Second International Workshop on Preservation of Evolving Big Data - Panel on Big Data Quality
|
|
|
- Joy Constance Cole
- 9 years ago
- Views:
Transcription
1 Second International Workshop on Preservation of Evolving Big Data - Panel on Big Data Quality Angela Bonifati University of Lyon 1 Liris CNRS, France March 15, 2016 Angela Bonifati 2nd Diachron Workshop 2016 March 15, / 8
2 Table of contents 1 Four Questions Angela Bonifati 2nd Diachron Workshop 2016 March 15, / 8
3 Q 1 : Risk assessment of poor data quality Poor data entails poor data analysis In our ongoing research project (MedClean a ), we work on medical data involving patient data, DNA sequencing data and medical images (as issued by microscopes), that may exhibit inconsistency, incompleteness and noise. Consequently, the diagnoses built on top of them might be affected. Very often, the data cannot be entirely cleaned due to many factors: the absence of authoritative sources, the inherent format of data, privacy issues. Can we characterize the uncertainty of such data and thus express a confidence measure of the subsequent analysis? a Défi CNRS Mastodons 2016, MedClean (PI: AngelaBonifati) Angela Bonifati 2nd Diachron Workshop 2016 March 15, / 8
4 Q 2 :What are the main quality factors of Big Data? Quality depends on the format Because of one of the Vs of Big Data, namely Variety, many diverse data formats need to co-exist, each of which requires a specific notion of quality. Relational tuples, Graphs, Time series, Images if we restrict to relational tuples, we can identify measures/conceive techniques to ensure data quality (research is somehow mature); if we go beyond the relational models, the setting becomes less clear: for graphs, for instance, do we have a notion of quality? for images, is the quality related to its resolution and its precision? what about time series or DNS sequencing data? Angela Bonifati 2nd Diachron Workshop 2016 March 15, / 8
5 Q 3 : Challenges for Big Data Quality: the FOUR Vs Volume: scale factor of data involved in the cleaning processes drastically changes (e.g. images of the order of Terabytes are too voluminous to be manipulated by physicians/biologists, difficult to browse etc.) Velocity: time series from clinical data are an example of data in which velocity is rather critical (of the order of Petabytes...); Variety: already mentioned above; an important aspect of our project is about annotation and transformation across different formats. Veracity: trust is very important in health-care decisions and very difficult to guarantee on massive datasets. Can we isolate query-driven snippets on datasets for which we can provide guarantees of quality and trust? Angela Bonifati 2nd Diachron Workshop 2016 March 15, / 8
6 Q 4 : Quality Assessment and Decision Making (Part I) As mentioned before, sometimes we are unable to perform data cleaning at best for various reasons. Can we use (probabilistic?) approaches to measure the uncertainty of data so that we can also quantify the uncertainty (and the cost) of decision making processes? Even when data cleaning attains high values of precision and recall, we may need to quantify the uncertainty for instance because the involved data will be part of further processing and integration in the sequel and we want to keep track of its incompleteness. Finally, for privacy reasons, we may be in a situation in which we cannot clean the original data sources. We need to come up with assessment and decision making methods that work in a privacy-preserving manner. Angela Bonifati 2nd Diachron Workshop 2016 March 15, / 8
7 Q 4 : Can Data Quality be ignored? (Part II) Which threshold depends on the actual data formats and on the subsequent tasks of the lifecycle, as well as on the final analysis that needs to be performed. Maybe in some cases, it can but still we need to annotate data with suitable indicators. At what extent can data quality be ignored? We actually do not know... Angela Bonifati 2nd Diachron Workshop 2016 March 15, / 8
8 Conclusion Big Data Quality Data quality: design of quality-conscious methods. Interactions between the Vs: several open problems out there! State-of-the-art and directions of research Existing large-scale data cleaning methods for relational databases, entity resolution for graphs... Combinations of data formats: are we ready? Angela Bonifati 2nd Diachron Workshop 2016 March 15, / 8
Big Data, Integration and Governance: Ask the Experts
Big, Integration and Governance: Ask the Experts January 29, 2013 1 The fourth dimension of Big : Veracity handling data in doubt Volume Velocity Variety Veracity* at Rest Terabytes to exabytes of existing
International Journal of Advanced Engineering Research and Applications (IJAERA) ISSN: 2454-2377 Vol. 1, Issue 6, October 2015. Big Data and Hadoop
ISSN: 2454-2377, October 2015 Big Data and Hadoop Simmi Bagga 1 Satinder Kaur 2 1 Assistant Professor, Sant Hira Dass Kanya MahaVidyalaya, Kala Sanghian, Distt Kpt. INDIA E-mail: [email protected]
ESTABLISHING A MEASUREMENT PROGRAM
ESTABLISHING A MEASUREMENT PROGRAM The most important rule is to Understand that software measurement is a means to an end, not an end in itself Three key reasons for Software Measurement Understanding
No Data Governance, No Actionable Insights
DATA SMALL DATA MASSIVE DATA No Data Governance, No Actionable Insights Ram Kumar Chief Information Officer, Asia Insurance Australia Group (IAG) Australia MORE DATA MEDIUM DATA LARGE DATA OBESE DATA June
IBM Analytics Make sense of your data
Using metadata to understand data in a hybrid environment Table of contents 3 The four pillars 4 7 Trusting your information: A business requirement 7 9 Helping business and IT talk the same language 10
Collaborations between Official Statistics and Academia in the Era of Big Data
Collaborations between Official Statistics and Academia in the Era of Big Data World Statistics Day October 20-21, 2015 Budapest Vijay Nair University of Michigan Past-President of ISI [email protected] What
South East of Process Main Building / 1F. North East of Process Main Building / 1F. At 14:05 April 16, 2011. Sample not collected
At 14:05 April 16, 2011 At 13:55 April 16, 2011 At 14:20 April 16, 2011 ND ND 3.6E-01 ND ND 3.6E-01 1.3E-01 9.1E-02 5.0E-01 ND 3.7E-02 4.5E-01 ND ND 2.2E-02 ND 3.3E-02 4.5E-01 At 11:37 April 17, 2011 At
Big Data Challenges. technology basics for data scientists. Spring - 2014. Jordi Torres, UPC - BSC www.jorditorres.
Big Data Challenges technology basics for data scientists Spring - 2014 Jordi Torres, UPC - BSC www.jorditorres.eu @JordiTorresBCN Data Deluge: Due to the changes in big data generation Example: Biomedicine
Big Data Readiness. A QuantUniversity Whitepaper. 5 things to know before embarking on your first Big Data project
A QuantUniversity Whitepaper Big Data Readiness 5 things to know before embarking on your first Big Data project By, Sri Krishnamurthy, CFA, CAP Founder www.quantuniversity.com Summary: Interest in Big
Let the data speak to you. Look Who s Peeking at Your Paycheck. Big Data. What is Big Data? The Artemis project: Saving preemies using Big Data
CS535 Big Data W1.A.1 CS535 BIG DATA W1.A.2 Let the data speak to you Medication Adherence Score How likely people are to take their medication, based on: How long people have lived at the same address
The New World of Data. Don Strickland President, Strickland & Associates
The New World of Data Don Strickland President, Strickland & Associates THE NEW WORLD OF DATA 1900 1950 2000 Physical Infrastructure Labor Capital Physical Infrastructure Labor Capital Physical Infrastructure
Veracity in Big Data Reliability of Routes
Veracity in Big Data Reliability of Routes Dr. Tobias Emrich Post-Doctoral Scholar Integrated Media Systems Center (IMSC) Viterbi School of Engineering University of Southern California Los Angeles, CA
Error Log Processing for Accurate Failure Prediction. Humboldt-Universität zu Berlin
Error Log Processing for Accurate Failure Prediction Felix Salfner ICSI Berkeley Steffen Tschirpke Humboldt-Universität zu Berlin Introduction Context of work: Error-based online failure prediction: error
Big Data: Opportunities & Challenges, Myths & Truths 資 料 來 源 : 台 大 廖 世 偉 教 授 課 程 資 料
Big Data: Opportunities & Challenges, Myths & Truths 資 料 來 源 : 台 大 廖 世 偉 教 授 課 程 資 料 美 國 13 歲 學 生 用 Big Data 找 出 霸 淩 熱 點 Puri 架 設 網 站 Bullyvention, 藉 由 分 析 Twitter 上 找 出 提 到 跟 霸 凌 相 關 的 詞, 搭 配 地 理 位 置
Web-Scale Extraction of Structured Data Michael J. Cafarella, Jayant Madhavan & Alon Halevy
The Deep Web: Surfacing Hidden Value Michael K. Bergman Web-Scale Extraction of Structured Data Michael J. Cafarella, Jayant Madhavan & Alon Halevy Presented by Mat Kelly CS895 Web-based Information Retrieval
Introduction to Data Mining
Introduction to Data Mining 1 Why Data Mining? Explosive Growth of Data Data collection and data availability Automated data collection tools, Internet, smartphones, Major sources of abundant data Business:
Indian Journal of Science The International Journal for Science ISSN 2319 7730 EISSN 2319 7749 2016 Discovery Publication. All Rights Reserved
Indian Journal of Science The International Journal for Science ISSN 2319 7730 EISSN 2319 7749 2016 Discovery Publication. All Rights Reserved Perspective Big Data Framework for Healthcare using Hadoop
The Next Wave of Data Management. Is Big Data The New Normal?
The Next Wave of Data Management Is Big Data The New Normal? Table of Contents Introduction 3 Separating Reality and Hype 3 Why Are Firms Making IT Investments In Big Data? 4 Trends In Data Management
International Journal of Advancements in Research & Technology, Volume 3, Issue 5, May-2014 18 ISSN 2278-7763. BIG DATA: A New Technology
International Journal of Advancements in Research & Technology, Volume 3, Issue 5, May-2014 18 BIG DATA: A New Technology Farah DeebaHasan Student, M.Tech.(IT) Anshul Kumar Sharma Student, M.Tech.(IT)
Test Data Management in the New Era of Computing
Test Data Management in the New Era of Computing Vinod Khader IBM InfoSphere Optim Development Agenda Changing Business Environment and Data Management Challenges What is Test Data Management Best Practices
Data collection architecture for Big Data
Data collection architecture for Big Data a framework for a research agenda (Research in progress - ERP Sense Making of Big Data) Wout Hofman, May 2015, BDEI workshop 2 Big Data succes stories bias our
White Paper. An Overview of the Kalido Data Governance Director Operationalizing Data Governance Programs Through Data Policy Management
White Paper An Overview of the Kalido Data Governance Director Operationalizing Data Governance Programs Through Data Policy Management Managing Data as an Enterprise Asset By setting up a structure of
Formal Methods for Preserving Privacy for Big Data Extraction Software
Formal Methods for Preserving Privacy for Big Data Extraction Software M. Brian Blake and Iman Saleh Abstract University of Miami, Coral Gables, FL Given the inexpensive nature and increasing availability
IEEE JAVA Project 2012
IEEE JAVA Project 2012 Powered by Cloud Computing Cloud Computing Security from Single to Multi-Clouds. Reliable Re-encryption in Unreliable Clouds. Cloud Data Production for Masses. Costing of Cloud Computing
Information Lifecycle Governance. Surabhi Kapoor & Jan Lambrechts
Information Lifecycle Governance Surabhi Kapoor & Jan Lambrechts Information Lifecycle Governance Executive Overview 1 Introduction to Information Lifecycle Governance 2 It s no longer about one thing
A Strategic Approach to Unlock the Opportunities from Big Data
A Strategic Approach to Unlock the Opportunities from Big Data Yue Pan, Chief Scientist for Information Management and Healthcare IBM Research - China [contacts: [email protected] ] Big Data or Big Illusion?
Big Data, Big Risk, Big Rewards. Hussein Syed
Big Data, Big Risk, Big Rewards Hussein Syed Discussion Topics Information Security in healthcare Cyber Security Big Data Security Security and Privacy concerns Security and Privacy Governance Big Data
Information Stewardship: Moving From Big Data to Big Value
Information Stewardship: Moving From Big Data to Big Value By John Burke Principal Research Analyst, Nemertes Research Executive Summary Big data stresses tools, networks, and storage infrastructures.
Anuradha Bhatia, Faculty, Computer Technology Department, Mumbai, India
Volume 3, Issue 9, September 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com A Real Time
Associate Prof. Dr. Victor Onomza Waziri
BIG DATA ANALYTICS AND DATA SECURITY IN THE CLOUD VIA FULLY HOMOMORPHIC ENCRYPTION Associate Prof. Dr. Victor Onomza Waziri Department of Cyber Security Science, School of ICT, Federal University of Technology,
Big Data - Security and Privacy
Big Data - Security and Privacy Elisa Bertino CS Department, Cyber Center, and CERIAS Purdue University Cyber Center! Big Data EveryWhere! Lots of data is being collected, warehoused, and mined Web data,
Procedia Computer Science 00 (2012) 1 21. Trieu Minh Nhut Le, Jinli Cao, and Zhen He. [email protected], [email protected], [email protected].
Procedia Computer Science 00 (2012) 1 21 Procedia Computer Science Top-k best probability queries and semantics ranking properties on probabilistic databases Trieu Minh Nhut Le, Jinli Cao, and Zhen He
CAP4773/CIS6930 Projects in Data Science, Fall 2014 [Review] Overview of Data Science
CAP4773/CIS6930 Projects in Data Science, Fall 2014 [Review] Overview of Data Science Dr. Daisy Zhe Wang CISE Department University of Florida August 25th 2014 20 Review Overview of Data Science Why Data
GenBank, Entrez, & FASTA
GenBank, Entrez, & FASTA Nucleotide Sequence Databases First generation GenBank is a representative example started as sort of a museum to preserve knowledge of a sequence from first discovery great repositories,
A Bayesian Approach for on-line max auditing of Dynamic Statistical Databases
A Bayesian Approach for on-line max auditing of Dynamic Statistical Databases Gerardo Canfora Bice Cavallo University of Sannio, Benevento, Italy, {gerardo.canfora,bice.cavallo}@unisannio.it ABSTRACT In
A Contact Center Crystal Ball:
A Contact Center Crystal Ball: Marrying the Analyses of Service, Cost, Revenue, and Now, Customer Experience Ric Kosiba, Ph.D. Vice President Interactive Intelligence, Inc. Table of Contents Introduction...
Data Cleansing for Remote Battery System Monitoring
Data Cleansing for Remote Battery System Monitoring Gregory W. Ratcliff Randall Wald Taghi M. Khoshgoftaar Director, Life Cycle Management Senior Research Associate Director, Data Mining and Emerson Network
Introduction to Engineering Using Robotics Experiments Lecture 17 Big Data
Introduction to Engineering Using Robotics Experiments Lecture 17 Big Data Yinong Chen 2 Big Data Big Data Technologies Cloud Computing Service and Web-Based Computing Applications Industry Control Systems
COMP9321 Web Application Engineering
COMP9321 Web Application Engineering Semester 2, 2015 Dr. Amin Beheshti Service Oriented Computing Group, CSE, UNSW Australia Week 11 (Part II) http://webapps.cse.unsw.edu.au/webcms2/course/index.php?cid=2411
1. Understanding Big Data
Big Data and its Real Impact on Your Security & Privacy Framework: A Pragmatic Overview Erik Luysterborg Partner, Deloitte EMEA Data Protection & Privacy leader Prague, SCCE, March 22 nd 2016 1. 2016 Deloitte
Information Management course
Università degli Studi di Milano Master Degree in Computer Science Information Management course Teacher: Alberto Ceselli Lecture 01 : 06/10/2015 Practical informations: Teacher: Alberto Ceselli ([email protected])
Safe robot motion planning in dynamic, uncertain environments
Safe robot motion planning in dynamic, uncertain environments RSS 2011 Workshop: Guaranteeing Motion Safety for Robots June 27, 2011 Noel du Toit and Joel Burdick California Institute of Technology Dynamic,
PICTURE Project Final Event. 21 May 2014 Minsk, Belarus
PICTURE Project Final Event 21 May 2014 Minsk, Belarus NESSI recent activities on Big Data and S/W Engineering Yannis Kliafas, ATC NESSI & EC Software Engineering Workshop; 26 May 2014 2 NESSI is the European
DGE /DG Connect. 25-6-2015 www.bdva.eu
DGE /DG Connect 1 CHALLENGES, SOLUTIONS AND VISIONS FOR THE EUROPEAN DATA ECONOMY Laure Le Bars SAP 2 BIG DATA WHAT S IT ALL ABOUT www.bdva.eu 25-6-2015 3 When is Data Big? Volume Velocity Variety Veracity
CIS 4930/6930 Spring 2014 Introduction to Data Science Data Intensive Computing. University of Florida, CISE Department Prof.
CIS 4930/6930 Spring 2014 Introduction to Data Science Data Intensive Computing University of Florida, CISE Department Prof. Daisy Zhe Wang Data Science Overview Why, What, How, Who Outline Why Data Science?
Generating the Business Value of Big Data:
Leveraging People, Processes, and Technology Generating the Business Value of Big Data: Analyzing Data to Make Better Decisions Authors: Rajesh Ramasubramanian, MBA, PMP, Program Manager, Catapult Technology
Example Gantt Chart. PERT charts...) (Later, but next, Source: http://www.nan.go.th/nanpoc/svg/chartdirector/doc/cdphpd oc/images/gantt.
PERT and Gantt Example Gantt Chart (Later, but next, PERT charts...) Source: http://www.nan.go.th/nanpoc/svg/chartdirector/doc/cdphpd oc/images/gantt.png PERT Charts Acronym for: Program Evaluation and
Big Data Analytics Hadoop and Spark
Big Data Analytics Hadoop and Spark Shelly Garion, Ph.D. IBM Research Haifa 1 What is Big Data? 2 What is Big Data? Big data usually includes data sets with sizes beyond the ability of commonly used software
German Record Linkage Center
German Record Linkage Center Microdata Computation Centre (MiCoCe) Workshop Nuremberg, 29 April 2014 Johanna Eberle FDZ of BA at IAB Agenda Basic information on German RLC Services & Software Projects
Big Data in Transportation Engineering
Big Data in Transportation Engineering Nii Attoh-Okine Professor Department of Civil and Environmental Engineering University of Delaware, Newark, DE, USA Email: [email protected] IEEE Workshop on Large Data
Big Data and Analytics: Challenges and Opportunities
Big Data and Analytics: Challenges and Opportunities Dr. Amin Beheshti Lecturer and Senior Research Associate University of New South Wales, Australia (Service Oriented Computing Group, CSE) Talk: Sharif
The Data Engineer. Mike Tamir Chief Science Officer Galvanize. Steven Miller Global Leader Academic Programs IBM Analytics
The Data Engineer Mike Tamir Chief Science Officer Galvanize Steven Miller Global Leader Academic Programs IBM Analytics Alessandro Gagliardi Lead Faculty Galvanize Businesses are quickly realizing that
High-Frequency Active Internet Topology Mapping
High-Frequency Active Internet Topology Mapping Cyber Security Division 2012 Principal Investigators Meeting October 10, 2012 Robert Beverly Assistant Professor Naval Postgraduate School [email protected]
Remote Service. SASG - Big Data From machine design to IT management & Remote Service. Marcel Boosten Philips Healthcare October 7, 2014
Remote Service SASG - Big Data From machine design to IT management & Remote Service Marcel Boosten Philips Healthcare October 7, 2014 1 Marcel Boosten Philips Lead Design for Serviceability Solution Architect
Software Development for Medical Devices
Overcoming the Challenges of Compliance, Quality and Cost An MKS White Paper Introduction Software is fast becoming the differentiator for manufacturers of medical devices. The rewards available from software
BIG DATA: STORAGE, ANALYSIS AND IMPACT GEDIMINAS ŽYLIUS
BIG DATA: STORAGE, ANALYSIS AND IMPACT GEDIMINAS ŽYLIUS WHAT IS BIG DATA? describes any voluminous amount of structured, semi-structured and unstructured data that has the potential to be mined for information
Introduction to the Mathematics of Big Data. Philippe B. Laval
Introduction to the Mathematics of Big Data Philippe B. Laval Fall 2015 Introduction In recent years, Big Data has become more than just a buzz word. Every major field of science, engineering, business,
Overview. Software engineering and the design process for interactive systems. Standards and guidelines as design rules
Overview Software engineering and the design process for interactive systems Standards and guidelines as design rules Usability engineering Iterative design and prototyping Design rationale A. Dix, J.
Introduction to Data Mining
Bioinformatics Ying Liu, Ph.D. Laboratory for Bioinformatics University of Texas at Dallas Spring 2008 Introduction to Data Mining 1 Motivation: Why data mining? What is data mining? Data Mining: On what
Big Data & Analytics for Semiconductor Manufacturing
Big Data & Analytics for Semiconductor Manufacturing 半 導 体 生 産 におけるビッグデータ 活 用 Ryuichiro Hattori 服 部 隆 一 郎 Intelligent SCM and MFG solution Leader Global CoC (Center of Competence) Electronics team General
Privacy Challenges of Telco Big Data
Dr. Günter Karjoth June 17, 2014 ITU telco big data workshop Privacy Challenges of Telco Big Data Mobile phones are great sources of data but we must be careful about privacy 1 / 15 Sources of Big Data
International Journal of Innovative Research in Computer and Communication Engineering
FP Tree Algorithm and Approaches in Big Data T.Rathika 1, J.Senthil Murugan 2 Assistant Professor, Department of CSE, SRM University, Ramapuram Campus, Chennai, Tamil Nadu,India 1 Assistant Professor,
Big Data Analytics. Genoveva Vargas-Solar http://www.vargas-solar.com/big-data-analytics French Council of Scientific Research, LIG & LAFMIA Labs
1 Big Data Analytics Genoveva Vargas-Solar http://www.vargas-solar.com/big-data-analytics French Council of Scientific Research, LIG & LAFMIA Labs Montevideo, 22 nd November 4 th December, 2015 INFORMATIQUE
Call topics. September 2013. 2013 SAF RA joint call on Human and organizational factors including the value of industrial safety
Call topics 2013 SAF RA joint call on Human and organizational factors including the value of industrial safety September 2013 SAF RA is an ERA-NET on industrial safety funded by the European Commission
The Big Deal about Big Data. Mike Skinner, CPA CISA CITP HORNE LLP
The Big Deal about Big Data Mike Skinner, CPA CISA CITP HORNE LLP Mike Skinner, CPA CISA CITP Senior Manager, IT Assurance & Risk Services HORNE LLP Focus areas: IT security & risk assessment IT governance,
Host Fingerprinting and Tracking on the Web: Privacy and Security Implications
Host Fingerprinting and Tracking on the Web: Privacy and Security Implications Ting-Fang Yen, RSA Labs Yinglian Xie, Fang Yu, Martin Abadi, Microsoft Research Roger Peng Yu, Microsoft Corporation February
Ernestina Menasalvas Universidad Politécnica de Madrid
Ernestina Menasalvas Universidad Politécnica de Madrid EECA Cluster networking event RITA 12th november 2014, Baku Sectors/Domains Big Data Value Source Public administration EUR 150 billion to EUR 300
Data Governance, Data Architecture, and Metadata Essentials Enabling Data Reuse Across the Enterprise
Data Governance Data Governance, Data Architecture, and Metadata Essentials Enabling Data Reuse Across the Enterprise 2 Table of Contents 4 Why Business Success Requires Data Governance Data Repurposing
Session 4 Cloud computing for future ICT Knowledge platforms
ITU Workshop on "Future Trust and Knowledge Infrastructure", Phase 1 Geneva, Switzerland, 24 April 2015 Session 4 Cloud computing for future ICT Knowledge platforms Olivier Le Grand, Senior Standardization
CLASSIFYING NETWORK TRAFFIC IN THE BIG DATA ERA
CLASSIFYING NETWORK TRAFFIC IN THE BIG DATA ERA Professor Yang Xiang Network Security and Computing Laboratory (NSCLab) School of Information Technology Deakin University, Melbourne, Australia http://anss.org.au/nsclab
Big Data Analytics. Prof. Dr. Lars Schmidt-Thieme
Big Data Analytics Prof. Dr. Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany 33. Sitzung des Arbeitskreises Informationstechnologie,
White Paper: Assessing Performance & Response Time Requirements
White Paper: Assessing Performance & Response Time Requirements Mark Houghtlin IBM Cloud Advisory Services & Application Performance Optimization Consulting Practice Agenda Workload Transformation Analysis
Clustering Big Data. Anil K. Jain. (with Radha Chitta and Rong Jin) Department of Computer Science Michigan State University November 29, 2012
Clustering Big Data Anil K. Jain (with Radha Chitta and Rong Jin) Department of Computer Science Michigan State University November 29, 2012 Outline Big Data How to extract information? Data clustering
Ali Eghlima Ph.D Director of Bioinformatics. A Bioinformatics Research & Consulting Group
A Bioinformatics Research & Consulting Group Adding Omics Data to Electronic Health Record, A paradigm Shift in Big Data Modeling, Analytics and Storage management for Healthcare and Life Sciences Organizations
ICT Perspectives on Big Data: Well Sorted Materials
ICT Perspectives on Big Data: Well Sorted Materials 3 March 2015 Contents Introduction 1 Dendrogram 2 Tree Map 3 Heat Map 4 Raw Group Data 5 For an online, interactive version of the visualisations in
Data Centric Computing Revisited
Piyush Chaudhary Technical Computing Solutions Data Centric Computing Revisited SPXXL/SCICOMP Summer 2013 Bottom line: It is a time of Powerful Information Data volume is on the rise Dimensions of data
Introducing Formal Methods. Software Engineering and Formal Methods
Introducing Formal Methods Formal Methods for Software Specification and Analysis: An Overview 1 Software Engineering and Formal Methods Every Software engineering methodology is based on a recommended
Job Description SF06740
Human Resources Job Description SF06740 Post Title: Senior Administrator (IEA) Grade: Grade 5 Faculty/Department: Institute for Environmental Analytics (IEA), Faculty of Science Reports to: Responsible
Integrated Risk Management:
Integrated Risk Management: A Framework for Fraser Health For further information contact: Integrated Risk Management Fraser Health Corporate Office 300, 10334 152A Street Surrey, BC V3R 8T4 Phone: (604)
Introduction. A. Bellaachia Page: 1
Introduction 1. Objectives... 3 2. What is Data Mining?... 4 3. Knowledge Discovery Process... 5 4. KD Process Example... 7 5. Typical Data Mining Architecture... 8 6. Database vs. Data Mining... 9 7.
NSF Workshop on Big Data Security and Privacy
NSF Workshop on Big Data Security and Privacy Report Summary Bhavani Thuraisingham The University of Texas at Dallas (UTD) February 19, 2015 Acknowledgement NSF SaTC Program for support Chris Clifton and
SMTP: Stedelijk Museum Text Mining Project
SMTP: Stedelijk Museum Text Mining Project Jeroen Smeets Maastricht University [email protected] Prof. Dr. Ir. Johannes C. Scholtes Maastricht University [email protected] Dr. Claartje
