Hadoop Cluster Applications
|
|
|
- Randell Summers
- 10 years ago
- Views:
Transcription
1 Hadoop Overview Data analytics has become a key element of the business decision process over the last decade. Classic reporting on a dataset stored in a database was sufficient until recently, but yesterday s data gathering and mining techniques are no longer a match for the amount of unstructured data and the time demands required to make it useful. The common limitations for such analysis are compute and storage resources required to obtain the results in a timely manner. While advanced servers and supercomputers can process the data quickly, these solutions are too expensive for applications like online retailers trying to analyze website visits or small research labs analyzing weather patterns. Hadoop is an open-source framework for running data-intensive applications in a processing cluster built from commodity server hardware. Some customers use Hadoop clustering to analyze customer search patterns for targeted advertising. Other applications include filtering and indexing of web listings, or facial recognition algorithms to search for specific images in a large image database, to name just a few. The possibilities are almost endless provided there is sufficient storage, processing, and networking resources. How Does Hadoop Work? Hadoop is designed to efficiently distribute large amounts of processing across a set of machines, from a few to over 2,000 servers. A small scale Hadoop cluster can easily crunch terabytes or even petabytes of data. The key steps in analyzing data in a Hadoop framework are: Step 1: Data Loading and Distribution: The input data is stored in multiple files. The scale of parallelism in a Hadoop job is related to the number of input files. For example, for data in ten files, the computation can be distributed across ten nodes. Therefore, the ability to rapidly process large data sets across compute servers is related to the number of files and the speed of the network infrastructure used to distribute the data to the compute nodes. Figure1:DataLoadingStep The Hadoop scheduler assigns jobs to nodes to process the files. As a job is completed, the scheduler assigns the node another job with corresponding data. The job s data may be on local storage or may reside on another node in the network. Nodes remain idle until they receive the data to process. Therefore, planning the data set distribution and a high-speed data center network both contribute to better performance of the Hadoop processing cluster. By design, The Hadoop Distributed File System (HDFS) typically holds three or more copies of the same data set across nodes to avoid idle time. A network designer can manage storage costs by implementing a highspeed switched data network scheme. High-speed network switching can deliver substantial increases in processing performance to Hadoop clusters that span more than one server rack. 1
2 Steps 2 & 3: Map/Reduce: The first data processing step applies a mapping function to the data loaded during step 1. The intermediate output of the mapping process is partitioned using some key, and all data with the same key is next moved to the same reducer node. The final processing step applies a reduce function to the intermediate data; the output of the reduce is stored back on disk. Between the map and reduce operations the data is shuffled between nodes. All outputs of the map function with the same key is moved to the same reducer node. At this point the data network is the critical path. Its performance and latency directly impact the shuffle phase of a data set reduction. High-speed, non-blocking network switches ensure that the Hadoop cluster is running at peak efficiency. Another benefit of a high-speed switched network is the ability to store shuffled data back in the HDFS instead of the reducer node. Assuming sufficient switching capacity, the data center manager can resume or restart Hadoop data reductions as the HDFS holds the intermediate data and knows the next stage of the reduction. Shuffled data stored on a reduction server is effectively lost if the process is suspended. Step 4: Consolidation Figure2:Map/ReduceSteps After the data has been mapped and reduced, it must be merged for output and reporting. This requires another network operation as the outputs of the reduce function must be combined from each reducer node onto a single reporting node. Again, switched network performance can improve throughout, especially if the Hadoop cluster is running multiple data reductions. In this instance, high performance data center switching reduces idle time, further optimizing the performance of the Hadoop cluster. 2
3 Figure3:ConsolidatingResults Impact of Network Designs on Hadoop Cluster Performance Typically, communication bandwidth for small-scale clusters, such as those within a single rack, is not a critical issue. Nodes can communicate without significant degradation by tuning HDFS parameters. However, Hadoop clusters scale from hundreds of nodes to over ten thousand nodes to analyze some of the largest datasets in the world. Scalability of the cluster is limited by local resources on a node (processor, memory, storage), as well as the interconnect bandwidth to all other nodes in the cluster. Figure4:LegacyNetworkDesign Legacy network designs as shown in figure 4 lead to congestion and a significant drop in cluster performance as nodes in one rack go idle while waiting for data from another node. There is simply insufficient bandwidth between racks for the network operations to complete efficiently. In fact, the problem with these legacy designs is so significant that Hadoop 0.17 offers rack-aware block replication, which limits replicas of data only to nodes within the same rack. However, there is a significant performance penalty since idle resources in other racks cannot be used, thus limiting the overall efficiency of the system. 3
4 Network Designs Optimized for Hadoop Clusters A network that is designed for Hadoop applications, rather than standard enterprise applications, can make a big difference in the performance of the cluster. The key attributes of a good network design are: Non-Blocking: A non-blocking design for any-to-any communication. All nodes should be able to communicate with each other without running into congestion points. Low Latency: A low latency, 2-tier design outperforms legacy 3-tier designs since latency at each hop is compounded by thousands of transactions within the cluster. Resiliency: Network node failures must not result in partitioned clusters. Additionally, network performance degradation must be smooth and predictable. Scale as you grow: Adding nodes or racks to an existing cluster should be seamless and not require replacing the existing network infrastructure. In essence, networking should also be viewed as a building block that can grow incrementally as additional processing nodes are added. Performance Monitoring Figure5:Non blockingnetworkdesign As a Hadoop cluster gets busy, there are peaks and troughs in the use of various resources. With careful monitoring, users can quickly identify any further optimizations in the map/reduce functions or the need to add more nodes. Ganglia 1 and Nagios 2 are two open source tools that monitor the performance of a Hadoop cluster. Ganglia can be used to monitor Hadoop-specific metrics at each individual node. Nagios can be used to monitor all resources of the cluster including compute, storage, and network I/O resources. Regardless of the tools used, a holistic view of compute and network resource usage becomes critical in monitoring a Hadoop cluster and maintaining high efficiency. 1 ganglia.sourceforge.net 2 4
5 Summary Hadoop is a very powerful distributed computational framework that can process a wide range of datasets, from a few gigabytes to petabytes of structured and unstructured data. Use of Hadoop has quickly gained momentum, and Hadoop is now the preferred platform for various scientific computational and business analytics. While availability of commodity Linux based servers makes it feasible to build very large clusters, the network is often the bottleneck, resulting in congestion and less efficient use of the cluster. Arista offers high performance 1/10 GbE non-blocking, ultra-low latency solutions that can scale from a few racks to some of the largest Hadoop deployments. In addition, Multi-Chassis LAG (MLAG) offers true active/active uplink connectivity from each rack, allowing the full bi-sectional bandwidth of the network to be utilized in a flat layer 2 network. Arista s Extensible Operating System can easily be integrated with Ganglia and Nagios. Lastly, Arista s networking solutions offer a true flat-line growth when it comes to price for server-interconnect bandwidth. All of the above factors make Arista s networking solutions ideal for any Hadoop deployment. InformationinthisdocumentisprovidedinconnectionwithAristaNetworksproducts.Formoreinformation,visitusat 5
Networking in the Hadoop Cluster
Hadoop and other distributed systems are increasingly the solution of choice for next generation data volumes. A high capacity, any to any, easily manageable networking layer is critical for peak Hadoop
Energy Efficient MapReduce
Energy Efficient MapReduce Motivation: Energy consumption is an important aspect of datacenters efficiency, the total power consumption in the united states has doubled from 2000 to 2005, representing
Big Fast Data Hadoop acceleration with Flash. June 2013
Big Fast Data Hadoop acceleration with Flash June 2013 Agenda The Big Data Problem What is Hadoop Hadoop and Flash The Nytro Solution Test Results The Big Data Problem Big Data Output Facebook Traditional
Chapter 7. Using Hadoop Cluster and MapReduce
Chapter 7 Using Hadoop Cluster and MapReduce Modeling and Prototyping of RMS for QoS Oriented Grid Page 152 7. Using Hadoop Cluster and MapReduce for Big Data Problems The size of the databases used in
A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM
A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM Sneha D.Borkar 1, Prof.Chaitali S.Surtakar 2 Student of B.E., Information Technology, J.D.I.E.T, [email protected] Assistant Professor, Information
Switching Architectures for Cloud Network Designs
Overview Networks today require predictable performance and are much more aware of application flows than traditional networks with static addressing of devices. Enterprise networks in the past were designed
Dell Reference Configuration for Hortonworks Data Platform
Dell Reference Configuration for Hortonworks Data Platform A Quick Reference Configuration Guide Armando Acosta Hadoop Product Manager Dell Revolutionary Cloud and Big Data Group Kris Applegate Solution
Hadoop Architecture. Part 1
Hadoop Architecture Part 1 Node, Rack and Cluster: A node is simply a computer, typically non-enterprise, commodity hardware for nodes that contain data. Consider we have Node 1.Then we can add more nodes,
Maximizing Hadoop Performance and Storage Capacity with AltraHD TM
Maximizing Hadoop Performance and Storage Capacity with AltraHD TM Executive Summary The explosion of internet data, driven in large part by the growth of more and more powerful mobile devices, has created
Architecting Low Latency Cloud Networks
Architecting Low Latency Cloud Networks Introduction: Application Response Time is Critical in Cloud Environments As data centers transition to next generation virtualized & elastic cloud architectures,
Reduction of Data at Namenode in HDFS using harballing Technique
Reduction of Data at Namenode in HDFS using harballing Technique Vaibhav Gopal Korat, Kumar Swamy Pamu [email protected] [email protected] Abstract HDFS stands for the Hadoop Distributed File System.
Welcome to the unit of Hadoop Fundamentals on Hadoop architecture. I will begin with a terminology review and then cover the major components
Welcome to the unit of Hadoop Fundamentals on Hadoop architecture. I will begin with a terminology review and then cover the major components of Hadoop. We will see what types of nodes can exist in a Hadoop
10 Gigabit Ethernet : Enabling Storage Networking for Big Data. Whitepaper. Introduction. Big data requires big networks.
10 Gigabit Ethernet : Enabling Storage Networking for Big Data Whitepaper Introduction Big data requires big networks. Explosive data growth is a reality and the trajectory is continuing to be strong.
CSE-E5430 Scalable Cloud Computing Lecture 2
CSE-E5430 Scalable Cloud Computing Lecture 2 Keijo Heljanko Department of Computer Science School of Science Aalto University [email protected] 14.9-2015 1/36 Google MapReduce A scalable batch processing
Data-Intensive Computing with Map-Reduce and Hadoop
Data-Intensive Computing with Map-Reduce and Hadoop Shamil Humbetov Department of Computer Engineering Qafqaz University Baku, Azerbaijan [email protected] Abstract Every day, we create 2.5 quintillion
Hadoop. http://hadoop.apache.org/ Sunday, November 25, 12
Hadoop http://hadoop.apache.org/ What Is Apache Hadoop? The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using
Hadoop: A Framework for Data- Intensive Distributed Computing. CS561-Spring 2012 WPI, Mohamed Y. Eltabakh
1 Hadoop: A Framework for Data- Intensive Distributed Computing CS561-Spring 2012 WPI, Mohamed Y. Eltabakh 2 What is Hadoop? Hadoop is a software framework for distributed processing of large datasets
Using an In-Memory Data Grid for Near Real-Time Data Analysis
SCALEOUT SOFTWARE Using an In-Memory Data Grid for Near Real-Time Data Analysis by Dr. William Bain, ScaleOut Software, Inc. 2012 ScaleOut Software, Inc. 12/27/2012 IN today s competitive world, businesses
CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop)
CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Spring 2016 MapReduce MapReduce is a programming model
BIG DATA TRENDS AND TECHNOLOGIES
BIG DATA TRENDS AND TECHNOLOGIES THE WORLD OF DATA IS CHANGING Cloud WHAT IS BIG DATA? Big data are datasets that grow so large that they become awkward to work with using onhand database management tools.
Parallel Processing of cluster by Map Reduce
Parallel Processing of cluster by Map Reduce Abstract Madhavi Vaidya, Department of Computer Science Vivekanand College, Chembur, Mumbai [email protected] MapReduce is a parallel programming model
Extreme Networks: Building Cloud-Scale Networks Using Open Fabric Architectures A SOLUTION WHITE PAPER
Extreme Networks: Building Cloud-Scale Networks Using Open Fabric Architectures A SOLUTION WHITE PAPER WHITE PAPER Building Cloud- Scale Networks Abstract TABLE OF CONTENTS Introduction 2 Open Fabric-Based
Big Data Analytics with MapReduce VL Implementierung von Datenbanksystemen 05-Feb-13
Big Data Analytics with MapReduce VL Implementierung von Datenbanksystemen 05-Feb-13 Astrid Rheinländer Wissensmanagement in der Bioinformatik What is Big Data? collection of data sets so large and complex
Distributed File Systems
Distributed File Systems Paul Krzyzanowski Rutgers University October 28, 2012 1 Introduction The classic network file systems we examined, NFS, CIFS, AFS, Coda, were designed as client-server applications.
Hadoop MapReduce and Spark. Giorgio Pedrazzi, CINECA-SCAI School of Data Analytics and Visualisation Milan, 10/06/2015
Hadoop MapReduce and Spark Giorgio Pedrazzi, CINECA-SCAI School of Data Analytics and Visualisation Milan, 10/06/2015 Outline Hadoop Hadoop Import data on Hadoop Spark Spark features Scala MLlib MLlib
Weekly Report. Hadoop Introduction. submitted By Anurag Sharma. Department of Computer Science and Engineering. Indian Institute of Technology Bombay
Weekly Report Hadoop Introduction submitted By Anurag Sharma Department of Computer Science and Engineering Indian Institute of Technology Bombay Chapter 1 What is Hadoop? Apache Hadoop (High-availability
Lecture 32 Big Data. 1. Big Data problem 2. Why the excitement about big data 3. What is MapReduce 4. What is Hadoop 5. Get started with Hadoop
Lecture 32 Big Data 1. Big Data problem 2. Why the excitement about big data 3. What is MapReduce 4. What is Hadoop 5. Get started with Hadoop 1 2 Big Data Problems Data explosion Data from users on social
Unstructured Data Accelerator (UDA) Author: Motti Beck, Mellanox Technologies Date: March 27, 2012
Unstructured Data Accelerator (UDA) Author: Motti Beck, Mellanox Technologies Date: March 27, 2012 1 Market Trends Big Data Growing technology deployments are creating an exponential increase in the volume
Cray: Enabling Real-Time Discovery in Big Data
Cray: Enabling Real-Time Discovery in Big Data Discovery is the process of gaining valuable insights into the world around us by recognizing previously unknown relationships between occurrences, objects
Map Reduce / Hadoop / HDFS
Chapter 3: Map Reduce / Hadoop / HDFS 97 Overview Outline Distributed File Systems (re-visited) Motivation Programming Model Example Applications Big Data in Apache Hadoop HDFS in Hadoop YARN 98 Overview
Journal of science STUDY ON REPLICA MANAGEMENT AND HIGH AVAILABILITY IN HADOOP DISTRIBUTED FILE SYSTEM (HDFS)
Journal of science e ISSN 2277-3290 Print ISSN 2277-3282 Information Technology www.journalofscience.net STUDY ON REPLICA MANAGEMENT AND HIGH AVAILABILITY IN HADOOP DISTRIBUTED FILE SYSTEM (HDFS) S. Chandra
Big data management with IBM General Parallel File System
Big data management with IBM General Parallel File System Optimize storage management and boost your return on investment Highlights Handles the explosive growth of structured and unstructured data Offers
Easier - Faster - Better
Highest reliability, availability and serviceability ClusterStor gets you productive fast with robust professional service offerings available as part of solution delivery, including quality controlled
Reference Architecture and Best Practices for Virtualizing Hadoop Workloads Justin Murray VMware
Reference Architecture and Best Practices for Virtualizing Hadoop Workloads Justin Murray ware 2 Agenda The Hadoop Journey Why Virtualize Hadoop? Elasticity and Scalability Performance Tests Storage Reference
Jeffrey D. Ullman slides. MapReduce for data intensive computing
Jeffrey D. Ullman slides MapReduce for data intensive computing Single-node architecture CPU Machine Learning, Statistics Memory Classical Data Mining Disk Commodity Clusters Web data sets can be very
A Study on Workload Imbalance Issues in Data Intensive Distributed Computing
A Study on Workload Imbalance Issues in Data Intensive Distributed Computing Sven Groot 1, Kazuo Goda 1, and Masaru Kitsuregawa 1 University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan Abstract.
Performance and Energy Efficiency of. Hadoop deployment models
Performance and Energy Efficiency of Hadoop deployment models Contents Review: What is MapReduce Review: What is Hadoop Hadoop Deployment Models Metrics Experiment Results Summary MapReduce Introduced
Take An Internal Look at Hadoop. Hairong Kuang Grid Team, Yahoo! Inc [email protected]
Take An Internal Look at Hadoop Hairong Kuang Grid Team, Yahoo! Inc [email protected] What s Hadoop Framework for running applications on large clusters of commodity hardware Scale: petabytes of data
Unisys ClearPath Forward Fabric Based Platform to Power the Weather Enterprise
Unisys ClearPath Forward Fabric Based Platform to Power the Weather Enterprise Introducing Unisys All in One software based weather platform designed to reduce server space, streamline operations, consolidate
Brocade Solution for EMC VSPEX Server Virtualization
Reference Architecture Brocade Solution Blueprint Brocade Solution for EMC VSPEX Server Virtualization Microsoft Hyper-V for 50 & 100 Virtual Machines Enabled by Microsoft Hyper-V, Brocade ICX series switch,
How Cisco IT Built Big Data Platform to Transform Data Management
Cisco IT Case Study August 2013 Big Data Analytics How Cisco IT Built Big Data Platform to Transform Data Management EXECUTIVE SUMMARY CHALLENGE Unlock the business value of large data sets, including
HADOOP, a newly emerged Java-based software framework, Hadoop Distributed File System for the Grid
Hadoop Distributed File System for the Grid Garhan Attebury, Andrew Baranovski, Ken Bloom, Brian Bockelman, Dorian Kcira, James Letts, Tanya Levshina, Carl Lundestedt, Terrence Martin, Will Maier, Haifeng
Building a Scalable Big Data Infrastructure for Dynamic Workflows
Building a Scalable Big Data Infrastructure for Dynamic Workflows INTRODUCTION Organizations of all types and sizes are looking to big data to help them make faster, more intelligent decisions. Many efforts
Beyond Web Application Log Analysis using Apache TM Hadoop. A Whitepaper by Orzota, Inc.
Beyond Web Application Log Analysis using Apache TM Hadoop A Whitepaper by Orzota, Inc. 1 Web Applications As more and more software moves to a Software as a Service (SaaS) model, the web application has
Outline. High Performance Computing (HPC) Big Data meets HPC. Case Studies: Some facts about Big Data Technologies HPC and Big Data converging
Outline High Performance Computing (HPC) Towards exascale computing: a brief history Challenges in the exascale era Big Data meets HPC Some facts about Big Data Technologies HPC and Big Data converging
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK A COMPREHENSIVE VIEW OF HADOOP ER. AMRINDER KAUR Assistant Professor, Department
Hadoop and Map-Reduce. Swati Gore
Hadoop and Map-Reduce Swati Gore Contents Why Hadoop? Hadoop Overview Hadoop Architecture Working Description Fault Tolerance Limitations Why Map-Reduce not MPI Distributed sort Why Hadoop? Existing Data
Apache Hadoop Cluster Configuration Guide
Community Driven Apache Hadoop Apache Hadoop Cluster Configuration Guide April 2013 2013 Hortonworks Inc. http://www.hortonworks.com Introduction Sizing a Hadoop cluster is important, as the right resources
Big Data and Hadoop. Sreedhar C, Dr. D. Kavitha, K. Asha Rani
Big Data and Hadoop Sreedhar C, Dr. D. Kavitha, K. Asha Rani Abstract Big data has become a buzzword in the recent years. Big data is used to describe a massive volume of both structured and unstructured
Big Application Execution on Cloud using Hadoop Distributed File System
Big Application Execution on Cloud using Hadoop Distributed File System Ashkan Vates*, Upendra, Muwafaq Rahi Ali RPIIT Campus, Bastara Karnal, Haryana, India ---------------------------------------------------------------------***---------------------------------------------------------------------
R.K.Uskenbayeva 1, А.А. Kuandykov 2, Zh.B.Kalpeyeva 3, D.K.Kozhamzharova 4, N.K.Mukhazhanov 5
Distributed data processing in heterogeneous cloud environments R.K.Uskenbayeva 1, А.А. Kuandykov 2, Zh.B.Kalpeyeva 3, D.K.Kozhamzharova 4, N.K.Mukhazhanov 5 1 [email protected], 2 [email protected],
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK A REVIEW ON HIGH PERFORMANCE DATA STORAGE ARCHITECTURE OF BIGDATA USING HDFS MS.
ARISTA WHITE PAPER 10 Gigabit Ethernet: Enabling Storage Networking for Big Data
ARISTA WHITE PAPER 10 Gigabit Ethernet: Enabling Storage Networking for Big Data Hadoop and other big data frameworks introduce a data storage model which is fundamentally different from the NAS or SAN
Parallel Databases. Parallel Architectures. Parallelism Terminology 1/4/2015. Increase performance by performing operations in parallel
Parallel Databases Increase performance by performing operations in parallel Parallel Architectures Shared memory Shared disk Shared nothing closely coupled loosely coupled Parallelism Terminology Speedup:
BBM467 Data Intensive ApplicaAons
Hace7epe Üniversitesi Bilgisayar Mühendisliği Bölümü BBM467 Data Intensive ApplicaAons Dr. Fuat Akal [email protected] Problem How do you scale up applicaaons? Run jobs processing 100 s of terabytes
CIS 4930/6930 Spring 2014 Introduction to Data Science /Data Intensive Computing. University of Florida, CISE Department Prof.
CIS 4930/6930 Spring 2014 Introduction to Data Science /Data Intensie Computing Uniersity of Florida, CISE Department Prof. Daisy Zhe Wang Map/Reduce: Simplified Data Processing on Large Clusters Parallel/Distributed
Cluster Scalability of ANSYS FLUENT 12 for a Large Aerodynamics Case on the Darwin Supercomputer
Cluster Scalability of ANSYS FLUENT 12 for a Large Aerodynamics Case on the Darwin Supercomputer Stan Posey, MSc and Bill Loewe, PhD Panasas Inc., Fremont, CA, USA Paul Calleja, PhD University of Cambridge,
Cloud Based Application Architectures using Smart Computing
Cloud Based Application Architectures using Smart Computing How to Use this Guide Joyent Smart Technology represents a sophisticated evolution in cloud computing infrastructure. Most cloud computing products
Big Data With Hadoop
With Saurabh Singh [email protected] The Ohio State University February 11, 2016 Overview 1 2 3 Requirements Ecosystem Resilient Distributed Datasets (RDDs) Example Code vs Mapreduce 4 5 Source: [Tutorials
Workshop on Hadoop with Big Data
Workshop on Hadoop with Big Data Hadoop? Apache Hadoop is an open source framework for distributed storage and processing of large sets of data on commodity hardware. Hadoop enables businesses to quickly
Apache Hadoop. Alexandru Costan
1 Apache Hadoop Alexandru Costan Big Data Landscape No one-size-fits-all solution: SQL, NoSQL, MapReduce, No standard, except Hadoop 2 Outline What is Hadoop? Who uses it? Architecture HDFS MapReduce Open
Data Mining in the Swamp
WHITE PAPER Page 1 of 8 Data Mining in the Swamp Taming Unruly Data with Cloud Computing By John Brothers Business Intelligence is all about making better decisions from the data you have. However, all
Managing Big Data with Hadoop & Vertica. A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database
Managing Big Data with Hadoop & Vertica A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database Copyright Vertica Systems, Inc. October 2009 Cloudera and Vertica
Big Data Challenges in Bioinformatics
Big Data Challenges in Bioinformatics BARCELONA SUPERCOMPUTING CENTER COMPUTER SCIENCE DEPARTMENT Autonomic Systems and ebusiness Pla?orms Jordi Torres [email protected] Talk outline! We talk about Petabyte?
CS246: Mining Massive Datasets Jure Leskovec, Stanford University. http://cs246.stanford.edu
CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu 2 CPU Memory Machine Learning, Statistics Classical Data Mining Disk 3 20+ billion web pages x 20KB = 400+ TB
Building & Optimizing Enterprise-class Hadoop with Open Architectures Prem Jain NetApp
Building & Optimizing Enterprise-class Hadoop with Open Architectures Prem Jain NetApp Introduction to Hadoop Comes from Internet companies Emerging big data storage and analytics platform HDFS and MapReduce
All-Flash Arrays Weren t Built for Dynamic Environments. Here s Why... This whitepaper is based on content originally posted at www.frankdenneman.
WHITE PAPER All-Flash Arrays Weren t Built for Dynamic Environments. Here s Why... This whitepaper is based on content originally posted at www.frankdenneman.nl 1 Monolithic shared storage architectures
Hadoop & its Usage at Facebook
Hadoop & its Usage at Facebook Dhruba Borthakur Project Lead, Hadoop Distributed File System [email protected] Presented at the The Israeli Association of Grid Technologies July 15, 2009 Outline Architecture
EXPLORATION TECHNOLOGY REQUIRES A RADICAL CHANGE IN DATA ANALYSIS
EXPLORATION TECHNOLOGY REQUIRES A RADICAL CHANGE IN DATA ANALYSIS EMC Isilon solutions for oil and gas EMC PERSPECTIVE TABLE OF CONTENTS INTRODUCTION: THE HUNT FOR MORE RESOURCES... 3 KEEPING PACE WITH
Benchmarking Hadoop & HBase on Violin
Technical White Paper Report Technical Report Benchmarking Hadoop & HBase on Violin Harnessing Big Data Analytics at the Speed of Memory Version 1.0 Abstract The purpose of benchmarking is to show advantages
Big Data - Infrastructure Considerations
April 2014, HAPPIEST MINDS TECHNOLOGIES Big Data - Infrastructure Considerations Author Anand Veeramani / Deepak Shivamurthy SHARING. MINDFUL. INTEGRITY. LEARNING. EXCELLENCE. SOCIAL RESPONSIBILITY. Copyright
GeoGrid Project and Experiences with Hadoop
GeoGrid Project and Experiences with Hadoop Gong Zhang and Ling Liu Distributed Data Intensive Systems Lab (DiSL) Center for Experimental Computer Systems Research (CERCS) Georgia Institute of Technology
HadoopTM Analytics DDN
DDN Solution Brief Accelerate> HadoopTM Analytics with the SFA Big Data Platform Organizations that need to extract value from all data can leverage the award winning SFA platform to really accelerate
Big Data and Apache Hadoop s MapReduce
Big Data and Apache Hadoop s MapReduce Michael Hahsler Computer Science and Engineering Southern Methodist University January 23, 2012 Michael Hahsler (SMU/CSE) Hadoop/MapReduce January 23, 2012 1 / 23
Performance Comparison of SQL based Big Data Analytics with Lustre and HDFS file systems
Performance Comparison of SQL based Big Data Analytics with Lustre and HDFS file systems Rekha Singhal and Gabriele Pacciucci * Other names and brands may be claimed as the property of others. Lustre File
2015 The MathWorks, Inc. 1
25 The MathWorks, Inc. 빅 데이터 및 다양한 데이터 처리 위한 MATLAB의 인터페이스 환경 및 새로운 기능 엄준상 대리 Application Engineer MathWorks 25 The MathWorks, Inc. 2 Challenges of Data Any collection of data sets so large and complex
Fault Tolerance in Hadoop for Work Migration
1 Fault Tolerance in Hadoop for Work Migration Shivaraman Janakiraman Indiana University Bloomington ABSTRACT Hadoop is a framework that runs applications on large clusters which are built on numerous
WHITE PAPER. www.fusionstorm.com. Get Ready for Big Data:
WHitE PaPER: Easing the Way to the cloud: 1 WHITE PAPER Get Ready for Big Data: How Scale-Out NaS Delivers the Scalability, Performance, Resilience and manageability that Big Data Environments Demand 2
Non-Stop for Apache HBase: Active-active region server clusters TECHNICAL BRIEF
Non-Stop for Apache HBase: -active region server clusters TECHNICAL BRIEF Technical Brief: -active region server clusters -active region server clusters HBase is a non-relational database that provides
Inge Os Sales Consulting Manager Oracle Norway
Inge Os Sales Consulting Manager Oracle Norway Agenda Oracle Fusion Middelware Oracle Database 11GR2 Oracle Database Machine Oracle & Sun Agenda Oracle Fusion Middelware Oracle Database 11GR2 Oracle Database
IMPROVED FAIR SCHEDULING ALGORITHM FOR TASKTRACKER IN HADOOP MAP-REDUCE
IMPROVED FAIR SCHEDULING ALGORITHM FOR TASKTRACKER IN HADOOP MAP-REDUCE Mr. Santhosh S 1, Mr. Hemanth Kumar G 2 1 PG Scholor, 2 Asst. Professor, Dept. Of Computer Science & Engg, NMAMIT, (India) ABSTRACT
Scalable Cloud Computing Solutions for Next Generation Sequencing Data
Scalable Cloud Computing Solutions for Next Generation Sequencing Data Matti Niemenmaa 1, Aleksi Kallio 2, André Schumacher 1, Petri Klemelä 2, Eija Korpelainen 2, and Keijo Heljanko 1 1 Department of
Hadoop Distributed File System. T-111.5550 Seminar On Multimedia 2009-11-11 Eero Kurkela
Hadoop Distributed File System T-111.5550 Seminar On Multimedia 2009-11-11 Eero Kurkela Agenda Introduction Flesh and bones of HDFS Architecture Accessing data Data replication strategy Fault tolerance
The Performance Characteristics of MapReduce Applications on Scalable Clusters
The Performance Characteristics of MapReduce Applications on Scalable Clusters Kenneth Wottrich Denison University Granville, OH 43023 [email protected] ABSTRACT Many cluster owners and operators have
marlabs driving digital agility WHITEPAPER Big Data and Hadoop
marlabs driving digital agility WHITEPAPER Big Data and Hadoop Abstract This paper explains the significance of Hadoop, an emerging yet rapidly growing technology. The prime goal of this paper is to unveil
Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware
Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware Created by Doug Cutting and Mike Carafella in 2005. Cutting named the program after
IP ETHERNET STORAGE CHALLENGES
ARISTA SOLUTION GUIDE IP ETHERNET STORAGE INSIDE Oveview IP Ethernet Storage Challenges Need for Massive East to West Scalability TCP Incast Storage and Compute Devices Interconnecting at Different Speeds
GraySort on Apache Spark by Databricks
GraySort on Apache Spark by Databricks Reynold Xin, Parviz Deyhim, Ali Ghodsi, Xiangrui Meng, Matei Zaharia Databricks Inc. Apache Spark Sorting in Spark Overview Sorting Within a Partition Range Partitioner
Big Data on Microsoft Platform
Big Data on Microsoft Platform Prepared by GJ Srinivas Corporate TEG - Microsoft Page 1 Contents 1. What is Big Data?...3 2. Characteristics of Big Data...3 3. Enter Hadoop...3 4. Microsoft Big Data Solutions...4
Information Architecture
The Bloor Group Actian and The Big Data Information Architecture WHITE PAPER The Actian Big Data Information Architecture Actian and The Big Data Information Architecture Originally founded in 2005 to
How In-Memory Data Grids Can Analyze Fast-Changing Data in Real Time
SCALEOUT SOFTWARE How In-Memory Data Grids Can Analyze Fast-Changing Data in Real Time by Dr. William Bain and Dr. Mikhail Sobolev, ScaleOut Software, Inc. 2012 ScaleOut Software, Inc. 12/27/2012 T wenty-first
I/O Considerations in Big Data Analytics
Library of Congress I/O Considerations in Big Data Analytics 26 September 2011 Marshall Presser Federal Field CTO EMC, Data Computing Division 1 Paradigms in Big Data Structured (relational) data Very
Big Data in the Enterprise: Network Design Considerations
White Paper Big Data in the Enterprise: Network Design Considerations What You Will Learn This document examines the role of big data in the enterprise as it relates to network design considerations. It
Concepts Introduced in Chapter 6. Warehouse-Scale Computers. Important Design Factors for WSCs. Programming Models for WSCs
Concepts Introduced in Chapter 6 Warehouse-Scale Computers introduction to warehouse-scale computing programming models infrastructure and costs cloud computing A cluster is a collection of desktop computers
