10605 BigML Assignment 4(a): Naive Bayes using Hadoop Streaming
|
|
|
- Grant Miles
- 10 years ago
- Views:
Transcription
1 10605 BigML Assignment 4(a): Naive Bayes using Hadoop Streaming Due: Friday, Feb. 21, :59 EST via Autolab Late submission with 50% credit: Sunday, Feb. 23, :59 EST via Autolab Policy on Collaboration among Students These policies are the same as were used in Dr. Rosenfeld s previous version of from The purpose of student collaboration is to facilitate learning, not to circumvent it. Studying the material in groups is strongly encouraged. It is also allowed to seek help from other students in understanding the material needed to solve a particular homework problem, provided no written notes are shared, or are taken at that time, and provided learning is facilitated, not circumvented. The actual solution must be done by each student alone, and the student should be ready to reproduce their solution upon request. The presence or absence of any form of help or collaboration, whether given or received, must be explicitly stated and disclosed in full by all involved, on the first page of their assignment. Specifically, each assignment solution must start by answering the following questions in the report: Did you receive any help whatsoever from anyone in solving this assignment? Yes / No. If you answered yes, give full details: (e.g. Jane explained to me what is asked in Question 3.4 ) Did you give any help whatsoever to anyone in solving this assignment? Yes / No. If you answered yes, give full details: (e.g. I pointed Joe to section 2.3 to help him with Question 2. Collaboration without full disclosure will be handled severely, in compliance with CMU s Policy on Cheating and Plagiarism. As a related point, some of the homework assignments used in this class may have been used in prior versions of this class, or in classes at other institutions. Avoiding the use of heavily tested assignments will detract from the main purpose of these assignments, which is to reinforce the material and stimulate thinking. Because some of these assignments may have been used before, solutions to them may be (or may have been) available online, or from other people. It is explicitly forbidden to use any such sources, or to consult people who have solved these problems 1
2 before. You must solve the homework assignments completely on your own. I will mostly rely on your wisdom and honor to follow this rule, but if a violation is detected it will be dealt with harshly. Collaboration with other students who are currently taking the class is allowed, but only under the conditions stated below. 1 Important Note As usual, you are expected to use Java for this assignment. This assignment is worth 50 points. This is a relatively small assignment because you will be able to reuse most of the code from previous Naive Bayes assignment. In this assignment, you will have to use Hadoop Streaming to train Naive Bayes classifier. To learn more about Hadoop Streaming, see streaming.html. Siddharth Varia ([email protected]) is the contact TA for this assignment. Please post clarification questions to the Piazza, and the instructors can be reached at the following address: [email protected]. 2 Introduction In Hadoop Streaming, the input is read from stdin, and output is written to stdout. The mapper takes input coming from stdin and outputs key/value pairs. Hadoop s Shuffle and Sort phase takes care of sorting keys so that input feed to reducers will be sorted by keys. The reducer aggregates values corresponding to the same key and outputs key/value pairs to stdout. The mapper and reducer need not be java classes, they can even be an executable or a script. Specifically, in the homework 4(a), a successful Hadoop Streaming naive Bayes implementation will need to have a mapper class that counts the occurrences of terms and output the key value pairs, as well as a reducer that merges these counts of the same keys. Note that you only need to run Hadoop streaming to train your naive Bayes classifier, and no testing is involved in this part of homework 4. 3 Getting started 3.1 Using AWS and elastic MapReduce (EMR) 1. Sign up for AWS using your credit card 1 1 You may check your usage at Note that job less than an hour will be billed in an full hour. 2
3 2. Redeem AWS code 2 provided to you (the gift code will be ed to you in a separate ). 3. Create new AWSAccessKeyId and AWSSecretKey by going to Security Credentials and save key file. 4. Refer to AWS EMR documentation on how to use it through commandline or web console. see and next subsection for more details. We will distribute the AWS gift code to every registered student. If you have not got one, let us know. Here are a few hints for running jobs on AWS: Submitting a Jar job The easiest way to submit jobs to AWS is via the AWS console s web interface. For details, see emr-what-is-emr.html. You can also start a job using command line interface. You need to install the elastic mr command line interface. For details, see emr-cli-reference.html Important: in homework 4a, when setting up your job on EMR, make sure you select Streaming program in the add step option, so that the EMR will run your job in the Hadoop streaming mode Viewing job progress Tutorial for viewing the jobtracker on your local machine (via proxy) 3. (You can also ssh into the machine using the command line interface, and then use the lynx commands in the login preamble to view the job tracker.) 3.2 Debugging with the CMU Hadoop cluster To help you debugging your Hadoop streaming code, you may debug on the hadoop cluster at CMU. See the course webpage for details: courses/index.php/hadoop_cluster_information. Another option would be setting up the Hadoop environment on your local machine and simulate the large jobs by running a single thread with a small file locally. 2 Please do not use other s gift code or let others use your gift code. If you have problems, let the instructors know. Also, please do not sell the gift code on Amazon or ebay. 3 UsingtheHadoopUserInterface.html 3
4 4 The Data We are using the data from Assignments 1. They are on AWS at s3://bigmldatasets/rcv1/full/ and s3://bigmldatasets/rcv1/small/. You do not need to copy the data to S3 by yourself. Note that you only need to submit the log files for the full dataset. The small dataset is provided to you for debugging as usual 4. Similar to homework 1, please use the provided tokenizer from homework 1, and use only the four valid labels specified in homework 1. Also similar to homework 1, if the document contains multiple valid labels, then you have to consider the document once for each such label. 5 Deliverables 5.1 Steps What you need to do in this assignment can be summarized in the following steps: Setup you AWS account following the instructions in the Section 3.1 of the handout. Upload your jar file that contains your mapper and reducer for naive Bayes training to S3. Setup and run the job on full dataset with elastic MapReduce using the Streaming option. Download the controller and syslog text files, and submit via Autolab together with the report and your code. 5.2 Report Submit your implementations via AutoLab. You should implement the algorithm by yourself instead of using any existing machine learning toolkit. You should upload your code (including all your function files) along with a report, which should solve the following questions: 1. Examine the output of your Hadoop streaming job on the full RCV1 training dataset. What are the counts for the following keys? (20 points) Y=GCAT,W=gunman? Y=GCAT,W=half? Y=CCAT,W=limited? 4 Note that Amazon will charge you a full hour for small jobs less than one hour, so you may not want to develop or debug your code on AWS. 4
5 2. Answer the questions in the collaboration policy on page 1. The controller and syslog files from AWS for the mapreduce job can be downloaded from the AWS console. Simply go to the Elastic Mapreduce tab. Select your job in the list, click View details and expand Steps to see jobs and log files. 5.3 Autolab submission details You should tar the following items into hw4a.tar and submit to the homework 4a assignment via Autolab: NBTrainMapper.java NBTrainReducer.java controller.txt syslog.txt and all other auxiliary functions you have written report.pdf Tar the files directly using tar -cvf hw4a.tar *.java *.txt report.pdf. Do NOT put the above files in a folder and then tar the folder. You do not need to upload the saved temporary files. 6 Submission You must submit your homework through Autolab. In this part of homework 4, there will be no validation needed. Homework4a: This is where you should submit your tar ball. You have a total of 5 possible submissions. Your score will be reported, and feedback will be provided immediately. 7 Grading If you are able to successfully run the job on AWS EMR, you will receive 30 points. The successful run of your job should be reflected in your log files. The report will be graded manually (20 points). 5
Amazon Web Services (AWS) Setup Guidelines
Amazon Web Services (AWS) Setup Guidelines For CSE6242 HW3, updated version of the guidelines by Diana Maclean [Estimated time needed: 1 hour] Note that important steps are highlighted in yellow. What
CSCI6900 Assignment 2: Naïve Bayes on Hadoop
DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF GEORGIA CSCI6900 Assignment 2: Naïve Bayes on Hadoop DUE: Friday, September 18 by 11:59:59pm Out September 4, 2015 1 IMPORTANT NOTES You are expected to use
Hands-on Exercises with Big Data
Hands-on Exercises with Big Data Lab Sheet 1: Getting Started with MapReduce and Hadoop The aim of this exercise is to learn how to begin creating MapReduce programs using the Hadoop Java framework. In
CS 378 Big Data Programming. Lecture 2 Map- Reduce
CS 378 Big Data Programming Lecture 2 Map- Reduce MapReduce Large data sets are not new What characterizes a problem suitable for MR? Most or all of the data is processed But viewed in small increments
CSE 344 Introduction to Data Management. Section 9: AWS, Hadoop, Pig Latin TA: Yi-Shu Wei
CSE 344 Introduction to Data Management Section 9: AWS, Hadoop, Pig Latin TA: Yi-Shu Wei Homework 8 Big Data analysis on billion triple dataset using Amazon Web Service (AWS) Billion Triple Set: contains
CS 378 Big Data Programming
CS 378 Big Data Programming Lecture 2 Map- Reduce CS 378 - Fall 2015 Big Data Programming 1 MapReduce Large data sets are not new What characterizes a problem suitable for MR? Most or all of the data is
A. Aiken & K. Olukotun PA3
Programming Assignment #3 Hadoop N-Gram Due Tue, Feb 18, 11:59PM In this programming assignment you will use Hadoop s implementation of MapReduce to search Wikipedia. This is not a course in search, so
Running Knn Spark on EC2 Documentation
Pseudo code Running Knn Spark on EC2 Documentation Preparing to use Amazon AWS First, open a Spark launcher instance. Open a m3.medium account with all default settings. Step 1: Login to the AWS console.
Getting Started with Hadoop with Amazon s Elastic MapReduce
Getting Started with Hadoop with Amazon s Elastic MapReduce Scott Hendrickson [email protected] http://drskippy.net/projects/emr-hadoopmeetup.pdf Boulder/Denver Hadoop Meetup 8 July 2010 Scott Hendrickson
Tutorial for Assignment 2.0
Tutorial for Assignment 2.0 Florian Klien & Christian Körner IMPORTANT The presented information has been tested on the following operating systems Mac OS X 10.6 Ubuntu Linux The installation on Windows
Hadoop Tutorial. General Instructions
CS246: Mining Massive Datasets Winter 2016 Hadoop Tutorial Due 11:59pm January 12, 2016 General Instructions The purpose of this tutorial is (1) to get you started with Hadoop and (2) to get you acquainted
MapReduce. Tushar B. Kute, http://tusharkute.com
MapReduce Tushar B. Kute, http://tusharkute.com What is MapReduce? MapReduce is a framework using which we can write applications to process huge amounts of data, in parallel, on large clusters of commodity
IDS 561 Big data analytics Assignment 1
IDS 561 Big data analytics Assignment 1 Due Midnight, October 4th, 2015 General Instructions The purpose of this tutorial is (1) to get you started with Hadoop and (2) to get you acquainted with the code
Tutorial for Assignment 2.0
Tutorial for Assignment 2.0 Web Science and Web Technology Summer 2012 Slides based on last years tutorials by Chris Körner, Philipp Singer 1 Review and Motivation Agenda Assignment Information Introduction
Project 5 Twitter Analyzer Due: Fri. 2015-12-11 11:59:59 pm
Project 5 Twitter Analyzer Due: Fri. 2015-12-11 11:59:59 pm Goal. In this project you will use Hadoop to build a tool for processing sets of Twitter posts (i.e. tweets) and determining which people, tweets,
Extreme computing lab exercises Session one
Extreme computing lab exercises Session one Michail Basios ([email protected]) Stratis Viglas ([email protected]) 1 Getting started First you need to access the machine where you will be doing all
Cloud Computing. Chapter 8. 8.1 Hadoop
Chapter 8 Cloud Computing In cloud computing, the idea is that a large corporation that has many computers could sell time on them, for example to make profitable use of excess capacity. The typical customer
Hadoop Data Warehouse Manual
Ruben Vervaeke & Jonas Lesy 1 Hadoop Data Warehouse Manual To start off, we d like to advise you to read the thesis written about this project before applying any changes to the setup! The thesis can be
Extreme Computing. Hadoop. Stratis Viglas. School of Informatics University of Edinburgh [email protected]. Stratis Viglas Extreme Computing 1
Extreme Computing Hadoop Stratis Viglas School of Informatics University of Edinburgh [email protected] Stratis Viglas Extreme Computing 1 Hadoop Overview Examples Environment Stratis Viglas Extreme
CS 378 Big Data Programming. Lecture 5 Summariza9on Pa:erns
CS 378 Big Data Programming Lecture 5 Summariza9on Pa:erns Review Assignment 2 Ques9ons? If you d like to use guava (Google collec9ons classes) pom.xml available for assignment 2 Includes dependency for
Map Reduce & Hadoop Recommended Text:
Big Data Map Reduce & Hadoop Recommended Text:! Large datasets are becoming more common The New York Stock Exchange generates about one terabyte of new trade data per day. Facebook hosts approximately
Assignment 2: More MapReduce with Hadoop
Assignment 2: More MapReduce with Hadoop Jean-Pierre Lozi February 5, 2015 Provided files following URL: An archive that contains all files you will need for this assignment can be found at the http://sfu.ca/~jlozi/cmpt732/assignment2.tar.gz
Introduction to Hadoop
Introduction to Hadoop Miles Osborne School of Informatics University of Edinburgh [email protected] October 28, 2010 Miles Osborne Introduction to Hadoop 1 Background Hadoop Programming Model Examples
How To Install Hadoop 1.2.1.1 From Apa Hadoop 1.3.2 To 1.4.2 (Hadoop)
Contents Download and install Java JDK... 1 Download the Hadoop tar ball... 1 Update $HOME/.bashrc... 3 Configuration of Hadoop in Pseudo Distributed Mode... 4 Format the newly created cluster to create
t] open source Hadoop Beginner's Guide ij$ data avalanche Garry Turkington Learn how to crunch big data to extract meaning from
Hadoop Beginner's Guide Learn how to crunch big data to extract meaning from data avalanche Garry Turkington [ PUBLISHING t] open source I I community experience distilled ftu\ ij$ BIRMINGHAMMUMBAI ')
Amazon Elastic MapReduce. Jinesh Varia Peter Sirota Richard Cole
Amazon Elastic MapReduce Jinesh Varia Peter Sirota Richard Cole Start End From IDE Command line Web Console Notify Input Data Get Results Start End From IDE Command line Web Console AWS EC2 Instance Notify
Hadoop Installation MapReduce Examples Jake Karnes
Big Data Management Hadoop Installation MapReduce Examples Jake Karnes These slides are based on materials / slides from Cloudera.com Amazon.com Prof. P. Zadrozny's Slides Prerequistes You must have an
Hadoop Setup. 1 Cluster
In order to use HadoopUnit (described in Sect. 3.3.3), a Hadoop cluster needs to be setup. This cluster can be setup manually with physical machines in a local environment, or in the cloud. Creating a
MapReduce, Hadoop and Amazon AWS
MapReduce, Hadoop and Amazon AWS Yasser Ganjisaffar http://www.ics.uci.edu/~yganjisa February 2011 What is Hadoop? A software framework that supports data-intensive distributed applications. It enables
HDFS Cluster Installation Automation for TupleWare
HDFS Cluster Installation Automation for TupleWare Xinyi Lu Department of Computer Science Brown University Providence, RI 02912 [email protected] March 26, 2014 Abstract TupleWare[1] is a C++ Framework
Elastic Map Reduce. Shadi Khalifa Database Systems Laboratory (DSL) [email protected]
Elastic Map Reduce Shadi Khalifa Database Systems Laboratory (DSL) [email protected] The Amazon Web Services Universe Cross Service Features Management Interface Platform Services Infrastructure Services
Single Node Hadoop Cluster Setup
Single Node Hadoop Cluster Setup This document describes how to create Hadoop Single Node cluster in just 30 Minutes on Amazon EC2 cloud. You will learn following topics. Click Here to watch these steps
Chapter 7. Using Hadoop Cluster and MapReduce
Chapter 7 Using Hadoop Cluster and MapReduce Modeling and Prototyping of RMS for QoS Oriented Grid Page 152 7. Using Hadoop Cluster and MapReduce for Big Data Problems The size of the databases used in
How To Use Hadoop
Hadoop in Action Justin Quan March 15, 2011 Poll What s to come Overview of Hadoop for the uninitiated How does Hadoop work? How do I use Hadoop? How do I get started? Final Thoughts Key Take Aways Hadoop
Hadoop Streaming. Table of contents
Table of contents 1 Hadoop Streaming...3 2 How Streaming Works... 3 3 Streaming Command Options...4 3.1 Specifying a Java Class as the Mapper/Reducer... 5 3.2 Packaging Files With Job Submissions... 5
HiBench Introduction. Carson Wang ([email protected]) Software & Services Group
HiBench Introduction Carson Wang ([email protected]) Agenda Background Workloads Configurations Benchmark Report Tuning Guide Background WHY Why we need big data benchmarking systems? WHAT What is
Hadoop 只 支 援 用 Java 開 發 嘛? Is Hadoop only support Java? 總 不 能 全 部 都 重 新 設 計 吧? 如 何 與 舊 系 統 相 容? Can Hadoop work with existing software?
Hadoop 只 支 援 用 Java 開 發 嘛? Is Hadoop only support Java? 總 不 能 全 部 都 重 新 設 計 吧? 如 何 與 舊 系 統 相 容? Can Hadoop work with existing software? 可 以 跟 資 料 庫 結 合 嘛? Can Hadoop work with Databases? 開 發 者 們 有 聽 到
PaRFR : Parallel Random Forest Regression on Hadoop for Multivariate Quantitative Trait Loci Mapping. Version 1.0, Oct 2012
PaRFR : Parallel Random Forest Regression on Hadoop for Multivariate Quantitative Trait Loci Mapping Version 1.0, Oct 2012 This document describes PaRFR, a Java package that implements a parallel random
Background on Elastic Compute Cloud (EC2) AMI s to choose from including servers hosted on different Linux distros
David Moses January 2014 Paper on Cloud Computing I Background on Tools and Technologies in Amazon Web Services (AWS) In this paper I will highlight the technologies from the AWS cloud which enable you
Hadoop: A Framework for Data- Intensive Distributed Computing. CS561-Spring 2012 WPI, Mohamed Y. Eltabakh
1 Hadoop: A Framework for Data- Intensive Distributed Computing CS561-Spring 2012 WPI, Mohamed Y. Eltabakh 2 What is Hadoop? Hadoop is a software framework for distributed processing of large datasets
Tutorial: Big Data Algorithms and Applications Under Hadoop KUNPENG ZHANG SIDDHARTHA BHATTACHARYYA
Tutorial: Big Data Algorithms and Applications Under Hadoop KUNPENG ZHANG SIDDHARTHA BHATTACHARYYA http://kzhang6.people.uic.edu/tutorial/amcis2014.html August 7, 2014 Schedule I. Introduction to big data
Hadoop Parallel Data Processing
MapReduce and Implementation Hadoop Parallel Data Processing Kai Shen A programming interface (two stage Map and Reduce) and system support such that: the interface is easy to program, and suitable for
Hadoop 2.6 Configuration and More Examples
Hadoop 2.6 Configuration and More Examples Big Data 2015 Apache Hadoop & YARN Apache Hadoop (1.X)! De facto Big Data open source platform Running for about 5 years in production at hundreds of companies
A Tutorial Introduc/on to Big Data. Hands On Data Analy/cs over EMR. Robert Grossman University of Chicago Open Data Group
A Tutorial Introduc/on to Big Data Hands On Data Analy/cs over EMR Robert Grossman University of Chicago Open Data Group Collin BenneE Open Data Group November 12, 2012 1 Amazon AWS Elas/c MapReduce allows
Zend Server Amazon AMI Quick Start Guide
Zend Server Amazon AMI Quick Start Guide By Zend Technologies www.zend.com Disclaimer This is the Quick Start Guide for The Zend Server Zend Server Amazon Machine Image The information in this document
HADOOP MOCK TEST HADOOP MOCK TEST II
http://www.tutorialspoint.com HADOOP MOCK TEST Copyright tutorialspoint.com This section presents you various set of Mock Tests related to Hadoop Framework. You can download these sample mock tests at
How to Run Spark Application
How to Run Spark Application Junghoon Kang Contents 1 Intro 2 2 How to Install Spark on a Local Machine? 2 2.1 On Ubuntu 14.04.................................... 2 3 How to Run Spark Application on a
Research Laboratory. Java Web Crawler & Hadoop MapReduce Anri Morchiladze && Bachana Dolidze Supervisor Nodar Momtselidze
Research Laboratory Java Web Crawler & Hadoop MapReduce Anri Morchiladze && Bachana Dolidze Supervisor Nodar Momtselidze 1. Java Web Crawler Description Java Code 2. MapReduce Overview Example of mapreduce
COURSE CONTENT Big Data and Hadoop Training
COURSE CONTENT Big Data and Hadoop Training 1. Meet Hadoop Data! Data Storage and Analysis Comparison with Other Systems RDBMS Grid Computing Volunteer Computing A Brief History of Hadoop Apache Hadoop
H2O on Hadoop. September 30, 2014. www.0xdata.com
H2O on Hadoop September 30, 2014 www.0xdata.com H2O on Hadoop Introduction H2O is the open source math & machine learning engine for big data that brings distribution and parallelism to powerful algorithms
Setup Guide for PrestaShop and BlueSnap
Setup Guide for PrestaShop and BlueSnap This manual is meant to show you how to connect your PrestaShop store with your newly created BlueSnap account. It will show step-by-step instructions. For any further
Developing a MapReduce Application
TIE 12206 - Apache Hadoop Tampere University of Technology, Finland November, 2014 Outline 1 MapReduce Paradigm 2 Hadoop Default Ports 3 Outline 1 MapReduce Paradigm 2 Hadoop Default Ports 3 MapReduce
Introduction To Hive
Introduction To Hive How to use Hive in Amazon EC2 CS 341: Project in Mining Massive Data Sets Hyung Jin(Evion) Kim Stanford University References: Cloudera Tutorials, CS345a session slides, Hadoop - The
MapReduce and Hadoop. Aaron Birkland Cornell Center for Advanced Computing. January 2012
MapReduce and Hadoop Aaron Birkland Cornell Center for Advanced Computing January 2012 Motivation Simple programming model for Big Data Distributed, parallel but hides this Established success at petabyte
Running Kmeans Mapreduce code on Amazon AWS
Running Kmeans Mapreduce code on Amazon AWS Pseudo Code Input: Dataset D, Number of clusters k Output: Data points with cluster memberships Step 1: for iteration = 1 to MaxIterations do Step 2: Mapper:
University of Maryland. Tuesday, February 2, 2010
Data-Intensive Information Processing Applications Session #2 Hadoop: Nuts and Bolts Jimmy Lin University of Maryland Tuesday, February 2, 2010 This work is licensed under a Creative Commons Attribution-Noncommercial-Share
CS380 Final Project Evaluating the Scalability of Hadoop in a Real and Virtual Environment
CS380 Final Project Evaluating the Scalability of Hadoop in a Real and Virtual Environment James Devine December 15, 2008 Abstract Mapreduce has been a very successful computational technique that has
File S1: Supplementary Information of CloudDOE
File S1: Supplementary Information of CloudDOE Table of Contents 1. Prerequisites of CloudDOE... 2 2. An In-depth Discussion of Deploying a Hadoop Cloud... 2 Prerequisites of deployment... 2 Table S1.
USING HDFS ON DISCOVERY CLUSTER TWO EXAMPLES - test1 and test2
USING HDFS ON DISCOVERY CLUSTER TWO EXAMPLES - test1 and test2 (Using HDFS on Discovery Cluster for Discovery Cluster Users email [email protected] if you have questions or need more clarifications. Nilay
MyCloudLab: An Interactive Web-based Management System for Cloud Computing Administration
MyCloudLab: An Interactive Web-based Management System for Cloud Computing Administration Hoi-Wan Chan 1, Min Xu 2, Chung-Pan Tang 1, Patrick P. C. Lee 1 & Tsz-Yeung Wong 1, 1 Department of Computer Science
Chapter 9 PUBLIC CLOUD LABORATORY. Sucha Smanchat, PhD. Faculty of Information Technology. King Mongkut s University of Technology North Bangkok
CLOUD COMPUTING PRACTICE 82 Chapter 9 PUBLIC CLOUD LABORATORY Hand on laboratory based on AWS Sucha Smanchat, PhD Faculty of Information Technology King Mongkut s University of Technology North Bangkok
How To Set Up A Smartwork Course
Instructor QuickStart Guide This brief manual provides instructions for setting up and customizing your SmartWork course, and will outline the functions of the grade book and other administrator tools.
Click Stream Data Analysis Using Hadoop
Governors State University OPUS Open Portal to University Scholarship Capstone Projects Spring 2015 Click Stream Data Analysis Using Hadoop Krishna Chand Reddy Gaddam Governors State University Sivakrishna
BIG DATA - HADOOP PROFESSIONAL amron
0 Training Details Course Duration: 30-35 hours training + assignments + actual project based case studies Training Materials: All attendees will receive: Assignment after each module, video recording
How MapReduce Works 資碩一 戴睿宸
How MapReduce Works MapReduce Entities four independent entities: The client The jobtracker The tasktrackers The distributed filesystem Steps 1. Asks the jobtracker for a new job ID 2. Checks the output
Renderbot Tutorial. Intro to AWS
Renderbot Tutorial Thanks for choosing to render your Blender projects in the cloud using Renderbot. This guide will introduce Amazon AWS, walk you through the setup process, and help you render your first
FREE computing using Amazon EC2
FREE computing using Amazon EC2 Seong-Hwan Jun 1 1 Department of Statistics Univ of British Columbia Nov 1st, 2012 / Student seminar Outline Basics of servers Amazon EC2 Setup R on an EC2 instance Stat
AWS Account Setup and Services Overview
AWS Account Setup and Services Overview 1. Purpose of the Lab Understand definitions of various Amazon Web Services (AWS) and their use in cloud computing based web applications that are accessible over
L1: Introduction to Hadoop
L1: Introduction to Hadoop Feng Li [email protected] School of Statistics and Mathematics Central University of Finance and Economics Revision: December 1, 2014 Today we are going to learn... 1 General
02-201: Programming for Scientists
1. Course Information 1.1 Course description 02-201: Programming for Scientists Carl Kingsford Fall 2015 Provides a practical introduction to programming for students with little or no prior programming
To reduce or not to reduce, that is the question
To reduce or not to reduce, that is the question 1 Running jobs on the Hadoop cluster For part 1 of assignment 8, you should have gotten the word counting example from class compiling. To start with, let
map/reduce connected components
1, map/reduce connected components find connected components with analogous algorithm: map edges randomly to partitions (k subgraphs of n nodes) for each partition remove edges, so that only tree remains
Sriram Krishnan, Ph.D. [email protected]
Sriram Krishnan, Ph.D. [email protected] (Re-)Introduction to cloud computing Introduction to the MapReduce and Hadoop Distributed File System Programming model Examples of MapReduce Where/how to run MapReduce
Big Data With Hadoop
With Saurabh Singh [email protected] The Ohio State University February 11, 2016 Overview 1 2 3 Requirements Ecosystem Resilient Distributed Datasets (RDDs) Example Code vs Mapreduce 4 5 Source: [Tutorials
Extreme Computing. Hadoop MapReduce in more detail. www.inf.ed.ac.uk
Extreme Computing Hadoop MapReduce in more detail How will I actually learn Hadoop? This class session Hadoop: The Definitive Guide RTFM There is a lot of material out there There is also a lot of useless
Connect Math Hosted by Aleks. Training Guide
Connect Math Hosted by Aleks 1 Training Guide Table of Contents Section 1: Getting Started 3 Guidelines for Training Faculty... 3 Navigating Your Account... 5 Navigating Your Course... 9 Managing Your
ECE 297 Design and Communication. Course Syllabus, January 2015
ECE 297 Design and Communication Course Syllabus, January 2015 Lecturers and Office Hours: Design Communication Lecturer Vaughn Betz Ken Tallman Office Location 311 Engineering Annex Sanford Fleming, SF
Introduction to analyzing big data using Amazon Web Services
Introduction to analyzing big data using Amazon Web Services This tutorial accompanies the BARC seminar given at Whitehead on January 31, 2013. It contains instructions for: 1. Getting started with Amazon
Introduction to Hadoop
Introduction to Hadoop 1 What is Hadoop? the big data revolution extracting value from data cloud computing 2 Understanding MapReduce the word count problem more examples MCS 572 Lecture 24 Introduction
Cloudera Manager Training: Hands-On Exercises
201408 Cloudera Manager Training: Hands-On Exercises General Notes... 2 In- Class Preparation: Accessing Your Cluster... 3 Self- Study Preparation: Creating Your Cluster... 4 Hands- On Exercise: Working
Engaged Management ReView Reviewer Guidelines V.1.0. Friday, March 11, 2015
Engaged Management ReView Reviewer Guidelines V.1.0 Friday, March 11, 2015 Table of Contents Engaged Management ReView (EMR) Reviewer Guidelines... 3 SECTION 1: Reviewer Receiving Invitation to Review
Distributed Computing and Big Data: Hadoop and MapReduce
Distributed Computing and Big Data: Hadoop and MapReduce Bill Keenan, Director Terry Heinze, Architect Thomson Reuters Research & Development Agenda R&D Overview Hadoop and MapReduce Overview Use Case:
Data Intensive Computing Handout 6 Hadoop
Data Intensive Computing Handout 6 Hadoop Hadoop 1.2.1 is installed in /HADOOP directory. The JobTracker web interface is available at http://dlrc:50030, the NameNode web interface is available at http://dlrc:50070.
i>clicker v7 Gradebook Integration: Blackboard Learn Instructor Guide
i>clicker v7 Gradebook Integration: Blackboard Learn July 2015 Table of Contents Overview... 3 Step 1: Prepare a Configured Version of i>clicker... 4 Step 2: Configure your i>clicker Software... 5 Step
Professional Hadoop Solutions
Brochure More information from http://www.researchandmarkets.com/reports/2542488/ Professional Hadoop Solutions Description: The go-to guidebook for deploying Big Data solutions with Hadoop Today's enterprise
The objective of this lab is to learn how to set up an environment for running distributed Hadoop applications.
Lab 9: Hadoop Development The objective of this lab is to learn how to set up an environment for running distributed Hadoop applications. Introduction Hadoop can be run in one of three modes: Standalone
Important Notice. (c) 2010-2013 Cloudera, Inc. All rights reserved.
Hue 2 User Guide Important Notice (c) 2010-2013 Cloudera, Inc. All rights reserved. Cloudera, the Cloudera logo, Cloudera Impala, and any other product or service names or slogans contained in this document
Distributed Apriori in Hadoop MapReduce Framework
Distributed Apriori in Hadoop MapReduce Framework By Shulei Zhao (sz2352) and Rongxin Du (rd2537) Individual Contribution: Shulei Zhao: Implements centralized Apriori algorithm and input preprocessing
Cloud Computing for Education Workshop
Cloud Computing for Education Workshop 2012 Copyright REZA CURTMOLA, NJIT What Have We Learned So Far? We have learned several cloud applications (Dropbox, Google Docs, Piazza, etc.) Dropbox SugarSync
BUDT 758B-0501: Big Data Analytics (Fall 2015) Decisions, Operations & Information Technologies Robert H. Smith School of Business
BUDT 758B-0501: Big Data Analytics (Fall 2015) Decisions, Operations & Information Technologies Robert H. Smith School of Business Instructor: Kunpeng Zhang ([email protected]) Lecture-Discussions:
Big Data and Scripting map/reduce in Hadoop
Big Data and Scripting map/reduce in Hadoop 1, 2, parts of a Hadoop map/reduce implementation core framework provides customization via indivudual map and reduce functions e.g. implementation in mongodb
ST 810, Advanced computing
ST 810, Advanced computing Eric B. Laber & Hua Zhou Department of Statistics, North Carolina State University January 30, 2013 Supercomputers are expensive. Eric B. Laber, 2011, while browsing the internet.
Collaboration Policy Fall 2015
CS17 Integrated Introduction to Computer Science Hughes Collaboration Policy Fall 2015 Contents 1 Introduction 1 2 Course Assignments 1 2.1 Labs............................................. 2 2.2 Homeworks.........................................
What We Can Do in the Cloud (2) -Tutorial for Cloud Computing Course- Mikael Fernandus Simalango WISE Research Lab Ajou University, South Korea
What We Can Do in the Cloud (2) -Tutorial for Cloud Computing Course- Mikael Fernandus Simalango WISE Research Lab Ajou University, South Korea Overview Riding Google App Engine Taming Hadoop Summary Riding
