CS 378 Big Data Programming. Lecture 1 Introduc:on
|
|
|
- Adelia Young
- 10 years ago
- Views:
Transcription
1 CS 378 Big Data Programming Lecture 1 Introduc:on
2 Class Logis:cs Class meets MW, 9:30 AM 11:00 AM Office Hours GDC MW 11:00 12:00 AM By appointment Web page: cs.utexas.edu/~dfranke/courses/2015spring/cs378- BDP.htm TA: Swadhin Pradhan Office hours:
3 Course Content Programming in Hadoop (map- reduce) and Spark Use Elas:cMapReuce (EMR) on Amazon Web Services (AWS) ini:ally Hope to use the Hadoop cluster at TACC (if available) Local install of Hadoop Looking into cloud based Spark cluster From DataBricks TACC is another possibility Local install can also be used
4 Textbooks MapReduce Design Paberns Main content for Hadoop assignments Hadoop The Defini:ve Guide 3 RD Edi:on Recommended for your understanding, not required Learning Spark (early release) Main content for Spark assignments
5 Lectures PDF of lecture notes accessible via syllabus For your note taking, review, or whatever These notes are my outline for each class MLSS 2015 Big Data Programming 5
6 Assignments Assignments will be programming assignments All work can be done using Java Scala might be an op:on IDE for developing code recommended Eclipse, IntelliJ IDE (community edi:on) are free Use maven to build uber JAR to upload to the cloud I ll provide the pom.xml file used by maven
7 Assignments I ll review a solu:on in class on the due date Work submibed aier the start of class considered late 25% penalty for late submission Can be submibed un:l the next assignment is due Aier that deadline, no credit is given Will consider these in determining final grade I encourage you to keep pace with the assignments Most assignments will build on previous work
8 Ques:ons? MLSS 2015 Big Data Programming 8
9 Learning from Data What can we do when the data gets big? Too big for the CPU memory of any single machine Larger than the disk storage of a single machine Recent data point: Facebook has ~800 petabyte data cluster (Hadoop) 1 petabyte = bytes Big data is spread across a network of machines MLSS 2015 Big Data Programming 9
10 Learning from Big Data Need to bring distributed storage and distributed processing to bear to handle big data Issues: Distribu:ng computa:on across many machines Maximizing performance Minimize I/O to disk, minimize transfers across the network Combining the results of distributed computa:on Recovering from failures MLSS 2015 Big Data Programming 10
11 Managing Big Data We ll look at two popular tools/systems One well established Hadoop One up and coming Spark Basic concepts of each How they address the aforemen:oned issues How to solve various problems with these systems MLSS 2015 Big Data Programming 11
12 Managing Big Data When wri:ng a program with these tools You don t know the size of the data You don t know the extent of the parallelism Both try to collocate the computa:on with the data Parallelize the I/O Make the I/O local (versus across network) Data is oien unstructured (vs. rela:onal model) MLSS 2015 Big Data Programming 12
13 Big Data vs. Rela:onal RDBMS normaliza:on Goal is to remove redundancy and retain/insure integrity Big data apps want reads to be local Send the code to the data, as it much smaller (Jim Gray) Normaliza:on makes read non- local Processing examines one input record at a :me Minimal state in programs it s in the data MLSS 2015 Big Data Programming 13
14 Big Data Tools This all sounds great. What are the issues? Coordina:ng the distributed computa:on Handling par:al failures Combining the results of distributed computa:on Tools offer a programming model that abstracts Disk read and write Paralleliza:on (computa:on and I/O) Combining data (keys and values) MLSS 2015 Big Data Programming 14
15 MapReduce Design Paberns Summariza:on Filtering Data Organiza:on Par::oning/binning, sor:ng, shuffle Joins Merging data sets Meta- paberns Op:mizing map- reduce chains (data pipelines) MLSS 2015 Big Data Programming 15
16 Resources for Hadoop Hadoop: The Defini/ve Guide, 3rd Edi/on, by Tom White O Reilly Media Print ISBN: ISBN 10: Ebook ISBN: ISBN 10: MapReduce Design Pa=erns, by Donald Miner and Adam Shook O Reilly Media Print ISBN: ISBN 10: Ebook ISBN: ISBN 10: hbp://hadoop.apache.org/ Several vendors provide Hadoop distribu:ons Amazon Web Services Elas:cMapReduce MLSS 2015 Big Data Programming 16
17 Resources for Spark Learning Spark, (early release) by Holden Karau, Andy Konwinsky, Patrick Wendell, Matei Zaharia O Reilly Media Print ISBN: ISBN 10: Ebook ISBN: ISBN 10: hbp://spark.apache.org/ Can download a version that runs on your local machine Cloud services Spark on AWS DataBricks offers a cloud service Others will join the party MLSS 2015 Big Data Programming 17
Machine- Learning Summer School - 2015
Machine- Learning Summer School - 2015 Big Data Programming David Franke Vast.com hbp://www.cs.utexas.edu/~dfranke/ Goals for Today Issues to address when you have big data Understand two popular big data
CS 378 Big Data Programming. Lecture 2 Map- Reduce
CS 378 Big Data Programming Lecture 2 Map- Reduce MapReduce Large data sets are not new What characterizes a problem suitable for MR? Most or all of the data is processed But viewed in small increments
CS 378 Big Data Programming
CS 378 Big Data Programming Lecture 2 Map- Reduce CS 378 - Fall 2015 Big Data Programming 1 MapReduce Large data sets are not new What characterizes a problem suitable for MR? Most or all of the data is
CS 378 Big Data Programming. Lecture 5 Summariza9on Pa:erns
CS 378 Big Data Programming Lecture 5 Summariza9on Pa:erns Review Assignment 2 Ques9ons? If you d like to use guava (Google collec9ons classes) pom.xml available for assignment 2 Includes dependency for
City University of Hong Kong. Course Syllabus. offered by Department of Computer Science with effect from Semester A 2015/16
City University of Hong Kong offered by Department of Computer Science with effect from Semester A 2015/16 Part I Course Overview Course Title: Course Code: Course Duration: Credit Units: Level: Medium
Introduction to Big Data! with Apache Spark" UC#BERKELEY#
Introduction to Big Data! with Apache Spark" UC#BERKELEY# This Lecture" The Big Data Problem" Hardware for Big Data" Distributing Work" Handling Failures and Slow Machines" Map Reduce and Complex Jobs"
CS555: Distributed Systems [Fall 2015] Dept. Of Computer Science, Colorado State University
CS 555: DISTRIBUTED SYSTEMS [SPARK] Shrideep Pallickara Computer Science Colorado State University Frequently asked questions from the previous class survey Streaming Significance of minimum delays? Interleaving
Big Data Analytics Hadoop and Spark
Big Data Analytics Hadoop and Spark Shelly Garion, Ph.D. IBM Research Haifa 1 What is Big Data? 2 What is Big Data? Big data usually includes data sets with sizes beyond the ability of commonly used software
Improving MapReduce Performance in Heterogeneous Environments
UC Berkeley Improving MapReduce Performance in Heterogeneous Environments Matei Zaharia, Andy Konwinski, Anthony Joseph, Randy Katz, Ion Stoica University of California at Berkeley Motivation 1. MapReduce
Linux Clusters Ins.tute: Turning HPC cluster into a Big Data Cluster. A Partnership for an Advanced Compu@ng Environment (PACE) OIT/ART, Georgia Tech
Linux Clusters Ins.tute: Turning HPC cluster into a Big Data Cluster Fang (Cherry) Liu, PhD [email protected] A Partnership for an Advanced Compu@ng Environment (PACE) OIT/ART, Georgia Tech Targets
Data Management in the Cloud: Limitations and Opportunities. Annies Ductan
Data Management in the Cloud: Limitations and Opportunities Annies Ductan Discussion Outline: Introduc)on Overview Vision of Cloud Compu8ng Managing Data in The Cloud Cloud Characteris8cs Data Management
Spark in Action. Fast Big Data Analytics using Scala. Matei Zaharia. www.spark- project.org. University of California, Berkeley UC BERKELEY
Spark in Action Fast Big Data Analytics using Scala Matei Zaharia University of California, Berkeley www.spark- project.org UC BERKELEY My Background Grad student in the AMP Lab at UC Berkeley» 50- person
Unified Big Data Processing with Apache Spark. Matei Zaharia @matei_zaharia
Unified Big Data Processing with Apache Spark Matei Zaharia @matei_zaharia What is Apache Spark? Fast & general engine for big data processing Generalizes MapReduce model to support more types of processing
Map Reduce & Hadoop Recommended Text:
Big Data Map Reduce & Hadoop Recommended Text:! Large datasets are becoming more common The New York Stock Exchange generates about one terabyte of new trade data per day. Facebook hosts approximately
GraySort on Apache Spark by Databricks
GraySort on Apache Spark by Databricks Reynold Xin, Parviz Deyhim, Ali Ghodsi, Xiangrui Meng, Matei Zaharia Databricks Inc. Apache Spark Sorting in Spark Overview Sorting Within a Partition Range Partitioner
Big Data Processing. Patrick Wendell Databricks
Big Data Processing Patrick Wendell Databricks About me Committer and PMC member of Apache Spark Former PhD student at Berkeley Left Berkeley to help found Databricks Now managing open source work at Databricks
BUDT 758B-0501: Big Data Analytics (Fall 2015) Decisions, Operations & Information Technologies Robert H. Smith School of Business
BUDT 758B-0501: Big Data Analytics (Fall 2015) Decisions, Operations & Information Technologies Robert H. Smith School of Business Instructor: Kunpeng Zhang ([email protected]) Lecture-Discussions:
Mining of Massive Datasets Jure Leskovec, Anand Rajaraman, Jeff Ullman Stanford University http://www.mmds.org
Note to other teachers and users of these slides: We would be delighted if you found this our material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit
6.S897 Large-Scale Systems
6.S897 Large-Scale Systems Instructor: Matei Zaharia" Fall 2015, TR 2:30-4, 34-301 bit.ly/6-s897 Outline What this course is about" " Logistics" " Datacenter environment What this Course is About Large-scale
Introduction to Spark
Introduction to Spark Shannon Quinn (with thanks to Paco Nathan and Databricks) Quick Demo Quick Demo API Hooks Scala / Java All Java libraries *.jar http://www.scala- lang.org Python Anaconda: https://
Hadoop Parallel Data Processing
MapReduce and Implementation Hadoop Parallel Data Processing Kai Shen A programming interface (two stage Map and Reduce) and system support such that: the interface is easy to program, and suitable for
Using RDBMS, NoSQL or Hadoop?
Using RDBMS, NoSQL or Hadoop? DOAG Conference 2015 Jean- Pierre Dijcks Big Data Product Management Server Technologies Copyright 2014 Oracle and/or its affiliates. All rights reserved. Data Ingest 2 Ingest
Open source Google-style large scale data analysis with Hadoop
Open source Google-style large scale data analysis with Hadoop Ioannis Konstantinou Email: [email protected] Web: http://www.cslab.ntua.gr/~ikons Computing Systems Laboratory School of Electrical
Can t We All Just Get Along? Spark and Resource Management on Hadoop
Can t We All Just Get Along? Spark and Resource Management on Hadoop Introduc=ons So>ware engineer at Cloudera MapReduce, YARN, Resource management Hadoop commider Introduc=on Spark as a first class data
Learning. Spark LIGHTNING-FAST DATA ANALYTICS. Holden Karau, Andy Konwinski, Patrick Wendell & Matei Zaharia
Compliments of Learning Spark LIGHTNING-FAST DATA ANALYTICS Holden Karau, Andy Konwinski, Patrick Wendell & Matei Zaharia Bring Your Big Data to Life Big Data Integration and Analytics Learn how to power
Implement Hadoop jobs to extract business value from large and varied data sets
Hadoop Development for Big Data Solutions: Hands-On You Will Learn How To: Implement Hadoop jobs to extract business value from large and varied data sets Write, customize and deploy MapReduce jobs to
TOP 8 TRENDS FOR 2016 BIG DATA
The year 2015 was an important one in the world of big data. What used to be hype became the norm as more businesses realized that data, in all forms and sizes, is critical to making the best possible
Chapter 7. Using Hadoop Cluster and MapReduce
Chapter 7 Using Hadoop Cluster and MapReduce Modeling and Prototyping of RMS for QoS Oriented Grid Page 152 7. Using Hadoop Cluster and MapReduce for Big Data Problems The size of the databases used in
CS 4604: Introduc0on to Database Management Systems. B. Aditya Prakash Lecture #13: NoSQL and MapReduce
CS 4604: Introduc0on to Database Management Systems B. Aditya Prakash Lecture #13: NoSQL and MapReduce Announcements HW4 is out You have to use the PGSQL server START EARLY!! We can not help if everyone
Introduction to Cloud Computing
Introduction to Cloud Computing Qloud Demonstration 15 319, spring 2010 3 rd Lecture, Jan 19 th Suhail Rehman Time to check out the Qloud! Enough Talk! Time for some Action! Finally you can have your own
Learn how to store and analyze Big Data Learn about the cloud and its services for Big Data
CS-495/595 Big Data: Exam #1 Spring 2015 Wed. 4:20PM - 7:00PM Constant Hall 1043 Instructor: Dr. Cartledge http://www.cs.odu.edu/ ccartled/teaching Big data is quadrupling every year!! Everyone is creating
IMPROVED FAIR SCHEDULING ALGORITHM FOR TASKTRACKER IN HADOOP MAP-REDUCE
IMPROVED FAIR SCHEDULING ALGORITHM FOR TASKTRACKER IN HADOOP MAP-REDUCE Mr. Santhosh S 1, Mr. Hemanth Kumar G 2 1 PG Scholor, 2 Asst. Professor, Dept. Of Computer Science & Engg, NMAMIT, (India) ABSTRACT
Cloud Computing. Summary
Cloud Computing Lecture 1 2011-2012 https://fenix.ist.utl.pt/disciplinas/cn Summary Teaching Staff. Rooms and Schedule. Goals. Context. Syllabus. Reading Material. Assessment and Grading. Important Dates.
Big Data for everyone Democratizing big data with the cloud. Steffen Krause Technical Evangelist @AWS_Aktuell [email protected]
Big Data for everyone Democratizing big data with the cloud Steffen Krause Technical Evangelist @AWS_Aktuell [email protected] Does this Data make me look big? Overview Designing big data solutions in
MapReduce, Hadoop and Amazon AWS
MapReduce, Hadoop and Amazon AWS Yasser Ganjisaffar http://www.ics.uci.edu/~yganjisa February 2011 What is Hadoop? A software framework that supports data-intensive distributed applications. It enables
How to properly misuse Hadoop. Marcel Huntemann NERSC tutorial session 2/12/13
How to properly misuse Hadoop Marcel Huntemann NERSC tutorial session 2/12/13 History Created by Doug Cutting (also creator of Apache Lucene). 2002 Origin in Apache Nutch (open source web search engine).
10605 BigML Assignment 4(a): Naive Bayes using Hadoop Streaming
10605 BigML Assignment 4(a): Naive Bayes using Hadoop Streaming Due: Friday, Feb. 21, 2014 23:59 EST via Autolab Late submission with 50% credit: Sunday, Feb. 23, 2014 23:59 EST via Autolab Policy on Collaboration
Unstructured Data Accelerator (UDA) Author: Motti Beck, Mellanox Technologies Date: March 27, 2012
Unstructured Data Accelerator (UDA) Author: Motti Beck, Mellanox Technologies Date: March 27, 2012 1 Market Trends Big Data Growing technology deployments are creating an exponential increase in the volume
The Easiest Way to Run Spark Jobs. How-To Guide
The Easiest Way to Run Spark Jobs How-To Guide The Easiest Way to Run Spark Jobs Recently, Databricks added a new feature, Jobs, to our cloud service. You can find a detailed overview of this feature in
Introduc8on to Apache Spark
Introduc8on to Apache Spark Jordan Volz, Systems Engineer @ Cloudera 1 Analyzing Data on Large Data Sets Python, R, etc. are popular tools among data scien8sts/analysts, sta8s8cians, etc. Why are these
Hadoop. MPDL-Frühstück 9. Dezember 2013 MPDL INTERN
Hadoop MPDL-Frühstück 9. Dezember 2013 MPDL INTERN Understanding Hadoop Understanding Hadoop What's Hadoop about? Apache Hadoop project (started 2008) downloadable open-source software library (current
DATA MINING WITH HADOOP AND HIVE Introduction to Architecture
DATA MINING WITH HADOOP AND HIVE Introduction to Architecture Dr. Wlodek Zadrozny (Most slides come from Prof. Akella s class in 2014) 2015-2025. Reproduction or usage prohibited without permission of
Brave New World: Hadoop vs. Spark
Brave New World: Hadoop vs. Spark Dr. Kurt Stockinger Associate Professor of Computer Science Director of Studies in Data Science Zurich University of Applied Sciences Datalab Seminar, Zurich, Oct. 7,
Architectures for massive data management
Architectures for massive data management Apache Spark Albert Bifet [email protected] October 20, 2015 Spark Motivation Apache Spark Figure: IBM and Apache Spark What is Apache Spark Apache
A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM
A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM Sneha D.Borkar 1, Prof.Chaitali S.Surtakar 2 Student of B.E., Information Technology, J.D.I.E.T, [email protected] Assistant Professor, Information
HADOOP MOCK TEST HADOOP MOCK TEST I
http://www.tutorialspoint.com HADOOP MOCK TEST Copyright tutorialspoint.com This section presents you various set of Mock Tests related to Hadoop Framework. You can download these sample mock tests at
Large scale processing using Hadoop. Ján Vaňo
Large scale processing using Hadoop Ján Vaňo What is Hadoop? Software platform that lets one easily write and run applications that process vast amounts of data Includes: MapReduce offline computing engine
Performance Management in Big Data Applica6ons. Michael Kopp, Technology Strategist @mikopp
Performance Management in Big Data Applica6ons Michael Kopp, Technology Strategist NoSQL: High Volume/Low Latency DBs Web Java Key Challenges 1) Even Distribu6on 2) Correct Schema and Access paperns 3)
CPS 216: Advanced Database Systems (Data-intensive Computing Systems) Shivnath Babu
CPS 216: Advanced Database Systems (Data-intensive Computing Systems) Shivnath Babu A Brief History Relational database management systems Time 1975-1985 1985-1995 1995-2005 Let us first see what a relational
Big Data on AWS. Services Overview. Bernie Nallamotu Principle Solutions Architect
on AWS Services Overview Bernie Nallamotu Principle Solutions Architect \ So what is it? When your data sets become so large that you have to start innovating around how to collect, store, organize, analyze
Big Data on Microsoft Platform
Big Data on Microsoft Platform Prepared by GJ Srinivas Corporate TEG - Microsoft Page 1 Contents 1. What is Big Data?...3 2. Characteristics of Big Data...3 3. Enter Hadoop...3 4. Microsoft Big Data Solutions...4
HiBench Introduction. Carson Wang ([email protected]) Software & Services Group
HiBench Introduction Carson Wang ([email protected]) Agenda Background Workloads Configurations Benchmark Report Tuning Guide Background WHY Why we need big data benchmarking systems? WHAT What is
Hadoop & Spark Using Amazon EMR
Hadoop & Spark Using Amazon EMR Michael Hanisch, AWS Solutions Architecture 2015, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Agenda Why did we build Amazon EMR? What is Amazon EMR?
Big Data Frameworks Course. Prof. Sasu Tarkoma 10.3.2015
Big Data Frameworks Course Prof. Sasu Tarkoma 10.3.2015 Contents Course Overview Lectures Assignments/Exercises Course Overview This course examines current and emerging Big Data frameworks with focus
How To Create A Data Visualization With Apache Spark And Zeppelin 2.5.3.5
Big Data Visualization using Apache Spark and Zeppelin Prajod Vettiyattil, Software Architect, Wipro Agenda Big Data and Ecosystem tools Apache Spark Apache Zeppelin Data Visualization Combining Spark
15-319 / 15-619 Cloud Computing. Recitation 11 November 10 th and November 12 th, 2015
15-319 / 15-619 Cloud Computing Recitation 11 November 10 th and November 12 th, 2015 Overview Administrative issues Tagging, 15619Project, project code Last week s reflection Project 3.4 Quiz 9 This week
Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related
Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related Summary Xiangzhe Li Nowadays, there are more and more data everyday about everything. For instance, here are some of the astonishing
Hunk & Elas=c MapReduce: Big Data Analy=cs on AWS
Copyright 2014 Splunk Inc. Hunk & Elas=c MapReduce: Big Data Analy=cs on AWS Dritan Bi=ncka BD Solu=ons Architecture Disclaimer During the course of this presenta=on, we may make forward looking statements
Real Time Big Data Processing
Real Time Big Data Processing Cloud Expo 2014 Ian Meyers Amazon Web Services Global Infrastructure Deployment & Administration App Services Analytics Compute Storage Database Networking AWS Global Infrastructure
Storage Architectures for Big Data in the Cloud
Storage Architectures for Big Data in the Cloud Sam Fineberg HP Storage CT Office/ May 2013 Overview Introduction What is big data? Big Data I/O Hadoop/HDFS SAN Distributed FS Cloud Summary Research Areas
BIG DATA USING HADOOP
+ Breakaway Session By Johnson Iyilade, Ph.D. University of Saskatchewan, Canada 23-July, 2015 BIG DATA USING HADOOP + Outline n Framing the Problem Hadoop Solves n Meet Hadoop n Storage with HDFS n Data
Apache Spark 11/10/15. Context. Reminder. Context. What is Spark? A GrowingStack
Apache Spark Document Analysis Course (Fall 2015 - Scott Sanner) Zahra Iman Some slides from (Matei Zaharia, UC Berkeley / MIT& Harold Liu) Reminder SparkConf JavaSpark RDD: Resilient Distributed Datasets
Introduction to Database Systems CS4320/CS5320. CS4320/4321: Introduction to Database Systems. CS4320/4321: Introduction to Database Systems
Introduction to Database Systems CS4320/CS5320 Instructor: Johannes Gehrke http://www.cs.cornell.edu/johannes [email protected] CS4320/CS5320, Fall 2012 1 CS4320/4321: Introduction to Database Systems
SAS BIG DATA SOLUTIONS ON AWS SAS FORUM ESPAÑA, OCTOBER 16 TH, 2014 IAN MEYERS SOLUTIONS ARCHITECT / AMAZON WEB SERVICES
SAS BIG DATA SOLUTIONS ON AWS SAS FORUM ESPAÑA, OCTOBER 16 TH, 2014 IAN MEYERS SOLUTIONS ARCHITECT / AMAZON WEB SERVICES AWS GLOBAL INFRASTRUCTURE 10 Regions 25 Availability Zones 51 Edge locations WHAT
Spark. Fast, Interactive, Language- Integrated Cluster Computing
Spark Fast, Interactive, Language- Integrated Cluster Computing Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael Franklin, Scott Shenker, Ion Stoica UC
Step by Step: Big Data Technology. Assoc. Prof. Dr. Thanachart Numnonda Executive Director IMC Institute 25 August 2015
Step by Step: Big Data Technology Assoc. Prof. Dr. Thanachart Numnonda Executive Director IMC Institute 25 August 2015 Data Sources IT Infrastructure Analytics 2 B y 2015, 20% of Global 1000 organizations
MyCloudLab: An Interactive Web-based Management System for Cloud Computing Administration
MyCloudLab: An Interactive Web-based Management System for Cloud Computing Administration Hoi-Wan Chan 1, Min Xu 2, Chung-Pan Tang 1, Patrick P. C. Lee 1 & Tsz-Yeung Wong 1, 1 Department of Computer Science
Big Data Frameworks: Scala and Spark Tutorial
Big Data Frameworks: Scala and Spark Tutorial 13.03.2015 Eemil Lagerspetz, Ella Peltonen Professor Sasu Tarkoma These slides: http://is.gd/bigdatascala www.cs.helsinki.fi Functional Programming Functional
A Novel Cloud Based Elastic Framework for Big Data Preprocessing
School of Systems Engineering A Novel Cloud Based Elastic Framework for Big Data Preprocessing Omer Dawelbeit and Rachel McCrindle October 21, 2014 University of Reading 2008 www.reading.ac.uk Overview
Large-Scale Data Processing
Large-Scale Data Processing Eiko Yoneki [email protected] http://www.cl.cam.ac.uk/~ey204 Systems Research Group University of Cambridge Computer Laboratory 2010s: Big Data Why Big Data now? Increase
Hadoop implementation of MapReduce computational model. Ján Vaňo
Hadoop implementation of MapReduce computational model Ján Vaňo What is MapReduce? A computational model published in a paper by Google in 2004 Based on distributed computation Complements Google s distributed
Customer Case Study. Sharethrough
Customer Case Study Customer Case Study Benefits Faster prototyping of new applications Easier debugging of complex pipelines Improved overall engineering team productivity Summary offers a robust advertising
HIVE + AMAZON EMR + S3 = ELASTIC BIG DATA SQL ANALYTICS PROCESSING IN THE CLOUD A REAL WORLD CASE STUDY
HIVE + AMAZON EMR + S3 = ELASTIC BIG DATA SQL ANALYTICS PROCESSING IN THE CLOUD A REAL WORLD CASE STUDY Jaipaul Agonus FINRA Strata Hadoop World New York, Sep 2015 FINRA - WHAT DO WE DO? Collect and Create
A Tutorial Introduc/on to Big Data. Hands On Data Analy/cs over EMR. Robert Grossman University of Chicago Open Data Group
A Tutorial Introduc/on to Big Data Hands On Data Analy/cs over EMR Robert Grossman University of Chicago Open Data Group Collin BenneE Open Data Group November 12, 2012 1 Amazon AWS Elas/c MapReduce allows
Distributed Computing and Big Data: Hadoop and MapReduce
Distributed Computing and Big Data: Hadoop and MapReduce Bill Keenan, Director Terry Heinze, Architect Thomson Reuters Research & Development Agenda R&D Overview Hadoop and MapReduce Overview Use Case:
Hadoop Cluster Applications
Hadoop Overview Data analytics has become a key element of the business decision process over the last decade. Classic reporting on a dataset stored in a database was sufficient until recently, but yesterday
Forecast of Big Data Trends. Assoc. Prof. Dr. Thanachart Numnonda Executive Director IMC Institute 3 September 2014
Forecast of Big Data Trends Assoc. Prof. Dr. Thanachart Numnonda Executive Director IMC Institute 3 September 2014 Big Data transforms Business 2 Data created every minute Source http://mashable.com/2012/06/22/data-created-every-minute/
Unified Big Data Analytics Pipeline. 连 城 [email protected]
Unified Big Data Analytics Pipeline 连 城 [email protected] What is A fast and general engine for large-scale data processing An open source implementation of Resilient Distributed Datasets (RDD) Has an
AGENDA. What is BIG DATA? What is Hadoop? Why Microsoft? The Microsoft BIG DATA story. Our BIG DATA Roadmap. Hadoop PDW
AGENDA What is BIG DATA? What is Hadoop? Why Microsoft? The Microsoft BIG DATA story Hadoop PDW Our BIG DATA Roadmap BIG DATA? Volume 59% growth in annual WW information 1.2M Zetabytes (10 21 bytes) this
ECBDL 14: Evolu/onary Computa/on for Big Data and Big Learning Workshop July 13 th, 2014 Big Data Compe//on
ECBDL 14: Evolu/onary Computa/on for Big Data and Big Learning Workshop July 13 th, 2014 Big Data Compe//on Jaume Bacardit [email protected] The Interdisciplinary Compu/ng and Complex BioSystems
Professional Hadoop Solutions
Brochure More information from http://www.researchandmarkets.com/reports/2542488/ Professional Hadoop Solutions Description: The go-to guidebook for deploying Big Data solutions with Hadoop Today's enterprise
Hands-on Exercises with Big Data
Hands-on Exercises with Big Data Lab Sheet 1: Getting Started with MapReduce and Hadoop The aim of this exercise is to learn how to begin creating MapReduce programs using the Hadoop Java framework. In
CSE-E5430 Scalable Cloud Computing. Lecture 4
Lecture 4 Keijo Heljanko Department of Computer Science School of Science Aalto University [email protected] 5.10-2015 1/23 Hadoop - Linux of Big Data Hadoop = Open Source Distributed Operating System
Workshop on Hadoop with Big Data
Workshop on Hadoop with Big Data Hadoop? Apache Hadoop is an open source framework for distributed storage and processing of large sets of data on commodity hardware. Hadoop enables businesses to quickly
Big Data Primer. 1 Why Big Data? Alex Sverdlov [email protected]
Big Data Primer Alex Sverdlov [email protected] 1 Why Big Data? Data has value. This immediately leads to: more data has more value, naturally causing datasets to grow rather large, even at small companies.
BIG DATA HADOOP TRAINING
BIG DATA HADOOP TRAINING DURATION 40hrs AVAILABLE BATCHES WEEKDAYS (7.00AM TO 8.30AM) & WEEKENDS (10AM TO 1PM) MODE OF TRAINING AVAILABLE ONLINE INSTRUCTOR LED CLASSROOM TRAINING (MARATHAHALLI, BANGALORE)
Open source large scale distributed data management with Google s MapReduce and Bigtable
Open source large scale distributed data management with Google s MapReduce and Bigtable Ioannis Konstantinou Email: [email protected] Web: http://www.cslab.ntua.gr/~ikons Computing Systems Laboratory
Hadoop & its Usage at Facebook
Hadoop & its Usage at Facebook Dhruba Borthakur Project Lead, Hadoop Distributed File System [email protected] Presented at the The Israeli Association of Grid Technologies July 15, 2009 Outline Architecture
Introduction to Hadoop
Introduction to Hadoop 1 What is Hadoop? the big data revolution extracting value from data cloud computing 2 Understanding MapReduce the word count problem more examples MCS 572 Lecture 24 Introduction
CS 40 Computing for the Web
CS 40 Computing for the Web Art Lee January 20, 2015 Announcements Course web on Sakai Homework assignments submit them on Sakai Email me the survey: See the Announcements page on the course web for instructions
Hadoop Ecosystem Overview. CMSC 491 Hadoop-Based Distributed Computing Spring 2015 Adam Shook
Hadoop Ecosystem Overview CMSC 491 Hadoop-Based Distributed Computing Spring 2015 Adam Shook Agenda Introduce Hadoop projects to prepare you for your group work Intimate detail will be provided in future
