems
Mathieu DERVIN Brussels, 6th May 2015 Brussels, May 2015 Agenda I. From Sputnik to wideband satellite services: The key technological evolutions II. Increase the satellite system capacity: A global system
Orbital Mechanics. Angular Momentum
Orbital Mechanics The objects that orbit earth have only a few forces acting on them, the largest being the gravitational pull from the earth. The trajectories that satellites or rockets follow are largely
Hyperspectral Satellite Imaging Planning a Mission
Hyperspectral Satellite Imaging Planning a Mission Victor Gardner University of Maryland 2007 AIAA Region 1 Mid-Atlantic Student Conference National Institute of Aerospace, Langley, VA Outline Objective
Examination Space Missions and Applications I (AE2103) Faculty of Aerospace Engineering Delft University of Technology SAMPLE EXAM
Examination Space Missions and Applications I AE2103 Faculty of Aerospace Engineering Delft University of Technology SAMPLE EXAM Please read these instructions first: This are a series of multiple-choice
Satellite Communications
Satellite Communications Mika Nupponen S-72.4210 Postgraduate Course in Radio Communications 21/02/2006 1 Contents Introduction History of Satellite communications Satellites Satellite Link Design Propagation
A science class experience that is out of this world. Robert Benkoczi, PhD Optimization Research Group University of Lethbridge
A science class experience that is out of this world Robert Benkoczi, PhD Optimization Research Group University of Lethbridge SWATCA 2015 Summary Optimization Research Group Funcube project and reception
Introduction to satellite constellations orbital types, uses and related facts
Introduction to satellite constellations orbital types, uses and related facts Dr Lloyd Wood space team, Cisco Systems http://www.cisco.com/go/space Guest lecture, ISU summer session July 2006 created
CME 574 Satellite Communications
CME 574 Satellite Communications Fall, 2007 Dr Hazem Al-Otum Ref. Ellwood Brem, Instructor To orbit the Earth is to fall down and miss the ground! Topics we will cover: History Satellite Mechanics Orbital
Module 5. Broadcast Communication Networks. Version 2 CSE IIT, Kharagpur
Module 5 Broadcast Communication Networks Lesson 10 Satellite Networks Specific Instructional Objectives At the end of this lesson, the student will be able to: Explain different type of satellite orbits
SATELLITE TECHNOLOGY STUDENT INFORMATION
SATELLITE TECHNOLOGY STUDENT INFORMATION Area of Study: Communications Objectives: Students will discover the basic principles of satellite technology through a demonstration and utilization of web resources.
Interaction of Energy and Matter Gravity Measurement: Using Doppler Shifts to Measure Mass Concentration TEACHER GUIDE
Interaction of Energy and Matter Gravity Measurement: Using Doppler Shifts to Measure Mass Concentration TEACHER GUIDE EMR and the Dawn Mission Electromagnetic radiation (EMR) will play a major role in
Satellite Posi+oning. Lecture 5: Satellite Orbits. Jan Johansson [email protected] Chalmers University of Technology, 2013
Lecture 5: Satellite Orbits Jan Johansson [email protected] Chalmers University of Technology, 2013 Geometry Satellite Plasma Posi+oning physics Antenna theory Geophysics Time and Frequency GNSS
Mobile Communications Exercise: Satellite Systems and Wireless LANs. Georg von Zengen, IBR, TU Braunschweig, www.ibr.cs.tu-bs.de
Mobile Communications Exercise: Satellite Systems and Wireless LANs N 1 Please define the terms inclination and elevation using the following two figures. How do these parameters influence the usefulness
Physical Layer. Communication Satellites. ECE 453 Introduction to Computer Networks. Lecture 3 Physical Layer II
ECE 453 Introduction to Computer Networks Lecture 3 Physical Layer II 1 Physical Layer Services transmit bits from sender to receiver. Transmission media Guided: twisted pair, coax, fiber Unguided (wireless):
Hacking a Bird in the Sky
Hacking a Bird in the Sky Hijacking Very Small Aperture Terminal (VSAT) Connections Jim Geovedi and Raditya Iryandi BELLUA ASIA PACIFIC Disclaimer This presentation is intended to demonstrate the inherent
Chapter 4 Solution to Problems
Chapter 4 Solution to Problems Question #1. A C-band earth station has an antenna with a transmit gain of 54 db. The transmitter output power is set to 100 W at a frequency of 6.100 GHz. The signal is
Vocabulary - Understanding Revolution in. our Solar System
Vocabulary - Understanding Revolution in Universe Galaxy Solar system Planet Moon Comet Asteroid Meteor(ite) Heliocentric Geocentric Satellite Terrestrial planets Jovian (gas) planets Gravity our Solar
BASICS OF C & Ku BAND TRANSMISSIONS & LNBs
Page 1 of 6 BASICS OF C & Ku BAND TRANSMISSIONS & LNBs A satellite broadcasts a few watts of microwave signals from the geostationary orbit 36,000 kilometers above the earth. The transmissions are also
DEOS. Deutsche Orbitale Servicing Mission. The In-flight Technology Demonstration of Germany s Robotics Approach to Service Satellites
DEOS Deutsche Orbitale Servicing Mission The In-flight Technology Demonstration of Germany s Robotics Approach to Service Satellites B. Sommer, K. Landzettel, T. Wolf, D. Reintsema, German Aerospace Center
Astromechanics Two-Body Problem (Cont)
5. Orbit Characteristics Astromechanics Two-Body Problem (Cont) We have shown that the in the two-body problem, the orbit of the satellite about the primary (or vice-versa) is a conic section, with the
Waves - Transverse and Longitudinal Waves
Waves - Transverse and Longitudinal Waves wave may be defined as a periodic disturbance in a medium that carries energy from one point to another. ll waves require a source and a medium of propagation.
State of the Satellite Industry Report
State of the Satellite Industry Report June 2012 Sponsored by the Prepared by Futron Corporation SIA Member Companies as of June 2012 2 Study Overview Based on year-end 2011 annual statistics from key
Inmarsat & Global Xpress
Inmarsat & Global Xpress Global Mobile Broadband Laura Roberti [email protected] Bangkok, 19 th September 2014 Inmarsat in L-band: an overview Worldwide coverage Land, sea, and air mobile services,
Signal directionality Lower frequency signals are omnidirectional Higher frequency signals can be focused in a directional beam
Transmission Media Transmission medium Physical path between transmitter and receiver May be guided (wired) or unguided (wireless) Communication achieved by using em waves Characteristics and quality of
Quest- 1 Satellite Functional Description
Quest- 1 Satellite Functional Description Overview The Quest- 1 Satellite is based on the CubeSat Standard that measures 10 cm x 10 cm x 10 cm and weighs less than 1.33 kilograms. The Quest- 1 Satellite
Chapter 2. Mission Analysis. 2.1 Mission Geometry
Chapter 2 Mission Analysis As noted in Chapter 1, orbital and attitude dynamics must be considered as coupled. That is to say, the orbital motion of a spacecraft affects the attitude motion, and the attitude
CBERS Program Update Jacie 2011. Frederico dos Santos Liporace AMS Kepler [email protected]
CBERS Program Update Jacie 2011 Frederico dos Santos Liporace AMS Kepler [email protected] Overview CBERS 3 and 4 characteristics Differences from previous CBERS satellites (CBERS 1/2/2B) Geometric
Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13.
Chapter 5. Gravitation Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13. 5.1 Newton s Law of Gravitation We have already studied the effects of gravity through the
Section 2. Satellite Orbits
Section 2. Satellite Orbits References Kidder and Vonder Haar: chapter 2 Stephens: chapter 1, pp. 25-30 Rees: chapter 9, pp. 174-192 In order to understand satellites and the remote sounding data obtained
Binary Stars. Kepler s Laws of Orbital Motion
Binary Stars Kepler s Laws of Orbital Motion Kepler s Three Laws of orbital motion result from the solution to the equation of motion for bodies moving under the influence of a central 1/r 2 force gravity.
Overview of LEO Satellite Systems
Overview of LEO Satellite Systems Christopher Redding Institute for Telecommunication Sciences National Telecommunications and Information Administration Boulder, CO credding@its. @its.bldrdoc.gov 1999
THE JOURNEY OF TELKOM IN OPERATING COMMUNICATIONS SATELLITES TO SERVE THE INDONESIAN ARCHIPELAGO by Tonda Priyanto
INDONESIA THE JOURNEY OF TELKOM IN OPERATING COMMUNICATIONS SATELLITES TO SERVE THE INDONESIAN ARCHIPELAGO by Tonda Priyanto 1. Background In 1976, Indonesia became the 3 rd nation in the world operating
Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X?
Solar System 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? A) Earth B) Sun C) Moon D) Polaris 2. Which object orbits Earth in both the Earth-centered
Understanding Orbital Mechanics Through a Step-by-Step Examination of the Space-Based Infrared System (SBIRS)
Understanding Orbital Mechanics Through a Step-by-Step Examination of the Space-Based Infrared System (SBIRS) Denny Sissom Elmco, Inc. May 2003 Pg 1 of 27 SSMD-1102-366 [1] The Ground-Based Midcourse Defense
16 th IOCCG Committee annual meeting. Plymouth, UK 15 17 February 2011. mission: Present status and near future
16 th IOCCG Committee annual meeting Plymouth, UK 15 17 February 2011 The Meteor 3M Mt satellite mission: Present status and near future plans MISSION AIMS Satellites of the series METEOR M M are purposed
Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton
Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law
Lecture L17 - Orbit Transfers and Interplanetary Trajectories
S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L17 - Orbit Transfers and Interplanetary Trajectories In this lecture, we will consider how to transfer from one orbit, to another or to
Analysis on the Long-term Orbital Evolution and Maintenance of KOMPSAT-2
Analysis on the Long-term Orbital Evolution and Maintenance of KOMPSAT-2 Ok-Chul Jung 1 Korea Aerospace Research Institute (KARI), 45 Eoeun-dong, Daejeon, South Korea, 305-333 Jung-Hoon Shin 2 Korea Advanced
Newton s Law of Gravity
Gravitational Potential Energy On Earth, depends on: object s mass (m) strength of gravity (g) distance object could potentially fall Gravitational Potential Energy In space, an object or gas cloud has
Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6. Instructions: 1. In the formula F = qvxb:
Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6 Signature Name (Print): 4 Digit ID: Section: Instructions: Answer all questions 24 multiple choice questions. You may need to do some calculation.
1 Introduction. 2 Demand for BSS services. Rep. ITU-R BO.2016 1 REPORT ITU-R BO.2016. BSS SYSTEMS FOR THE 40.5-42.5 GHz BAND (Question ITU-R 220/11)
Rep. ITU-R BO.2016 1 REPORT ITU-R BO.2016 BSS SYSTEMS FOR THE 40.5-42.5 GHz BAND (Question ITU-R 220/11) Rep. ITU-R BO.2016 (1997) 1 Introduction The purpose of this Report is to provide a preliminary
SPACE WEATHER SUPPORT FOR COMMUNICATIONS. Overview
SPACE WEATHER SUPPORT FOR COMMUNICATIONS Overview Ionospheric variability (space weather) significantly impacts ground and space-based communications. In essence, the electrically charged particles of
The Geostationary Orbit
Chapter 3 The Geostationary Orbit 3.1. Introduction A satellite in a geostationary orbit appears to be stationary with respect to the earth, hence the name geostationary. Three conditions are required
Name Period 4 th Six Weeks Notes 2015 Weather
Name Period 4 th Six Weeks Notes 2015 Weather Radiation Convection Currents Winds Jet Streams Energy from the Sun reaches Earth as electromagnetic waves This energy fuels all life on Earth including the
GUIDELINES ON SATELLITE NETWORK FILING
GUIDELINES ON SATELLITE NETWORK FILING 1. Introduction 1.1. Satellite orbital slots are valuable and limited resources, which need to be planned and managed for the efficient use of, and also, the avoidance
Lecture 13. Gravity in the Solar System
Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws
Rocket Science Made Simple
Rocket Science Made Simple Satellite Connectivity For Aviation Explained George Nicola 1 and Michele Franci 2 Inmarsat, London, EC1Y 1AX, United Kingdom Any satellite communication system is required to
TOPO Trajectory Operations Officer
ISS Live! was developed at NASA s Johnson Space Center (JSC) under NASA Contracts NNJ14RA02C and NNJ11HA14C wherein the U.S. Government retains certain rights. Console Handbook TOPO Trajectory Operations
Satellite Orbits, Coverage, and Antenna Alignment
Telecommunications Satellite Communications Satellite Orbits, Coverage, and Antenna Alignment Courseware Sample 87768-F0 Order no.: 87768-10 First Edition Revision level: 04/2016 By the staff of Festo
USING MS EXCEL FOR DATA ANALYSIS AND SIMULATION
USING MS EXCEL FOR DATA ANALYSIS AND SIMULATION Ian Cooper School of Physics The University of Sydney [email protected] Introduction The numerical calculations performed by scientists and engineers
Connecting the World from the Sky
Connecting the World from the Sky Last August, Facebook partnered with leading technology companies to launch Internet.org a global effort to make affordable basic internet services available to everyone
Active and Passive Microwave Remote Sensing
Active and Passive Microwave Remote Sensing Passive remote sensing system record EMR that was reflected (e.g., blue, green, red, and near IR) or emitted (e.g., thermal IR) from the surface of the Earth.
Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam
Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
Antennas & Propagation. CS 6710 Spring 2010 Rajmohan Rajaraman
Antennas & Propagation CS 6710 Spring 2010 Rajmohan Rajaraman Introduction An antenna is an electrical conductor or system of conductors o Transmission - radiates electromagnetic energy into space o Reception
CHAPTER 4. Electromagnetic Spectrum
ELEC4504 Avionics Systems 9 CHAPTER 4. Electromagnetic Spectrum 4.1. Electromagnetic (EM) Waves In free space (or the atmosphere) the electric field is perpendicular to the magnetic field and both are
SHARING BETWEEN TERRESTRIAL FLIGHT TELEPHONE SYSTEM (TFTS) AND RADIO ASTRONOMY IN THE 1.6 GHz BAND. Paris, May 1992
European Radiocommunications Committee (ERC) within the European Conference of Postal and Telecommunications Administrations (CEPT) SHARING BETWEEN TERRESTRIAL FLIGHT TELEPHONE SYSTEM (TFTS) AND RADIO
Migration for Fixed Satellite Station in C-Band from Measat 1 to Measat 3
World Applied Sciences Journal 24 (2): 207-212, 2013 ISSN 1818-4952 IDOSI Publications, 2013 DOI: 10.5829/idosi.wasj.2013.24.02.1024 Migration for Fixed Satellite Station in C-Band from Measat 1 to Measat
Weather Radar Basics
Weather Radar Basics RADAR: Radio Detection And Ranging Developed during World War II as a method to detect the presence of ships and aircraft (the military considered weather targets as noise) Since WW
PROTECTION OF THE BROADCASTING SERVICE FROM BROADCASTING SATELLITE SERVICE TRANSMISSIONS IN THE BAND 620 790 MHz
Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) PROTECTION OF THE BROADCASTING SERVICE FROM BROADCASTING SATELLITE SERVICE
C-S TEAM. Page 1 of 5
Title: Medium/large vehicle tracking system Primary POC: Jacoba Auret Organization: C-S Team (Cape Peninsula University of Technology-Stellenbosch University) POC email: [email protected] Need We exist
How To Monitor Sea Level With Satellite Radar
Satellite Altimetry Wolfgang Bosch Deutsches Geodätisches Forschungsinstitut (DGFI), München email: [email protected] Objectives You shall recognize satellite altimetry as an operational remote sensing
Modern Wireless Communication
Modern Wireless Communication Simon Haykin, Michael Moher CH01-1 Chapter 1 Introduction CH01-2 1 Contents 1.1 Background 1.2 Communication Systems 1.3 Physical Layer 1.4 The Data-Link Layer 1.4.1 FDMA
AS COMPETITION PAPER 2008
AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question
LB Sky Global. 92 Lobachevskogo St, Bld 92, Office 5, Moscow, Russia 119454 Tel/Fax 7(495)229-39-78, E-mail: [email protected], Site: www.grouplb.
Perimeter security system T-REX Moscow, 2011 Table of content 1. Introduction... 3 2. Main features of the T-REX system... 3 3. Structure of the system... 5 4. SL-6000 system sensors... 6 5. Signal processing
:-------------------------------------------------------Instructor---------------------
Yarmouk University Hijjawi Faculty for Engineering Technology Computer Engineering Department CPE-462 Digital Data Communications Final Exam: A Date: 20/05/09 Student Name :-------------------------------------------------------Instructor---------------------
Spacecraft orbits and missions
General Astrophysics and Space Research Course 210142, Space Physics Module Spring 2009, Joachim Vogt Spacecraft orbits and missions Topics of this lecture Basics of celestial mechanics Geocentric orbits
Satellite Mission Analysis
CARLETON UNIVERSITY SPACECRAFT DESIGN PROJECT 2004 FINAL DESIGN REPORT Satellite Mission Analysis FDR Reference Code: FDR-SAT-2004-3.2.A Team/Group: Satellite Mission Analysis Date of Submission: April
Dynamics of Iain M. Banks Orbitals. Richard Kennaway. 12 October 2005
Dynamics of Iain M. Banks Orbitals Richard Kennaway 12 October 2005 Note This is a draft in progress, and as such may contain errors. Please do not cite this without permission. 1 The problem An Orbital
Niraj Sir GRAVITATION CONCEPTS. Kepler's law of planetry motion
GRAVITATION CONCEPTS Kepler's law of planetry motion (a) Kepler's first law (law of orbit): Every planet revolves around the sun in an elliptical orbit with the sun is situated at one focus of the ellipse.
Orbital Dynamics: Formulary
Orbital Dynamics: Formulary 1 Introduction Prof. Dr. D. Stoffer Department of Mathematics, ETH Zurich Newton s law of motion: The net force on an object is equal to the mass of the object multiplied by
Robot Perception Continued
Robot Perception Continued 1 Visual Perception Visual Odometry Reconstruction Recognition CS 685 11 Range Sensing strategies Active range sensors Ultrasound Laser range sensor Slides adopted from Siegwart
Orbital Dynamics with Maple (sll --- v1.0, February 2012)
Orbital Dynamics with Maple (sll --- v1.0, February 2012) Kepler s Laws of Orbital Motion Orbital theory is one of the great triumphs mathematical astronomy. The first understanding of orbits was published
How To Get A Signal From Samoa
1 Government of Samoa Office of the Regulator Private Bag, Apia, Samoa NATIONAL FREQUENCY ALLOCATION TABLE (This document is part of the National Spectrum Plan) Prepare by the Office of the Regulator 2
Solar System Fundamentals. What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System
Solar System Fundamentals What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System Properties of Planets What is a planet? Defined finally in August 2006!
Examples of Uniform EM Plane Waves
Examples of Uniform EM Plane Waves Outline Reminder of Wave Equation Reminder of Relation Between E & H Energy Transported by EM Waves (Poynting Vector) Examples of Energy Transport by EM Waves 1 Coupling
Analysis of the US Government and Military Commercial Satellite Market Turbulent Government Contracts Impact Growth
Analysis of the US Government and Military Commercial Satellite Market Turbulent Government Contracts Impact Growth November 2014 Contents Section Slide Number Executive Summary 4 Market Overview 8 Total
