SMTP: Stedelijk Museum Text Mining Project
|
|
|
- Joshua Maxwell
- 9 years ago
- Views:
Transcription
1 SMTP: Stedelijk Museum Text Mining Project Jeroen Smeets Maastricht University Prof. Dr. Ir. Johannes C. Scholtes Maastricht University Dr. Claartje Rasterhoff CREATE University of Amsterdam Dr. Margriet Schavemaker Stedelijk Museum Amsterdam Introduction This paper addresses how text-mining, machine-learning and information retrieval algorithms from the field of artificial intelligence can be used to analyze Art-Research archives and conduct (art-) historical research. Two aspects are to focus on in order to gain quick insight into the archive: relations between groups of people using community detection, and global content changes over time using topic modeling. To develop and test the validity and relevance of existing tools, close collaboration was established between the AI researchers, museum staff, and researchers in CREATE, a digital humanities project that investigates the development of cultural industries in Amsterdam over the course of the last five centuries. Data The research draws on two datasets. The principal dataset is the digitized archive of the Stedelijk Museum Amsterdam, a renowned international museum dedicated to modern and contemporary art and design. The archive of the Stedelijk Museum Amsterdam is a static collection of approximately OCR digitized documents from the period The second dataset is drawn from Delpher (Koninklijke Bibliotheek Nederland, 2015), which provides a collection of digitized newspapers, books and magazines that is available for research. A selection of newspapers was made that is used as an additional dataset for this project.
2 Methodology The methodology uses two approaches to obtain a quick and detailed overview of the content of a digitized archive that contains unstructured information. Relation networks and Community Detection The first approach focuses on the relations between named entities and aims at finding communities in the relation network. In its most basic form, a relation between two named entities can be said to exist when both occur in the same document. The relation is characterized by its strength, the number of documents in which both named entities occur, and by the sentiment content of the documents. The hypothesis is that relations between individuals with a high sentiment are more interesting than relations with a low sentiment. This is because sentiments around trigger-events are often higher than around common-day events. Community detection algorithms (Fortunato, 2010) are applied to the relation network, shown in Figure 1. Communities such as group exhibitions, art movements or a group of artists closely related to the museum director, could be identified with the help of a museum expert. Figure 1: Found communities for graphic artists in the archive of the Stedelijk Museum Name Extraction In order to build the relation network, a name extraction method is developed that is able to handle multiple causes of name variations such as OCR induced errors, spelling mistakes, name abbreviations and first and last name combinations. The method makes use of lists of name
3 variations that are extracted from the document collection, relying on a name database such as RKDartists& (RKD, 2015). A similarity score is calculated between the original name and the possible name variation, based on an n-gram set matching technique described in (Song and Chen, 2007). Using a threshold of 0.9 on the similarity score, the method was tested on 50 randomly chosen names, resulting in an average precision of 81 percent. Time based Topic Modeling The information content and its evolution over time is analyzed using topic modeling. A time-based collective matrix factorization technique is used, as suggested in (Vaca et al., 2014). It is based on Non-Negative Matrix Factorization (NMF) (Arora et al., 2012), extended by introducing a topic transition matrix that allows to track topics as they emerge, evolve and fade over time. The algorithm was applied to both the archive of the Stedelijk Museum Amsterdam and newspaper articles from the Delpher database. The results are visualized over time in the form of stacked topic rivers (Wei et al., 2010), shown in Figure 2 and Figure 3. Several exhibitions and events could be identified and are annotated on the chart. Figure 2: Time based topic modeling for the archive of the Stedelijk Museum Amsterdam
4 Figure 3: Time based topic modeling for Delpher newspaper articles Conclusion For the humanities researchers in this project, the main aim was to assess the research potential of computational analysis of digitized art archives in general, and the Stedelijk Museum in particular. Community detection, relying on a robust name extraction method, together with time based topic modeling were applied to the archives. The results demonstrate how AI tools may uncover unexpected relationships between people, artworks and organizations, as well as changing patterns over time. A second possible application can be found in connecting previously isolated content with other relevant digital sources, such as RKDartists& and Delpher. The developed techniques therefore enable unstructured art historical archives to speak up in unprecedented ways even if the results are not clean at the first try and do not capture all historical nuance. By allowing the archive to open up, the proposed approaches offer ways to reveals hidden story lines that subvert and augment prevailing historical narratives. References Arora, S., Ge, R. and Moitra, A. (2012). Learning topic models--going beyond SVD. Foundations of Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium on. IEEE, pp Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3): Koninklijke Bibliotheek Nederland (2015). Delpher - Boeken Kranten Tijdschriften (accessed 1 November 2015). RKD (2015). Netherlands Institute for Art History (accessed 1 November 2015). Song, S. and Chen, L. (2007). Similarity joins of text with incomplete information formats. Advances in Databases: Concepts, Systems and Applications. Springer, pp
5 Vaca, C. K., Mantrach, A., Jaimes, A. and Saerens, M. (2014). A time-based collective factorization for topic discovery and monitoring in news. Proceedings of the 23rd International Conference on World Wide Web. ACM, pp Wei, F., Liu, S., Song, Y., Pan, S., Zhou, M. X., Qian, W., Shi, L., Tan, L. and Zhang, Q. (2010). Tiara: a visual exploratory text analytic system. Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, pp
Data Mining Yelp Data - Predicting rating stars from review text
Data Mining Yelp Data - Predicting rating stars from review text Rakesh Chada Stony Brook University [email protected] Chetan Naik Stony Brook University [email protected] ABSTRACT The majority
Healthcare Measurement Analysis Using Data mining Techniques
www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 03 Issue 07 July, 2014 Page No. 7058-7064 Healthcare Measurement Analysis Using Data mining Techniques 1 Dr.A.Shaik
ENHANCING INTELLIGENCE SUCCESS: DATA CHARACTERIZATION Francine Forney, Senior Management Consultant, Fuel Consulting, LLC May 2013
ENHANCING INTELLIGENCE SUCCESS: DATA CHARACTERIZATION, Fuel Consulting, LLC May 2013 DATA AND ANALYSIS INTERACTION Understanding the content, accuracy, source, and completeness of data is critical to the
Apigee Insights Increase marketing effectiveness and customer satisfaction with API-driven adaptive apps
White provides GRASP-powered big data predictive analytics that increases marketing effectiveness and customer satisfaction with API-driven adaptive apps that anticipate, learn, and adapt to deliver contextual,
International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 442 ISSN 2229-5518
International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 442 Over viewing issues of data mining with highlights of data warehousing Rushabh H. Baldaniya, Prof H.J.Baldaniya,
Volume 2, Issue 11, November 2014 International Journal of Advance Research in Computer Science and Management Studies
Volume 2, Issue 11, November 2014 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online at: www.ijarcsms.com
Introduction to Data Mining and Machine Learning Techniques. Iza Moise, Evangelos Pournaras, Dirk Helbing
Introduction to Data Mining and Machine Learning Techniques Iza Moise, Evangelos Pournaras, Dirk Helbing Iza Moise, Evangelos Pournaras, Dirk Helbing 1 Overview Main principles of data mining Definition
Big Data Analytics of Multi-Relationship Online Social Network Based on Multi-Subnet Composited Complex Network
, pp.273-284 http://dx.doi.org/10.14257/ijdta.2015.8.5.24 Big Data Analytics of Multi-Relationship Online Social Network Based on Multi-Subnet Composited Complex Network Gengxin Sun 1, Sheng Bin 2 and
Digital Collections as Big Data. Leslie Johnston, Library of Congress Digital Preservation 2012
Digital Collections as Big Data Leslie Johnston, Library of Congress Digital Preservation 2012 Data is not just generated by satellites, identified during experiments, or collected during surveys. Datasets
Big Data Classification: Problems and Challenges in Network Intrusion Prediction with Machine Learning
Big Data Classification: Problems and Challenges in Network Intrusion Prediction with Machine Learning By: Shan Suthaharan Suthaharan, S. (2014). Big data classification: Problems and challenges in network
Text Mining Approach for Big Data Analysis Using Clustering and Classification Methodologies
Text Mining Approach for Big Data Analysis Using Clustering and Classification Methodologies Somesh S Chavadi 1, Dr. Asha T 2 1 PG Student, 2 Professor, Department of Computer Science and Engineering,
Selection of Optimal Discount of Retail Assortments with Data Mining Approach
Available online at www.interscience.in Selection of Optimal Discount of Retail Assortments with Data Mining Approach Padmalatha Eddla, Ravinder Reddy, Mamatha Computer Science Department,CBIT, Gandipet,Hyderabad,A.P,India.
Feature. Applications of Business Process Analytics and Mining for Internal Control. World
Feature Filip Caron is a doctoral researcher in the Department of Decision Sciences and Information Management, Information Systems Group, at the Katholieke Universiteit Leuven (Flanders, Belgium). Jan
Neural Networks for Sentiment Detection in Financial Text
Neural Networks for Sentiment Detection in Financial Text Caslav Bozic* and Detlef Seese* With a rise of algorithmic trading volume in recent years, the need for automatic analysis of financial news emerged.
Complex Network Visualization based on Voronoi Diagram and Smoothed-particle Hydrodynamics
Complex Network Visualization based on Voronoi Diagram and Smoothed-particle Hydrodynamics Zhao Wenbin 1, Zhao Zhengxu 2 1 School of Instrument Science and Engineering, Southeast University, Nanjing, Jiangsu
Community Detection Proseminar - Elementary Data Mining Techniques by Simon Grätzer
Community Detection Proseminar - Elementary Data Mining Techniques by Simon Grätzer 1 Content What is Community Detection? Motivation Defining a community Methods to find communities Overlapping communities
ADVANCED DATA VISUALIZATION
If I can't picture it, I can't understand it. Albert Einstein ADVANCED DATA VISUALIZATION REDUCE TO THE TIME TO INSIGHT AND DRIVE DATA DRIVEN DECISION MAKING Mark Wolff, Ph.D. Principal Industry Consultant
Introduction to Big Data Analytics p. 1 Big Data Overview p. 2 Data Structures p. 5 Analyst Perspective on Data Repositories p.
Introduction p. xvii Introduction to Big Data Analytics p. 1 Big Data Overview p. 2 Data Structures p. 5 Analyst Perspective on Data Repositories p. 9 State of the Practice in Analytics p. 11 BI Versus
TECHNOLOGY ANALYSIS FOR INTERNET OF THINGS USING BIG DATA LEARNING
TECHNOLOGY ANALYSIS FOR INTERNET OF THINGS USING BIG DATA LEARNING Sunghae Jun 1 1 Professor, Department of Statistics, Cheongju University, Chungbuk, Korea Abstract The internet of things (IoT) is an
BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON
BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON Overview * Introduction * Multiple faces of Big Data * Challenges of Big Data * Cloud Computing
A GENERAL TAXONOMY FOR VISUALIZATION OF PREDICTIVE SOCIAL MEDIA ANALYTICS
A GENERAL TAXONOMY FOR VISUALIZATION OF PREDICTIVE SOCIAL MEDIA ANALYTICS Stacey Franklin Jones, D.Sc. ProTech Global Solutions Annapolis, MD Abstract The use of Social Media as a resource to characterize
A Framework of User-Driven Data Analytics in the Cloud for Course Management
A Framework of User-Driven Data Analytics in the Cloud for Course Management Jie ZHANG 1, William Chandra TJHI 2, Bu Sung LEE 1, Kee Khoon LEE 2, Julita VASSILEVA 3 & Chee Kit LOOI 4 1 School of Computer
Research of Postal Data mining system based on big data
3rd International Conference on Mechatronics, Robotics and Automation (ICMRA 2015) Research of Postal Data mining system based on big data Xia Hu 1, Yanfeng Jin 1, Fan Wang 1 1 Shi Jiazhuang Post & Telecommunication
Big Data Analytics in Mobile Environments
1 Big Data Analytics in Mobile Environments 熊 辉 教 授 罗 格 斯 - 新 泽 西 州 立 大 学 2012-10-2 Rutgers, the State University of New Jersey Why big data: historical view? Productivity versus Complexity (interrelatedness,
Degree in Art and Design
Subjects Summary Degree in Art and Design Fourth Year Semester ECTS Subject 1 12 Workshop on Applied Arts This practical subject focuses on mastering techniques, materials and the professions of artistic
Fogbeam Vision Series - The Modern Intranet
Fogbeam Labs Cut Through The Information Fog http://www.fogbeam.com Fogbeam Vision Series - The Modern Intranet Where It All Started Intranets began to appear as a venue for collaboration and knowledge
TEXT ANALYTICS INTEGRATION
TEXT ANALYTICS INTEGRATION A TELECOMMUNICATIONS BEST PRACTICES CASE STUDY VISION COMMON ANALYTICAL ENVIRONMENT Structured Unstructured Analytical Mining Text Discovery Text Categorization Text Sentiment
A Visualization is Worth a Thousand Tables: How IBM Business Analytics Lets Users See Big Data
White Paper A Visualization is Worth a Thousand Tables: How IBM Business Analytics Lets Users See Big Data Contents Executive Summary....2 Introduction....3 Too much data, not enough information....3 Only
Connecting the Dots in Visual Analysis
Connecting the Dots in Visual Analysis Yedendra B. Shrinivasan Eindhoven University of Technology The Netherlands David Gotz IBM Research USA Jie Lu IBM Research USA ABSTRACT During visual analysis, users
A Systemic Artificial Intelligence (AI) Approach to Difficult Text Analytics Tasks
A Systemic Artificial Intelligence (AI) Approach to Difficult Text Analytics Tasks Text Analytics World, Boston, 2013 Lars Hard, CTO Agenda Difficult text analytics tasks Feature extraction Bio-inspired
GEO-VISUALIZATION SUPPORT FOR MULTIDIMENSIONAL CLUSTERING
Geoinformatics 2004 Proc. 12th Int. Conf. on Geoinformatics Geospatial Information Research: Bridging the Pacific and Atlantic University of Gävle, Sweden, 7-9 June 2004 GEO-VISUALIZATION SUPPORT FOR MULTIDIMENSIONAL
Augmented Search for Web Applications. New frontier in big log data analysis and application intelligence
Augmented Search for Web Applications New frontier in big log data analysis and application intelligence Business white paper May 2015 Web applications are the most common business applications today.
Using Text and Data Mining Techniques to extract Stock Market Sentiment from Live News Streams
2012 International Conference on Computer Technology and Science (ICCTS 2012) IPCSIT vol. XX (2012) (2012) IACSIT Press, Singapore Using Text and Data Mining Techniques to extract Stock Market Sentiment
Delivering Smart Answers!
Companion for SharePoint Topic Analyst Companion for SharePoint All Your Information Enterprise-ready Enrich SharePoint, your central place for document and workflow management, not only with an improved
How to use Big Data in Industry 4.0 implementations. LAURI ILISON, PhD Head of Big Data and Machine Learning
How to use Big Data in Industry 4.0 implementations LAURI ILISON, PhD Head of Big Data and Machine Learning Big Data definition? Big Data is about structured vs unstructured data Big Data is about Volume
Text Mining - Scope and Applications
Journal of Computer Science and Applications. ISSN 2231-1270 Volume 5, Number 2 (2013), pp. 51-55 International Research Publication House http://www.irphouse.com Text Mining - Scope and Applications Miss
Most Effective Communication Management Techniques for Geographically Distributed Project Team Members
Most Effective Communication Management Techniques for Geographically Distributed Project Team Members Jawairia Rasheed, Farooque Azam and M. Aqeel Iqbal Department of Computer Engineering College of Electrical
Big Data Analytics. Bringing Value out of Volume
Big Data Analytics Bringing Value out of Volume Big Data Analytics Bringing Value out of Volume Topics About Business Brio Solution Approach Few Case Studies Epidemic Indicators Healthcare Fraud Sales
Visualization methods for patent data
Visualization methods for patent data Treparel 2013 Dr. Anton Heijs (CTO & Founder) Delft, The Netherlands Introduction Treparel can provide advanced visualizations for patent data. This document describes
Term extraction for user profiling: evaluation by the user
Term extraction for user profiling: evaluation by the user Suzan Verberne 1, Maya Sappelli 1,2, Wessel Kraaij 1,2 1 Institute for Computing and Information Sciences, Radboud University Nijmegen 2 TNO,
Model-Based Cluster Analysis for Web Users Sessions
Model-Based Cluster Analysis for Web Users Sessions George Pallis, Lefteris Angelis, and Athena Vakali Department of Informatics, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece [email protected]
Estimation of Human Mobility Patterns and Attributes Analyzing Anonymized Mobile Phone CDR:
Estimation of Human Mobility Patterns and Attributes Analyzing Anonymized Mobile Phone CDR: Developing Real-time Census from Crowds of Greater Dhaka Ayumi Arai 1 and Ryosuke Shibasaki 1,2 1 Department
International Journal of Advanced Engineering Research and Applications (IJAERA) ISSN: 2454-2377 Vol. 1, Issue 6, October 2015. Big Data and Hadoop
ISSN: 2454-2377, October 2015 Big Data and Hadoop Simmi Bagga 1 Satinder Kaur 2 1 Assistant Professor, Sant Hira Dass Kanya MahaVidyalaya, Kala Sanghian, Distt Kpt. INDIA E-mail: [email protected]
A Survey on Web Research for Data Mining
A Survey on Web Research for Data Mining Gaurav Saini 1 [email protected] 1 Abstract Web mining is the application of data mining techniques to extract knowledge from web data, including web documents,
White Paper. How Streaming Data Analytics Enables Real-Time Decisions
White Paper How Streaming Data Analytics Enables Real-Time Decisions Contents Introduction... 1 What Is Streaming Analytics?... 1 How Does SAS Event Stream Processing Work?... 2 Overview...2 Event Stream
Better planning and forecasting with IBM Predictive Analytics
IBM Software Business Analytics SPSS Predictive Analytics Better planning and forecasting with IBM Predictive Analytics Using IBM Cognos TM1 with IBM SPSS Predictive Analytics to build better plans and
Visual Analysis Tool for Bipartite Networks
Visual Analysis Tool for Bipartite Networks Kazuo Misue Department of Computer Science, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, 305-8573 Japan [email protected] Abstract. To find hidden features
Data Mining in Web Search Engine Optimization and User Assisted Rank Results
Data Mining in Web Search Engine Optimization and User Assisted Rank Results Minky Jindal Institute of Technology and Management Gurgaon 122017, Haryana, India Nisha kharb Institute of Technology and Management
A Web-based Interactive Data Visualization System for Outlier Subspace Analysis
A Web-based Interactive Data Visualization System for Outlier Subspace Analysis Dong Liu, Qigang Gao Computer Science Dalhousie University Halifax, NS, B3H 1W5 Canada [email protected] [email protected] Hai
Big Data Text Mining and Visualization. Anton Heijs
Copyright 2007 by Treparel Information Solutions BV. This report nor any part of it may be copied, circulated, quoted without prior written approval from Treparel7 Treparel Information Solutions BV Delftechpark
Online Credit Card Application and Identity Crime Detection
Online Credit Card Application and Identity Crime Detection Ramkumar.E & Mrs Kavitha.P School of Computing Science, Hindustan University, Chennai ABSTRACT The credit cards have found widespread usage due
Overview Applications of Data Mining In Health Care: The Case Study of Arusha Region
International Journal of Computational Engineering Research Vol, 03 Issue, 8 Overview Applications of Data Mining In Health Care: The Case Study of Arusha Region 1, Salim Diwani, 2, Suzan Mishol, 3, Daniel
A Big Data Analytical Framework For Portfolio Optimization Abstract. Keywords. 1. Introduction
A Big Data Analytical Framework For Portfolio Optimization Dhanya Jothimani, Ravi Shankar and Surendra S. Yadav Department of Management Studies, Indian Institute of Technology Delhi {dhanya.jothimani,
Introduction to Data Mining
Introduction to Data Mining Jay Urbain Credits: Nazli Goharian & David Grossman @ IIT Outline Introduction Data Pre-processing Data Mining Algorithms Naïve Bayes Decision Tree Neural Network Association
Introduction. A. Bellaachia Page: 1
Introduction 1. Objectives... 3 2. What is Data Mining?... 4 3. Knowledge Discovery Process... 5 4. KD Process Example... 7 5. Typical Data Mining Architecture... 8 6. Database vs. Data Mining... 9 7.
Towards Inferring Web Page Relevance An Eye-Tracking Study
Towards Inferring Web Page Relevance An Eye-Tracking Study 1, [email protected] Yinglong Zhang 1, [email protected] 1 The University of Texas at Austin Abstract We present initial results from a project,
Clustering Data Streams
Clustering Data Streams Mohamed Elasmar Prashant Thiruvengadachari Javier Salinas Martin [email protected] [email protected] [email protected] Introduction: Data mining is the science of extracting
Using Feedback Tags and Sentiment Analysis to Generate Sharable Learning Resources
Using Feedback Tags and Sentiment Analysis to Generate Sharable Learning Resources Investigating Automated Sentiment Analysis of Feedback Tags in a Programming Course Stephen Cummins, Liz Burd, Andrew
Research Article www.ijptonline.com EFFICIENT TECHNIQUES TO DEAL WITH BIG DATA CLASSIFICATION PROBLEMS G.Somasekhar 1 *, Dr. K.
ISSN: 0975-766X CODEN: IJPTFI Available Online through Research Article www.ijptonline.com EFFICIENT TECHNIQUES TO DEAL WITH BIG DATA CLASSIFICATION PROBLEMS G.Somasekhar 1 *, Dr. K.Karthikeyan 2 1 Research
Computer Forensics Application. ebay-uab Collaborative Research: Product Image Analysis for Authorship Identification
Computer Forensics Application ebay-uab Collaborative Research: Product Image Analysis for Authorship Identification Project Overview A new framework that provides additional clues extracted from images
A Comparative Study on Sentiment Classification and Ranking on Product Reviews
A Comparative Study on Sentiment Classification and Ranking on Product Reviews C.EMELDA Research Scholar, PG and Research Department of Computer Science, Nehru Memorial College, Putthanampatti, Bharathidasan
A Survey on Web Mining From Web Server Log
A Survey on Web Mining From Web Server Log Ripal Patel 1, Mr. Krunal Panchal 2, Mr. Dushyantsinh Rathod 3 1 M.E., 2,3 Assistant Professor, 1,2,3 computer Engineering Department, 1,2 L J Institute of Engineering
A STUDY ON DATA MINING INVESTIGATING ITS METHODS, APPROACHES AND APPLICATIONS
A STUDY ON DATA MINING INVESTIGATING ITS METHODS, APPROACHES AND APPLICATIONS Mrs. Jyoti Nawade 1, Dr. Balaji D 2, Mr. Pravin Nawade 3 1 Lecturer, JSPM S Bhivrabai Sawant Polytechnic, Pune (India) 2 Assistant
Cross-Domain Collaborative Recommendation in a Cold-Start Context: The Impact of User Profile Size on the Quality of Recommendation
Cross-Domain Collaborative Recommendation in a Cold-Start Context: The Impact of User Profile Size on the Quality of Recommendation Shaghayegh Sahebi and Peter Brusilovsky Intelligent Systems Program University
Business Challenges and Research Directions of Management Analytics in the Big Data Era
Business Challenges and Research Directions of Management Analytics in the Big Data Era Abstract Big data analytics have been embraced as a disruptive technology that will reshape business intelligence,
Federico Rajola. Customer Relationship. Management in the. Financial Industry. Organizational Processes and. Technology Innovation.
Federico Rajola Customer Relationship Management in the Financial Industry Organizational Processes and Technology Innovation Second edition ^ Springer Contents 1 Introduction 1 1.1 Identification and
An Introduction to Data Mining
An Introduction to Intel Beijing [email protected] January 17, 2014 Outline 1 DW Overview What is Notable Application of Conference, Software and Applications Major Process in 2 Major Tasks in Detail
Random Forest Based Imbalanced Data Cleaning and Classification
Random Forest Based Imbalanced Data Cleaning and Classification Jie Gu Software School of Tsinghua University, China Abstract. The given task of PAKDD 2007 data mining competition is a typical problem
A Knowledge Management Framework Using Business Intelligence Solutions
www.ijcsi.org 102 A Knowledge Management Framework Using Business Intelligence Solutions Marwa Gadu 1 and Prof. Dr. Nashaat El-Khameesy 2 1 Computer and Information Systems Department, Sadat Academy For
Computer-Based Text- and Data Analysis Technologies and Applications. Mark Cieliebak 9.6.2015
Computer-Based Text- and Data Analysis Technologies and Applications Mark Cieliebak 9.6.2015 Data Scientist analyze Data Library use 2 About Me Mark Cieliebak + Software Engineer & Data Scientist + PhD
Geo Data Mining and Visual Analytics
Geo Data Mining and Visual Analytics Beyond Limits Developments in Cadastral Domain Workshop, Zürich 19 March 2015 Susanne Bleisch Institute of Geomatics Engineering School of Architecture, Civil Engineering
2.0 COMMON FORMS OF DATA VISUALIZATION
The Importance of Data Visualization to Business Decision Making by Rebeckah Blewett, Product Manager, Dundas Data Visualization, Inc.Sunday, June 12, 2011 1.0 INTRODUCTION Informed decision making is
WHITE PAPER. Five Steps to Better Application Monitoring and Troubleshooting
WHITE PAPER Five Steps to Better Application Monitoring and Troubleshooting There is no doubt that application monitoring and troubleshooting will evolve with the shift to modern applications. The only
Driving Innovation in Licensing Through Competitive Intelligence and Big Data Analytics
Driving Innovation in Licensing Through Competitive Intelligence and Big Data Analytics John D Antonio Practice Leader, Licensing & Competitive Intelligence About Paragon We help increase asset value from
Hexaware E-book on Predictive Analytics
Hexaware E-book on Predictive Analytics Business Intelligence & Analytics Actionable Intelligence Enabled Published on : Feb 7, 2012 Hexaware E-book on Predictive Analytics What is Data mining? Data mining,
Data Mining and Analytics in Realizeit
Data Mining and Analytics in Realizeit November 4, 2013 Dr. Colm P. Howlin Data mining is the process of discovering patterns in large data sets. It draws on a wide range of disciplines, including statistics,
ASSOCIATION RULE MINING ON WEB LOGS FOR EXTRACTING INTERESTING PATTERNS THROUGH WEKA TOOL
International Journal Of Advanced Technology In Engineering And Science Www.Ijates.Com Volume No 03, Special Issue No. 01, February 2015 ISSN (Online): 2348 7550 ASSOCIATION RULE MINING ON WEB LOGS FOR
DEMYSTIFYING BIG DATA. What it is, what it isn t, and what it can do for you.
DEMYSTIFYING BIG DATA What it is, what it isn t, and what it can do for you. JAMES LUCK BIO James Luck is a Data Scientist with AT&T Consulting. He has 25+ years of experience in data analytics, in addition
IDENTIFIC ATION OF SOFTWARE EROSION USING LOGISTIC REGRESSION
http:// IDENTIFIC ATION OF SOFTWARE EROSION USING LOGISTIC REGRESSION Harinder Kaur 1, Raveen Bajwa 2 1 PG Student., CSE., Baba Banda Singh Bahadur Engg. College, Fatehgarh Sahib, (India) 2 Asstt. Prof.,
20 A Visualization Framework For Discovering Prepaid Mobile Subscriber Usage Patterns
20 A Visualization Framework For Discovering Prepaid Mobile Subscriber Usage Patterns John Aogon and Patrick J. Ogao Telecommunications operators in developing countries are faced with a problem of knowing
CAPTURING THE VALUE OF UNSTRUCTURED DATA: INTRODUCTION TO TEXT MINING
CAPTURING THE VALUE OF UNSTRUCTURED DATA: INTRODUCTION TO TEXT MINING Mary-Elizabeth ( M-E ) Eddlestone Principal Systems Engineer, Analytics SAS Customer Loyalty, SAS Institute, Inc. Is there valuable
Edifice an Educational Framework using Educational Data Mining and Visual Analytics
I.J. Education and Management Engineering, 2016, 2, 24-30 Published Online March 2016 in MECS (http://www.mecs-press.net) DOI: 10.5815/ijeme.2016.02.03 Available online at http://www.mecs-press.net/ijeme
Text Analytics. A business guide
Text Analytics A business guide February 2014 Contents 3 The Business Value of Text Analytics 4 What is Text Analytics? 6 Text Analytics Methods 8 Unstructured Meets Structured Data 9 Business Application
Web Log Based Analysis of User s Browsing Behavior
Web Log Based Analysis of User s Browsing Behavior Ashwini Ladekar 1, Dhanashree Raikar 2,Pooja Pawar 3 B.E Student, Department of Computer, JSPM s BSIOTR, Wagholi,Pune, India 1 B.E Student, Department
BUDT 758B-0501: Big Data Analytics (Fall 2015) Decisions, Operations & Information Technologies Robert H. Smith School of Business
BUDT 758B-0501: Big Data Analytics (Fall 2015) Decisions, Operations & Information Technologies Robert H. Smith School of Business Instructor: Kunpeng Zhang ([email protected]) Lecture-Discussions:
IMPROVING BUSINESS PROCESS MODELING USING RECOMMENDATION METHOD
Journal homepage: www.mjret.in ISSN:2348-6953 IMPROVING BUSINESS PROCESS MODELING USING RECOMMENDATION METHOD Deepak Ramchandara Lad 1, Soumitra S. Das 2 Computer Dept. 12 Dr. D. Y. Patil School of Engineering,(Affiliated
