Research Laboratory. Java Web Crawler & Hadoop MapReduce Anri Morchiladze && Bachana Dolidze Supervisor Nodar Momtselidze
|
|
|
- Julie Marsh
- 10 years ago
- Views:
Transcription
1 Research Laboratory Java Web Crawler & Hadoop MapReduce Anri Morchiladze && Bachana Dolidze Supervisor Nodar Momtselidze
2 1. Java Web Crawler Description Java Code 2. MapReduce Overview Example of mapreduce program Code & Run Walk-Through
3
4 1:class Mapper 2: method Map(docid a, doc d) 3: for all term t doc d do 4: if term t! HBase 5: Emit(term t, count 1) 1: class Reducer 2: method Reduce(term t, counts [c1, c2,...]) 3: sum 0 4: for all count c counts [c1, c2,...] do 5: sum sum + c 6: Emit(term t, count sum) 7: To Hive
5 Crawler A web crawler (also known as a web spider or web robot) is a program or automated script which browses the World Wide Web in a methodical, automated manner. This process is called Web crawling or spidering.
6 Description Web crawlers are mainly used to create a copy of all the visited pages for later processing by a search engine, that will index the downloaded pages to provide fast searches. Crawlers can also be used for automating maintenance tasks on a Web site, such as checking links or validating HTML code. Also, crawlers can be used to gather specific types of information from Web pages, such as harvesting addresses (usually for spam).
7 Our Aim 1. Our aim is to search specified word in web pages. 2. We used ibrary Jsoup for it and its commands.
8 Java Code 1. Using Eclipse 2. Add a Jsoup library to project 3. You can change web site url or text word in this program and see results. 4. results are kept in a file
9 Mapreduce Hadoop MapReduce is a software framework for easily writing applications which process vast amounts of data (multi-terabyte data-sets) in-parallel on large clusters (thousands of nodes) of commodity hardware in a reliable, fault-tolerant manner. A MapReduce job usually splits the input data-set into independent chunks which are processed by the map tasks in a completely parallel manner. The framework sorts the outputs of the maps, which are then input to the reduce tasks. Typically both the input and the output of the job are stored in a file-system. The framework takes care of scheduling tasks, monitoring them and re-executes the failed tasks.
10 Overview The MapReduce framework consists of a single master JobTracker and one slave TaskTracker per cluster-node. The master is responsible for scheduling the jobs' component tasks on the slaves, monitoring them and re-executing the failed tasks. The slaves execute the tasks as directed by the master. The MapReduce framework operates exclusively on <key, value> pairs, that is, the framework views the input to the job as a set of <key, value> pairs and produces a set of <key, value> pairs as the output of the job, conceivably of different types. Input and Output types of a MapReduce job: (input) <k1, v1> -> map -> <k2, v2> -> combine -> <k2, v2> -> reduce -> <k3, v3> (output)
11 Example Before we jump into the details, lets walk through an example MapReduce application to get a flavour for how they work. WordCount is a simple application that counts the number of occurences of each word in a given input set. This works with a local-standalone, pseudo-distributed or fullydistributed Hadoop installation (Single Node Setup)
12 Code & Run Usage Assuming HADOOP_HOME is the root of the installation and HADOOP_VERSION is the Hadoop version installed, compile WordCount.java and create a jar: $ mkdir wordcount_classes $ javac -classpath ${HADOOP_HOME}/hadoop-${HADOOP_VERSION}-core.jar -d wordcount_classes WordCount.java $ jar -cvf /usr/joe/wordcount.jar -C wordcount_classes/. Assuming that: /usr/joe/wordcount/input - input directory in HDFS /usr/joe/wordcount/output - output directory in HDFS
13 Code & Run Sample text-files as input: $ bin/hadoop dfs -ls /usr/joe/wordcount/input/ /usr/joe/wordcount/input/file01 /usr/joe/wordcount/input/file02 $ bin/hadoop dfs -cat /usr/joe/wordcount/input/file01 Hello World Bye World $ bin/hadoop dfs -cat /usr/joe/wordcount/input/file02 Hello Hadoop Goodbye Hadoop Run the application: $ bin/hadoop jar /usr/joe/wordcount.jar org.myorg.wordcount /usr/joe/wordcount/input /usr/joe/wordcount/output
14 Output $ bin/hadoop dfs -cat /usr/joe/wordcount/output/part Bye 1 Goodbye 1 Hadoop 2 Hello 2 World 2
15 Walk-Through The WordCount application is quite straight-forward.the Mapper implementation (lines 14-26), via the map method (lines 18-25), processes one line at a time, as provided by the specified TextInputFormat (line 49). It then splits the line into tokens separated by whitespaces, via the StringTokenizer, and emits a key-value pair of < <word>, 1>. For the given sample input the first map emits: < Hello, 1> < World, 1> < Bye, 1> < World, 1> The second map emits: < Hello, 1> < Hadoop, 1> < Goodbye, 1> < Hadoop, 1>
16 Walk-Through WordCount also specifies a combiner (line 46). Hence, the output of each map is passed through the local combiner (which is same as the Reducer as per the job configuration) for local aggregation, after being sorted on the keys. The output of the first map: < Bye, 1> < Hello, 1> < World, 2> The output of the second map: < Goodbye, 1> < Hadoop, 2> < Hello, 1>
17 Walk-Through The Reducer implementation (lines 28-36), via the reduce method (lines 29-35) just sums up the values, which are the occurence counts for each key (i.e. words in this example). Thus the output of the job is: < Bye, 1> < Goodbye, 1> < Hadoop, 2> < Hello, 2> < World, 2> The run method specifies various facets of the job, such as the input/output paths (passed via the command line), key/value types, input/output formats etc., in thejobconf. It then calls the JobClient. runjob (line 55) to submit the and monitor its progress.
18 Electrical Consumption Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Avg
19 If the above data is given as input, we have to write applications to process it and produce results such as finding the year of maximum usage, year of minimum usage, and so on. This is a walkover for the programmers with finite number of records. They will simply write the logic to produce the required output, and pass the data to the application written. But, think of the data representing the electrical consumption of all the largescale industries of a particular state, since its formation. When we write applications to process such bulk data, They will take a lot of time to execute. There will be a heavy network traffic when we move data from source to network server and so on. To solve these problems, we have the MapReduce framework.
20 Thank you for pay attention!!!
How To Write A Mapreduce Program In Java.Io 4.4.4 (Orchestra)
MapReduce framework - Operates exclusively on pairs, - that is, the framework views the input to the job as a set of pairs and produces a set of pairs as the output
Apache Hadoop new way for the company to store and analyze big data
Apache Hadoop new way for the company to store and analyze big data Reyna Ulaque Software Engineer Agenda What is Big Data? What is Hadoop? Who uses Hadoop? Hadoop Architecture Hadoop Distributed File
MapReduce. Tushar B. Kute, http://tusharkute.com
MapReduce Tushar B. Kute, http://tusharkute.com What is MapReduce? MapReduce is a framework using which we can write applications to process huge amounts of data, in parallel, on large clusters of commodity
Introduction to MapReduce and Hadoop
Introduction to MapReduce and Hadoop Jie Tao Karlsruhe Institute of Technology [email protected] Die Kooperation von Why Map/Reduce? Massive data Can not be stored on a single machine Takes too long to process
Data Science Analytics & Research Centre
Data Science Analytics & Research Centre Data Science Analytics & Research Centre 1 Big Data Big Data Overview Characteristics Applications & Use Case HDFS Hadoop Distributed File System (HDFS) Overview
Tutorial: Big Data Algorithms and Applications Under Hadoop KUNPENG ZHANG SIDDHARTHA BHATTACHARYYA
Tutorial: Big Data Algorithms and Applications Under Hadoop KUNPENG ZHANG SIDDHARTHA BHATTACHARYYA http://kzhang6.people.uic.edu/tutorial/amcis2014.html August 7, 2014 Schedule I. Introduction to big data
map/reduce connected components
1, map/reduce connected components find connected components with analogous algorithm: map edges randomly to partitions (k subgraphs of n nodes) for each partition remove edges, so that only tree remains
Prepared By : Manoj Kumar Joshi & Vikas Sawhney
Prepared By : Manoj Kumar Joshi & Vikas Sawhney General Agenda Introduction to Hadoop Architecture Acknowledgement Thanks to all the authors who left their selfexplanatory images on the internet. Thanks
Lecture 32 Big Data. 1. Big Data problem 2. Why the excitement about big data 3. What is MapReduce 4. What is Hadoop 5. Get started with Hadoop
Lecture 32 Big Data 1. Big Data problem 2. Why the excitement about big data 3. What is MapReduce 4. What is Hadoop 5. Get started with Hadoop 1 2 Big Data Problems Data explosion Data from users on social
COMPARISON OF FIXED & VARIABLE RATES (25 YEARS) CHARTERED BANK ADMINISTERED INTEREST RATES - PRIME BUSINESS*
COMPARISON OF FIXED & VARIABLE RATES (25 YEARS) 2 Fixed Rates Variable Rates FIXED RATES OF THE PAST 25 YEARS AVERAGE RESIDENTIAL MORTGAGE LENDING RATE - 5 YEAR* (Per cent) Year Jan Feb Mar Apr May Jun
COMPARISON OF FIXED & VARIABLE RATES (25 YEARS) CHARTERED BANK ADMINISTERED INTEREST RATES - PRIME BUSINESS*
COMPARISON OF FIXED & VARIABLE RATES (25 YEARS) 2 Fixed Rates Variable Rates FIXED RATES OF THE PAST 25 YEARS AVERAGE RESIDENTIAL MORTGAGE LENDING RATE - 5 YEAR* (Per cent) Year Jan Feb Mar Apr May Jun
Big Data 2012 Hadoop Tutorial
Big Data 2012 Hadoop Tutorial Oct 19th, 2012 Martin Kaufmann Systems Group, ETH Zürich 1 Contact Exercise Session Friday 14.15 to 15.00 CHN D 46 Your Assistant Martin Kaufmann Office: CAB E 77.2 E-Mail:
Hadoop/MapReduce. Object-oriented framework presentation CSCI 5448 Casey McTaggart
Hadoop/MapReduce Object-oriented framework presentation CSCI 5448 Casey McTaggart What is Apache Hadoop? Large scale, open source software framework Yahoo! has been the largest contributor to date Dedicated
CS380 Final Project Evaluating the Scalability of Hadoop in a Real and Virtual Environment
CS380 Final Project Evaluating the Scalability of Hadoop in a Real and Virtual Environment James Devine December 15, 2008 Abstract Mapreduce has been a very successful computational technique that has
USING HDFS ON DISCOVERY CLUSTER TWO EXAMPLES - test1 and test2
USING HDFS ON DISCOVERY CLUSTER TWO EXAMPLES - test1 and test2 (Using HDFS on Discovery Cluster for Discovery Cluster Users email [email protected] if you have questions or need more clarifications. Nilay
How To Write A Mapreduce Program On An Ipad Or Ipad (For Free)
Course NDBI040: Big Data Management and NoSQL Databases Practice 01: MapReduce Martin Svoboda Faculty of Mathematics and Physics, Charles University in Prague MapReduce: Overview MapReduce Programming
Hadoop Lab Notes. Nicola Tonellotto November 15, 2010
Hadoop Lab Notes Nicola Tonellotto November 15, 2010 2 Contents 1 Hadoop Setup 4 1.1 Prerequisites........................................... 4 1.2 Installation............................................
Chapter 7. Using Hadoop Cluster and MapReduce
Chapter 7 Using Hadoop Cluster and MapReduce Modeling and Prototyping of RMS for QoS Oriented Grid Page 152 7. Using Hadoop Cluster and MapReduce for Big Data Problems The size of the databases used in
AT&T Global Network Client for Windows Product Support Matrix January 29, 2015
AT&T Global Network Client for Windows Product Support Matrix January 29, 2015 Product Support Matrix Following is the Product Support Matrix for the AT&T Global Network Client. See the AT&T Global Network
Tutorial- Counting Words in File(s) using MapReduce
Tutorial- Counting Words in File(s) using MapReduce 1 Overview This document serves as a tutorial to setup and run a simple application in Hadoop MapReduce framework. A job in Hadoop MapReduce usually
A. Aiken & K. Olukotun PA3
Programming Assignment #3 Hadoop N-Gram Due Tue, Feb 18, 11:59PM In this programming assignment you will use Hadoop s implementation of MapReduce to search Wikipedia. This is not a course in search, so
Open source Google-style large scale data analysis with Hadoop
Open source Google-style large scale data analysis with Hadoop Ioannis Konstantinou Email: [email protected] Web: http://www.cslab.ntua.gr/~ikons Computing Systems Laboratory School of Electrical
Map Reduce & Hadoop Recommended Text:
Big Data Map Reduce & Hadoop Recommended Text:! Large datasets are becoming more common The New York Stock Exchange generates about one terabyte of new trade data per day. Facebook hosts approximately
Basic Hadoop Programming Skills
Basic Hadoop Programming Skills Basic commands of Ubuntu Open file explorer Basic commands of Ubuntu Open terminal Basic commands of Ubuntu Open new tabs in terminal Typically, one tab for compiling source
Introduction to Cloud Computing
Introduction to Cloud Computing Qloud Demonstration 15 319, spring 2010 3 rd Lecture, Jan 19 th Suhail Rehman Time to check out the Qloud! Enough Talk! Time for some Action! Finally you can have your own
Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware
Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware Created by Doug Cutting and Mike Carafella in 2005. Cutting named the program after
Weekly Report. Hadoop Introduction. submitted By Anurag Sharma. Department of Computer Science and Engineering. Indian Institute of Technology Bombay
Weekly Report Hadoop Introduction submitted By Anurag Sharma Department of Computer Science and Engineering Indian Institute of Technology Bombay Chapter 1 What is Hadoop? Apache Hadoop (High-availability
MapReduce, Hadoop and Amazon AWS
MapReduce, Hadoop and Amazon AWS Yasser Ganjisaffar http://www.ics.uci.edu/~yganjisa February 2011 What is Hadoop? A software framework that supports data-intensive distributed applications. It enables
Single Node Setup. Table of contents
Table of contents 1 Purpose... 2 2 Prerequisites...2 2.1 Supported Platforms...2 2.2 Required Software... 2 2.3 Installing Software...2 3 Download...2 4 Prepare to Start the Hadoop Cluster... 3 5 Standalone
Getting to know Apache Hadoop
Getting to know Apache Hadoop Oana Denisa Balalau Télécom ParisTech October 13, 2015 1 / 32 Table of Contents 1 Apache Hadoop 2 The Hadoop Distributed File System(HDFS) 3 Application management in the
Open source large scale distributed data management with Google s MapReduce and Bigtable
Open source large scale distributed data management with Google s MapReduce and Bigtable Ioannis Konstantinou Email: [email protected] Web: http://www.cslab.ntua.gr/~ikons Computing Systems Laboratory
Hadoop (pseudo-distributed) installation and configuration
Hadoop (pseudo-distributed) installation and configuration 1. Operating systems. Linux-based systems are preferred, e.g., Ubuntu or Mac OS X. 2. Install Java. For Linux, you should download JDK 8 under
Hadoop Certification (Developer, Administrator HBase & Data Science) CCD-410, CCA-410 and CCB-400 and DS-200
Hadoop Learning Resources 1 Hadoop Certification (Developer, Administrator HBase & Data Science) CCD-410, CCA-410 and CCB-400 and DS-200 Author: Hadoop Learning Resource Hadoop Training in Just $60/3000INR
How To Use Hadoop
Hadoop in Action Justin Quan March 15, 2011 Poll What s to come Overview of Hadoop for the uninitiated How does Hadoop work? How do I use Hadoop? How do I get started? Final Thoughts Key Take Aways Hadoop
A very short Intro to Hadoop
4 Overview A very short Intro to Hadoop photo by: exfordy, flickr 5 How to Crunch a Petabyte? Lots of disks, spinning all the time Redundancy, since disks die Lots of CPU cores, working all the time Retry,
Big Data Management and NoSQL Databases
NDBI040 Big Data Management and NoSQL Databases Lecture 3. Apache Hadoop Doc. RNDr. Irena Holubova, Ph.D. [email protected] http://www.ksi.mff.cuni.cz/~holubova/ndbi040/ Apache Hadoop Open-source
Setup Hadoop On Ubuntu Linux. ---Multi-Node Cluster
Setup Hadoop On Ubuntu Linux ---Multi-Node Cluster We have installed the JDK and Hadoop for you. The JAVA_HOME is /usr/lib/jvm/java/jdk1.6.0_22 The Hadoop home is /home/user/hadoop-0.20.2 1. Network Edit
2.1 Hadoop a. Hadoop Installation & Configuration
2. Implementation 2.1 Hadoop a. Hadoop Installation & Configuration First of all, we need to install Java Sun 6, and it is preferred to be version 6 not 7 for running Hadoop. Type the following commands
!"#$%&' ( )%#*'+,'-#.//"0( !"#$"%&'()*$+()',!-+.'/', 4(5,67,!-+!"89,:*$;'0+$.<.,&0$'09,&)"/=+,!()<>'0, 3, Processing LARGE data sets
!"#$%&' ( Processing LARGE data sets )%#*'+,'-#.//"0( Framework for o! reliable o! scalable o! distributed computation of large data sets 4(5,67,!-+!"89,:*$;'0+$.
Hadoop Submitted in partial fulfillment of the requirement for the award of degree of Bachelor of Technology in Computer Science
A Seminar report On Hadoop Submitted in partial fulfillment of the requirement for the award of degree of Bachelor of Technology in Computer Science SUBMITTED TO: www.studymafia.org SUBMITTED BY: www.studymafia.org
MapReduce Tutorial. Table of contents
Table of contents 1 Purpose... 2 2 Prerequisites...2 3 Overview... 2 4 Inputs and Outputs... 3 5 Example: WordCount v1.0... 3 5.1 Source Code...3 5.2 Usage...6 5.3 Walk-through... 7 6 MapReduce - User
CS 378 Big Data Programming. Lecture 2 Map- Reduce
CS 378 Big Data Programming Lecture 2 Map- Reduce MapReduce Large data sets are not new What characterizes a problem suitable for MR? Most or all of the data is processed But viewed in small increments
To reduce or not to reduce, that is the question
To reduce or not to reduce, that is the question 1 Running jobs on the Hadoop cluster For part 1 of assignment 8, you should have gotten the word counting example from class compiling. To start with, let
What We Can Do in the Cloud (2) -Tutorial for Cloud Computing Course- Mikael Fernandus Simalango WISE Research Lab Ajou University, South Korea
What We Can Do in the Cloud (2) -Tutorial for Cloud Computing Course- Mikael Fernandus Simalango WISE Research Lab Ajou University, South Korea Overview Riding Google App Engine Taming Hadoop Summary Riding
CS 378 Big Data Programming
CS 378 Big Data Programming Lecture 2 Map- Reduce CS 378 - Fall 2015 Big Data Programming 1 MapReduce Large data sets are not new What characterizes a problem suitable for MR? Most or all of the data is
Hadoop 只 支 援 用 Java 開 發 嘛? Is Hadoop only support Java? 總 不 能 全 部 都 重 新 設 計 吧? 如 何 與 舊 系 統 相 容? Can Hadoop work with existing software?
Hadoop 只 支 援 用 Java 開 發 嘛? Is Hadoop only support Java? 總 不 能 全 部 都 重 新 設 計 吧? 如 何 與 舊 系 統 相 容? Can Hadoop work with existing software? 可 以 跟 資 料 庫 結 合 嘛? Can Hadoop work with Databases? 開 發 者 們 有 聽 到
Chase Wu New Jersey Ins0tute of Technology
CS 698: Special Topics in Big Data Chapter 4. Big Data Analytics Platforms Chase Wu New Jersey Ins0tute of Technology Some of the slides have been provided through the courtesy of Dr. Ching-Yung Lin at
Introduction to Hadoop. New York Oracle User Group Vikas Sawhney
Introduction to Hadoop New York Oracle User Group Vikas Sawhney GENERAL AGENDA Driving Factors behind BIG-DATA NOSQL Database 2014 Database Landscape Hadoop Architecture Map/Reduce Hadoop Eco-system Hadoop
Hadoop Installation MapReduce Examples Jake Karnes
Big Data Management Hadoop Installation MapReduce Examples Jake Karnes These slides are based on materials / slides from Cloudera.com Amazon.com Prof. P. Zadrozny's Slides Prerequistes You must have an
Analysing Large Web Log Files in a Hadoop Distributed Cluster Environment
Analysing Large Files in a Hadoop Distributed Cluster Environment S Saravanan, B Uma Maheswari Department of Computer Science and Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham,
Generic Log Analyzer Using Hadoop Mapreduce Framework
Generic Log Analyzer Using Hadoop Mapreduce Framework Milind Bhandare 1, Prof. Kuntal Barua 2, Vikas Nagare 3, Dynaneshwar Ekhande 4, Rahul Pawar 5 1 M.Tech(Appeare), 2 Asst. Prof., LNCT, Indore 3 ME,
Analysis One Code Desc. Transaction Amount. Fiscal Period
Analysis One Code Desc Transaction Amount Fiscal Period 57.63 Oct-12 12.13 Oct-12-38.90 Oct-12-773.00 Oct-12-800.00 Oct-12-187.00 Oct-12-82.00 Oct-12-82.00 Oct-12-110.00 Oct-12-1115.25 Oct-12-71.00 Oct-12-41.00
A bit about Hadoop. Luca Pireddu. March 9, 2012. CRS4Distributed Computing Group. [email protected] (CRS4) Luca Pireddu March 9, 2012 1 / 18
A bit about Hadoop Luca Pireddu CRS4Distributed Computing Group March 9, 2012 [email protected] (CRS4) Luca Pireddu March 9, 2012 1 / 18 Often seen problems Often seen problems Low parallelism I/O is
t] open source Hadoop Beginner's Guide ij$ data avalanche Garry Turkington Learn how to crunch big data to extract meaning from
Hadoop Beginner's Guide Learn how to crunch big data to extract meaning from data avalanche Garry Turkington [ PUBLISHING t] open source I I community experience distilled ftu\ ij$ BIRMINGHAMMUMBAI ')
Pro Apache Hadoop. Second Edition. Sameer Wadkar. Madhu Siddalingaiah
Pro Apache Hadoop Second Edition Sameer Wadkar Madhu Siddalingaiah Contents J About the Authors About the Technical Reviewer Acknowledgments Introduction xix xxi xxiii xxv Chapter 1: Motivation for Big
CS2510 Computer Operating Systems Hadoop Examples Guide
CS2510 Computer Operating Systems Hadoop Examples Guide The main objective of this document is to acquire some faimiliarity with the MapReduce and Hadoop computational model and distributed file system.
How To Install Hadoop 1.2.1.1 From Apa Hadoop 1.3.2 To 1.4.2 (Hadoop)
Contents Download and install Java JDK... 1 Download the Hadoop tar ball... 1 Update $HOME/.bashrc... 3 Configuration of Hadoop in Pseudo Distributed Mode... 4 Format the newly created cluster to create
Case 2:08-cv-02463-ABC-E Document 1-4 Filed 04/15/2008 Page 1 of 138. Exhibit 8
Case 2:08-cv-02463-ABC-E Document 1-4 Filed 04/15/2008 Page 1 of 138 Exhibit 8 Case 2:08-cv-02463-ABC-E Document 1-4 Filed 04/15/2008 Page 2 of 138 Domain Name: CELLULARVERISON.COM Updated Date: 12-dec-2007
TP1: Getting Started with Hadoop
TP1: Getting Started with Hadoop Alexandru Costan MapReduce has emerged as a leading programming model for data-intensive computing. It was originally proposed by Google to simplify development of web
Hadoop: A Framework for Data- Intensive Distributed Computing. CS561-Spring 2012 WPI, Mohamed Y. Eltabakh
1 Hadoop: A Framework for Data- Intensive Distributed Computing CS561-Spring 2012 WPI, Mohamed Y. Eltabakh 2 What is Hadoop? Hadoop is a software framework for distributed processing of large datasets
Introduc)on to the MapReduce Paradigm and Apache Hadoop. Sriram Krishnan [email protected]
Introduc)on to the MapReduce Paradigm and Apache Hadoop Sriram Krishnan [email protected] Programming Model The computa)on takes a set of input key/ value pairs, and Produces a set of output key/value pairs.
Hadoop Streaming. Table of contents
Table of contents 1 Hadoop Streaming...3 2 How Streaming Works... 3 3 Streaming Command Options...4 3.1 Specifying a Java Class as the Mapper/Reducer... 5 3.2 Packaging Files With Job Submissions... 5
Lecture 2 (08/31, 09/02, 09/09): Hadoop. Decisions, Operations & Information Technologies Robert H. Smith School of Business Fall, 2015
Lecture 2 (08/31, 09/02, 09/09): Hadoop Decisions, Operations & Information Technologies Robert H. Smith School of Business Fall, 2015 K. Zhang BUDT 758 What we ll cover Overview Architecture o Hadoop
Hadoop Distributed File System. Dhruba Borthakur Apache Hadoop Project Management Committee [email protected] [email protected]
Hadoop Distributed File System Dhruba Borthakur Apache Hadoop Project Management Committee [email protected] [email protected] Hadoop, Why? Need to process huge datasets on large clusters of computers
Lecture 10 - Functional programming: Hadoop and MapReduce
Lecture 10 - Functional programming: Hadoop and MapReduce Sohan Dharmaraja Sohan Dharmaraja Lecture 10 - Functional programming: Hadoop and MapReduce 1 / 41 For today Big Data and Text analytics Functional
MAPREDUCE Programming Model
CS 2510 COMPUTER OPERATING SYSTEMS Cloud Computing MAPREDUCE Dr. Taieb Znati Computer Science Department University of Pittsburgh MAPREDUCE Programming Model Scaling Data Intensive Application MapReduce
Hadoop WordCount Explained! IT332 Distributed Systems
Hadoop WordCount Explained! IT332 Distributed Systems Typical problem solved by MapReduce Read a lot of data Map: extract something you care about from each record Shuffle and Sort Reduce: aggregate, summarize,
IDS 561 Big data analytics Assignment 1
IDS 561 Big data analytics Assignment 1 Due Midnight, October 4th, 2015 General Instructions The purpose of this tutorial is (1) to get you started with Hadoop and (2) to get you acquainted with the code
Introduction to Hadoop HDFS and Ecosystems. Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data
Introduction to Hadoop HDFS and Ecosystems ANSHUL MITTAL Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data Topics The goal of this presentation is to give
Click Stream Data Analysis Using Hadoop
Governors State University OPUS Open Portal to University Scholarship Capstone Projects Spring 2015 Click Stream Data Analysis Using Hadoop Krishna Chand Reddy Gaddam Governors State University Sivakrishna
Big Data Analysis using Hadoop components like Flume, MapReduce, Pig and Hive
Big Data Analysis using Hadoop components like Flume, MapReduce, Pig and Hive E. Laxmi Lydia 1,Dr. M.Ben Swarup 2 1 Associate Professor, Department of Computer Science and Engineering, Vignan's Institute
Take An Internal Look at Hadoop. Hairong Kuang Grid Team, Yahoo! Inc [email protected]
Take An Internal Look at Hadoop Hairong Kuang Grid Team, Yahoo! Inc [email protected] What s Hadoop Framework for running applications on large clusters of commodity hardware Scale: petabytes of data
ITG Software Engineering
Introduction to Apache Hadoop Course ID: Page 1 Last Updated 12/15/2014 Introduction to Apache Hadoop Course Overview: This 5 day course introduces the student to the Hadoop architecture, file system,
Hadoop Architecture. Part 1
Hadoop Architecture Part 1 Node, Rack and Cluster: A node is simply a computer, typically non-enterprise, commodity hardware for nodes that contain data. Consider we have Node 1.Then we can add more nodes,
HADOOP MOCK TEST HADOOP MOCK TEST II
http://www.tutorialspoint.com HADOOP MOCK TEST Copyright tutorialspoint.com This section presents you various set of Mock Tests related to Hadoop Framework. You can download these sample mock tests at
Hadoop IST 734 SS CHUNG
Hadoop IST 734 SS CHUNG Introduction What is Big Data?? Bulk Amount Unstructured Lots of Applications which need to handle huge amount of data (in terms of 500+ TB per day) If a regular machine need to
Hadoop Tutorial. General Instructions
CS246: Mining Massive Datasets Winter 2016 Hadoop Tutorial Due 11:59pm January 12, 2016 General Instructions The purpose of this tutorial is (1) to get you started with Hadoop and (2) to get you acquainted
Session: Big Data get familiar with Hadoop to use your unstructured data Udo Brede Dell Software. 22 nd October 2013 10:00 Sesión B - DB2 LUW
Session: Big Data get familiar with Hadoop to use your unstructured data Udo Brede Dell Software 22 nd October 2013 10:00 Sesión B - DB2 LUW 1 Agenda Big Data The Technical Challenges Architecture of Hadoop
Cloud Computing. Chapter 8. 8.1 Hadoop
Chapter 8 Cloud Computing In cloud computing, the idea is that a large corporation that has many computers could sell time on them, for example to make profitable use of excess capacity. The typical customer
The objective of this lab is to learn how to set up an environment for running distributed Hadoop applications.
Lab 9: Hadoop Development The objective of this lab is to learn how to set up an environment for running distributed Hadoop applications. Introduction Hadoop can be run in one of three modes: Standalone
Extreme Computing. Hadoop MapReduce in more detail. www.inf.ed.ac.uk
Extreme Computing Hadoop MapReduce in more detail How will I actually learn Hadoop? This class session Hadoop: The Definitive Guide RTFM There is a lot of material out there There is also a lot of useless
Hadoop. Apache Hadoop is an open-source software framework for storage and large scale processing of data-sets on clusters of commodity hardware.
Hadoop Source Alessandro Rezzani, Big Data - Architettura, tecnologie e metodi per l utilizzo di grandi basi di dati, Apogeo Education, ottobre 2013 wikipedia Hadoop Apache Hadoop is an open-source software
Distributed Filesystems
Distributed Filesystems Amir H. Payberah Swedish Institute of Computer Science [email protected] April 8, 2014 Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 1 / 32 What is Filesystem? Controls
Internals of Hadoop Application Framework and Distributed File System
International Journal of Scientific and Research Publications, Volume 5, Issue 7, July 2015 1 Internals of Hadoop Application Framework and Distributed File System Saminath.V, Sangeetha.M.S Abstract- Hadoop
Yahoo! Grid Services Where Grid Computing at Yahoo! is Today
Yahoo! Grid Services Where Grid Computing at Yahoo! is Today Marco Nicosia Grid Services Operations [email protected] What is Apache Hadoop? Distributed File System and Map-Reduce programming platform
Enhanced Vessel Traffic Management System Booking Slots Available and Vessels Booked per Day From 12-JAN-2016 To 30-JUN-2017
From -JAN- To -JUN- -JAN- VIRP Page Period Period Period -JAN- 8 -JAN- 8 9 -JAN- 8 8 -JAN- -JAN- -JAN- 8-JAN- 9-JAN- -JAN- -JAN- -JAN- -JAN- -JAN- -JAN- -JAN- -JAN- 8-JAN- 9-JAN- -JAN- -JAN- -FEB- : days
Apache Hadoop. Alexandru Costan
1 Apache Hadoop Alexandru Costan Big Data Landscape No one-size-fits-all solution: SQL, NoSQL, MapReduce, No standard, except Hadoop 2 Outline What is Hadoop? Who uses it? Architecture HDFS MapReduce Open
CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop)
CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Spring 2016 MapReduce MapReduce is a programming model
Hadoop Ecosystem Overview. CMSC 491 Hadoop-Based Distributed Computing Spring 2015 Adam Shook
Hadoop Ecosystem Overview CMSC 491 Hadoop-Based Distributed Computing Spring 2015 Adam Shook Agenda Introduce Hadoop projects to prepare you for your group work Intimate detail will be provided in future
Hadoop. History and Introduction. Explained By Vaibhav Agarwal
Hadoop History and Introduction Explained By Vaibhav Agarwal Agenda Architecture HDFS Data Flow Map Reduce Data Flow Hadoop Versions History Hadoop version 2 Hadoop Architecture HADOOP (HDFS) Data Flow
MASSIVE DATA PROCESSING (THE GOOGLE WAY ) 27/04/2015. Fundamentals of Distributed Systems. Inside Google circa 2015
7/04/05 Fundamentals of Distributed Systems CC5- PROCESAMIENTO MASIVO DE DATOS OTOÑO 05 Lecture 4: DFS & MapReduce I Aidan Hogan [email protected] Inside Google circa 997/98 MASSIVE DATA PROCESSING (THE
Hadoop Training Hands On Exercise
Hadoop Training Hands On Exercise 1. Getting started: Step 1: Download and Install the Vmware player - Download the VMware- player- 5.0.1-894247.zip and unzip it on your windows machine - Click the exe
Introduction to Hadoop
Introduction to Hadoop Miles Osborne School of Informatics University of Edinburgh [email protected] October 28, 2010 Miles Osborne Introduction to Hadoop 1 Background Hadoop Programming Model Examples
Sriram Krishnan, Ph.D. [email protected]
Sriram Krishnan, Ph.D. [email protected] (Re-)Introduction to cloud computing Introduction to the MapReduce and Hadoop Distributed File System Programming model Examples of MapReduce Where/how to run MapReduce
