International Journal of Innovative Research in Computer and Communication Engineering
|
|
|
- Trevor Norton
- 10 years ago
- Views:
Transcription
1 FP Tree Algorithm and Approaches in Big Data T.Rathika 1, J.Senthil Murugan 2 Assistant Professor, Department of CSE, SRM University, Ramapuram Campus, Chennai, Tamil Nadu,India 1 Assistant Professor, Department of MCA, VelTech HighTech Engineering College, Chennai, Tamil Nadu, India 2 ABSTRACT: Data mining is process of extracting a large amount of data that need to be analysed patterns have to be extracted from that to share knowledge. In this new era with rumble of data together structured, semi-structured and unstructured, in the field of machine learning, educational data mining, web mining and text mining, environmental research areas, it has become difficult to process, manage and analyzed patterns using traditional databases and relational databases So, a appropriate architecture should be understood to gain and share knowledge about the Big Data. This paper presents an analysis of various algorithms from for handling such big data set. These algorithms define various structures and methods implemented to handle Big Data, also in the paper are listed various data mining tools that were developed for analyzing them. KEYWORDS: Data Mining, Big Data, Clustering. Frequent Pattern, Association Rule,Hadoop and MapReduce framework. I. INTRODUCTION Data Mining (DM) is known as the process of extracting useful patterns or information from huge amount of data. Most of the research people think about data mining as a knowledge discovery databases. Data mining task is the automatic or semi-automatic analysis of large quantities of data to extract unknown interesting patterns such as groups of data records (cluster analysis), unusual records and dependencies (association rule mining).data Mining is the new technology to extract the knowledge from the data. It is used to explore and analyze the same. The data to be mined varies from a small data set to a large data set i.e. big data. The data mining environment produces a large volume of the data. The information retrieved in the data mining step is transformed into the structure that is easily understood by its user. Data mining involves various methods such as frequent pattern tree algorithm, association rule and cluster analysis, to disclose the hidden patterns inside the large data set. Big data are the large amount of data being processed by the data mining environment. In other words, it is the collection of data sets massive and complex that it becomes difficult to process using on hand relational database management tools or traditional data processing applications, so data mining tools were used. Big data are about turning unstructured, invaluable, imperfect, complex data into usable information. Data have hidden information in them and to extract this new information; interrelationship among the data has to be achieved. An information may be retrieved from a hidden or a complex data set. The standard data analysis method such as exploratory, clustering, factorial, analysis need to be extended to get the information and extract new knowledge treasure. Big data can be measured using the following that is categorized by four dimensions of V s:, volume, velocity, variety and veracity; 1. Volume The amount of data is at very large scale. The amount of information being collected is so huge that modern database management tools are unable to handle it and therefore become obsolete. 2. Velocity -We are producing data at an exponential rate.it is growing continuously in terabytes and peta-bytes. Copyright to IJIRCCE
2 3. Variety -We are creating data in all forms -unstructured, semi structured and structured data. This data is heterogeneous is nature. Most of our existing tools work over homogenous data, now we require new tools and techniques which can handle such a large scale heterogeneous data. 4. Veracity-The data we are generating is uncertain in nature. It is hard to know which information is accurate and which is out of date. Volume Variety Big Data Velocity Veracity Fig.1. Categorized of big data in 4 V s. The paper reviews different aspects of the big data. The paper has been described as follows, Section I: Introduction about Big data. Section II. Related Work for big data.section III: deals with the architecture of the big data. Section IV: describes the various algorithms used to process Big Data. Section V: describes different big data technology and tools. II. RELATED WORK R.Agarwal proposes data mining association rule for big data sets.various fast algorithm for scattered system is proposed Cheun.D.W proposes a rapid distributed algorithm for data mining association rules by reducing the number of messages passed.thabet Slimani proposes current trend in association rule mining and compare the huge performance of different algorithms. The reveals challenges and opportunities in databases in existence of big data. As a recent effort introduces contributions on optimizing big data processing efficiency in Hadoop and MapReduce. Sam Madden discusses about the traditional databases and the databases required with Big data concluding that the databases don t solve all aspects of the Big data problem and the association rule mining algorithms need to be more robust and easier for unsophisticated users to apply.an architectural considerations for Big data are discussed concluding that despite the different architectures and design decisions, the analytics systems aim for Scale-out, Elasticity and High availability. III. BIG DATA ARCHITECTURE Big data for development is about turning imperfect, complex, often unstructured data into actionable information. This implies leveraging advanced computational tools which have developed in other fields. Big data means enormous amounts of data, such large that it is difficult to collect, store, manage, analyze, predict, visualize, and model the data. Big data analytics refers to tools and methodologies that aim to transform massive quantities of raw data into data about data for analytical purposes. Big data are the collection of large amounts of unstructured data. Big data means Copyright to IJIRCCE
3 enormous amounts of data, such large that it is difficult to collect, store, manage, analyze, predict, visualize, and model the data. Big data architecture typically consists of three segments: storage system, processing and analysis. Fig. 2. Architecture of Big Data IV. ALGORITHM Many algorithms were defined earlier in the analysis of large data set. Will go through the different work done to handle Big data. First one is called as association rule mining, second is clustering and finally is called as frequent item set. 1. Association Rule Mining: Association is about to identify the interrelation between different attributes as well as attribute values. Association mining is most useful mining approach used as an individual process as well as a stage of some data mining model to improve the accuracy in results. It basically states about the relationship between the data values. It is associated with different mining operations such as data cleaning, classification, filtration approach etc. Association mining can be done horizontally or vertically. The levels of association mining are also considered by defining the number of associated attributes 2. Clustering: It is never effectual to process on large dataset at one time. To obtain the quick running results from the large datasets, complete dataset is divided in smaller datasets. There are number of existing clustering approaches to collect the similar dataset in one cluster. Clustering is basically performed on distance based analysis such as Euclidian distance analysis. There are number of existing clustering approaches such as Kmeans approach, Fuzzy CMeans approach, Hierarchical Clustering etc. 3. Frequent Itemset: The item set which satisfies the criteria of being greater or equal to minimize support are frequent item set. It is denoted by L i, i= itemset. If itemset does not satisfy the criteria it is non frequent itemset. Copyright to IJIRCCE
4 Table.1.Frequent Itemset criteria V. BIG DATA TECHNOLOGY AND TOOLS There are varieties of applications and tools developed by various organizations to process and analyse the big data. The Big data analysis applications support parallelism with the help of computing clusters. These computing clusters are collection of hardware connected by Ethernet cables. The following are major applications in the area of big data analytics. I. MapReduce: MapReduce is a programming model for computations on massive amounts of data and an execution framework for large-scale data processing on clusters of commodity servers. It was originally developed by Google and built on well -known principles in parallel and distributed processing. MapReduce program consists of two functions are as Map function and Reduce function. MapReduce computation executes as follows; 1. Each Map function is converted to key-value pairs based on input data. The input to map function is tuple or document. The way key -value pairs are produced from the input data is determined by the code written by the user for the Map function. 2. The key-value pairs from each Map task are collected by a master controller and sorted by key. The keys are divided among all the Reduce tasks, so all key-value pairs with the same key wind up at the same Reduce task. 3. The Reduce tasks work on one key at a time, and combine all the values associated with that key in some way. The manner of combination of values is determined by the code written by the user for the Reduce function. Major Advantages of MapReduce: 1. The MapReduce model hide details related to the data storage, distribution, replication, load balancing and so on. 2. Furthermore, it is so simple that programmers only specify two functions, which are map function and reduce function, for performing the processing of the Big Data. 3. MapReduce has received a lot of attentions in many fields, including data mining, information retrieval, image retrieval, machine learning, and pattern recognition. II. Hadoop : Hadoop is a free, Java based programming framework that supports the processing of large data sets in a distributed computing environment. It is part of the Apache project sponsored by the Apache Software Foundation. Hadoop was inspired by Google s MapReduce Programming paradigm.hadoop is a highly scalable compute and storage platform. But on the other hand, Hadoop is also time consuming and storage-consuming. The storage Copyright to IJIRCCE
5 requirement of Hadoop is extraordinarily high because it can generate a large amount of intermediate data. To reduce the requirement on the storage capacity, Hadoop often compresses data before storing it. Hadoop takes a primary approach to a single big workload, mapping it into smaller workloads. These smaller workloads are then merged to obtain the end result. Hadoop handles this workload by assigning a large cluster of inexpensive nodes built with commodity hardware. Hadoop also has a distributed, cluster file system that scales to store massive amounts of data, which is typically required in these workloads. Hadoop has a variety of node types within each Hadoop cluster; these include DataNodes, NameNodes, and EdgeNodes. The explanations are as follows: A.NameNodes: The NameNodes the central location for information about the file system deployed in a Hadoop environment. An environment can have one or two NameNodes, configured to provide minimal redundancy between the NameNodes. The NameNodes contacted by clients of the Hadoop Distributed File System (HDFS) to locate information within the file system and provide updates for data they have added, moved, manipulated, or deleted. B..DataNodes: DataNodes make up the majority of the servers contained in a Hadoop environment. Common Hadoop environments will have more than one DataNodes, and oftentimes they will number in the hundreds based on capacity and performance needs. The DataNodes serves two functions: It contains a portion of the data in the HDFS and it acts as a compute platform for running jobs, some of which will utilize the local data within the HDFS. C.EdgeNodes: The EdgeNodes the access point for the external applications, tools, and users that need to utilize the Hadoop environment. The EdgeNodes sits between the Hadoop cluster and the corporate network to provide access control, policy enforcement, logging, and gateway services to the Hadoop environment. A typical Hadoop environment will have a minimum of one EdgeNodes and more based on performance needs. III. IBM InfoSphere: It is an Apache Hadoop based solution to manage and analyze massive volumes of the structured and unstructured data. It is built on an open source Apache Hadoop with IBM big Sheet and has a variety of performance, reliability, security and administrative features. IV.Spreadsheet-Style Analysis(SSA):Web-based analysis and visualization.define and manage long running data collection jobs and analyze content of the text on the pages that have been retrieved. V.RHadoop: Statistical tools for managing big data. VI.Mahout: Data mining and machine learning tools over big data. VI. CONCLUSION The paper is a study of different applications and tools of Big Data analytics. Big Data is a very challenging and recent trend research area in the IT industry. Data is too big to process using traditional tools of data processing applications. Academia and industry has to work together to design and develop new tools and technologies which effectively handle the processing of Big Data. Big Data is an emerging trend and there is instant need of new machine learning and data mining techniques to analyze massive and complex amount of data in near future. Hadoop and Map Reduce tool for big data is described in detail focusing on the areas where it needs to be improved so that in future Big data can have technology as well as skills to work with. REFERENCES [1].Big Data for Development: Challenges and Opportunities, Global Pulse, May 2012 [2].Joseph McKendrick, Big Data, Big Challenges,Big Opportunities: 2012 IOUG Big Data Strategies Survey, IOUG, Sept [3] Kapil Bakshi, Considerations for Big Data: Architecture and Approach, IEEE, 2012 [4].Challenges and Opportunities with Big Data, [5]Big Data Survey Results, Treasure Data, 2012 [6]. MVijayalakshmi, M.Renuka Devi, A Survey of Different Issues of Different Clustering Algorithms used in Large Data Sets, International Journal of Advanced Research in Computer Science and Software Engineering, March [7].Xindong Wu, Xingquan Zhu, Gong-Qing Wu, Wei Ding, Data mining with Big Data. Copyright to IJIRCCE
6 [8]. Girola11] Girola, Michele, et al. "IBM Data Center Networking: Planning for virtualization and cloud computing." GOOGLE/IP. COM/IBM Redbooks (2011). [9]. Dittrich, Jens, and Jorge-Arnulfo Quiané-Ruiz. "Efficient big data processing in Hadoop MapReduce." Proceedings of the VLDB Endowment 5.12 (2012): [10]. Sam Madden, From Databases to Big Data, IEEE, Internet Computing,May-June [11]Big Data for Development: Challenges and Opportunities, Global Pulse, May 2012 [12]Joseph McKendrick, Big Data, Big Challenges, Big Opportunities: 2012 IOUG Big Data Strategies Survey, IOUG, Sept 2012 Copyright to IJIRCCE
Research Issues in Big Data Analytics
Abstract Recently, Big Data has attracted a lot of attention from academia, industry as well as government. It is a very challenging research area. Big Data is term defining collection of large and complex
Finding Insights & Hadoop Cluster Performance Analysis over Census Dataset Using Big-Data Analytics
Finding Insights & Hadoop Cluster Performance Analysis over Census Dataset Using Big-Data Analytics Dharmendra Agawane 1, Rohit Pawar 2, Pavankumar Purohit 3, Gangadhar Agre 4 Guide: Prof. P B Jawade 2
Chapter 7. Using Hadoop Cluster and MapReduce
Chapter 7 Using Hadoop Cluster and MapReduce Modeling and Prototyping of RMS for QoS Oriented Grid Page 152 7. Using Hadoop Cluster and MapReduce for Big Data Problems The size of the databases used in
Role of Cloud Computing in Big Data Analytics Using MapReduce Component of Hadoop
Role of Cloud Computing in Big Data Analytics Using MapReduce Component of Hadoop Kanchan A. Khedikar Department of Computer Science & Engineering Walchand Institute of Technoloy, Solapur, Maharashtra,
Volume 3, Issue 6, June 2015 International Journal of Advance Research in Computer Science and Management Studies
Volume 3, Issue 6, June 2015 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online at: www.ijarcsms.com Image
Open source Google-style large scale data analysis with Hadoop
Open source Google-style large scale data analysis with Hadoop Ioannis Konstantinou Email: [email protected] Web: http://www.cslab.ntua.gr/~ikons Computing Systems Laboratory School of Electrical
A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM
A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM Sneha D.Borkar 1, Prof.Chaitali S.Surtakar 2 Student of B.E., Information Technology, J.D.I.E.T, [email protected] Assistant Professor, Information
Analyzing Log Files to Find Hit Count Through the Utilization of Hadoop MapReduce in Cloud Computing Environmen
Analyzing Log Files to Find Hit Count Through the Utilization of Hadoop MapReduce in Cloud Computing Environmen Anil G, 1* Aditya K Naik, 1 B C Puneet, 1 Gaurav V, 1 Supreeth S 1 Abstract: Log files which
Log Mining Based on Hadoop s Map and Reduce Technique
Log Mining Based on Hadoop s Map and Reduce Technique ABSTRACT: Anuja Pandit Department of Computer Science, [email protected] Amruta Deshpande Department of Computer Science, [email protected]
Keywords: Big Data, HDFS, Map Reduce, Hadoop
Volume 5, Issue 7, July 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Configuration Tuning
International Journal of Advanced Engineering Research and Applications (IJAERA) ISSN: 2454-2377 Vol. 1, Issue 6, October 2015. Big Data and Hadoop
ISSN: 2454-2377, October 2015 Big Data and Hadoop Simmi Bagga 1 Satinder Kaur 2 1 Assistant Professor, Sant Hira Dass Kanya MahaVidyalaya, Kala Sanghian, Distt Kpt. INDIA E-mail: [email protected]
Advances in Natural and Applied Sciences
AENSI Journals Advances in Natural and Applied Sciences ISSN:1995-0772 EISSN: 1998-1090 Journal home page: www.aensiweb.com/anas Clustering Algorithm Based On Hadoop for Big Data 1 Jayalatchumy D. and
Manifest for Big Data Pig, Hive & Jaql
Manifest for Big Data Pig, Hive & Jaql Ajay Chotrani, Priyanka Punjabi, Prachi Ratnani, Rupali Hande Final Year Student, Dept. of Computer Engineering, V.E.S.I.T, Mumbai, India Faculty, Computer Engineering,
marlabs driving digital agility WHITEPAPER Big Data and Hadoop
marlabs driving digital agility WHITEPAPER Big Data and Hadoop Abstract This paper explains the significance of Hadoop, an emerging yet rapidly growing technology. The prime goal of this paper is to unveil
Keywords Big Data; OODBMS; RDBMS; hadoop; EDM; learning analytics, data abundance.
Volume 4, Issue 11, November 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Analytics
BIG DATA CHALLENGES AND PERSPECTIVES
BIG DATA CHALLENGES AND PERSPECTIVES Meenakshi Sharma 1, Keshav Kishore 2 1 Student of Master of Technology, 2 Head of Department, Department of Computer Science and Engineering, A P Goyal Shimla University,
A STUDY ON HADOOP ARCHITECTURE FOR BIG DATA ANALYTICS
A STUDY ON HADOOP ARCHITECTURE FOR BIG DATA ANALYTICS Dr. Ananthi Sheshasayee 1, J V N Lakshmi 2 1 Head Department of Computer Science & Research, Quaid-E-Millath Govt College for Women, Chennai, (India)
Big Data with Rough Set Using Map- Reduce
Big Data with Rough Set Using Map- Reduce Mr.G.Lenin 1, Mr. A. Raj Ganesh 2, Mr. S. Vanarasan 3 Assistant Professor, Department of CSE, Podhigai College of Engineering & Technology, Tirupattur, Tamilnadu,
Indian Journal of Science The International Journal for Science ISSN 2319 7730 EISSN 2319 7749 2016 Discovery Publication. All Rights Reserved
Indian Journal of Science The International Journal for Science ISSN 2319 7730 EISSN 2319 7749 2016 Discovery Publication. All Rights Reserved Perspective Big Data Framework for Healthcare using Hadoop
BIG DATA ANALYSIS USING RHADOOP
BIG DATA ANALYSIS USING RHADOOP HARISH D * ANUSHA M.S Dr. DAYA SAGAR K.V ECM & KLUNIVERSITY ECM & KLUNIVERSITY ECM & KLUNIVERSITY Abstract In this electronic age, increasing number of organizations are
BIG DATA-AS-A-SERVICE
White Paper BIG DATA-AS-A-SERVICE What Big Data is about What service providers can do with Big Data What EMC can do to help EMC Solutions Group Abstract This white paper looks at what service providers
Survey on Scheduling Algorithm in MapReduce Framework
Survey on Scheduling Algorithm in MapReduce Framework Pravin P. Nimbalkar 1, Devendra P.Gadekar 2 1,2 Department of Computer Engineering, JSPM s Imperial College of Engineering and Research, Pune, India
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK A REVIEW ON HIGH PERFORMANCE DATA STORAGE ARCHITECTURE OF BIGDATA USING HDFS MS.
Maximizing Hadoop Performance and Storage Capacity with AltraHD TM
Maximizing Hadoop Performance and Storage Capacity with AltraHD TM Executive Summary The explosion of internet data, driven in large part by the growth of more and more powerful mobile devices, has created
UNDERSTANDING THE BIG DATA PROBLEMS AND THEIR SOLUTIONS USING HADOOP AND MAP-REDUCE
UNDERSTANDING THE BIG DATA PROBLEMS AND THEIR SOLUTIONS USING HADOOP AND MAP-REDUCE Mr. Swapnil A. Kale 1, Prof. Sangram S.Dandge 2 1 ME (CSE), First Year, Department of CSE, Prof. Ram Meghe Institute
NoSQL and Hadoop Technologies On Oracle Cloud
NoSQL and Hadoop Technologies On Oracle Cloud Vatika Sharma 1, Meenu Dave 2 1 M.Tech. Scholar, Department of CSE, Jagan Nath University, Jaipur, India 2 Assistant Professor, Department of CSE, Jagan Nath
White Paper. Big Data and Hadoop. Abhishek S, Java COE. Cloud Computing Mobile DW-BI-Analytics Microsoft Oracle ERP Java SAP ERP
White Paper Big Data and Hadoop Abhishek S, Java COE www.marlabs.com Cloud Computing Mobile DW-BI-Analytics Microsoft Oracle ERP Java SAP ERP Table of contents Abstract.. 1 Introduction. 2 What is Big
Keywords Big Data, NoSQL, Relational Databases, Decision Making using Big Data, Hadoop
Volume 4, Issue 1, January 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Transitioning
How To Handle Big Data With A Data Scientist
III Big Data Technologies Today, new technologies make it possible to realize value from Big Data. Big data technologies can replace highly customized, expensive legacy systems with a standard solution
Big Data With Hadoop
With Saurabh Singh [email protected] The Ohio State University February 11, 2016 Overview 1 2 3 Requirements Ecosystem Resilient Distributed Datasets (RDDs) Example Code vs Mapreduce 4 5 Source: [Tutorials
Efficient Analysis of Big Data Using Map Reduce Framework
Efficient Analysis of Big Data Using Map Reduce Framework Dr. Siddaraju 1, Sowmya C L 2, Rashmi K 3, Rahul M 4 1 Professor & Head of Department of Computer Science & Engineering, 2,3,4 Assistant Professor,
Suresh Lakavath csir urdip Pune, India [email protected].
A Big Data Hadoop Architecture for Online Analysis. Suresh Lakavath csir urdip Pune, India [email protected]. Ramlal Naik L Acme Tele Power LTD Haryana, India [email protected]. Abstract Big Data
OnX Big Data Reference Architecture
OnX Big Data Reference Architecture Knowledge is Power when it comes to Business Strategy The business landscape of decision-making is converging during a period in which: > Data is considered by most
International Journal of Engineering Research ISSN: 2348-4039 & Management Technology November-2015 Volume 2, Issue-6
International Journal of Engineering Research ISSN: 2348-4039 & Management Technology Email: [email protected] November-2015 Volume 2, Issue-6 www.ijermt.org Modeling Big Data Characteristics for Discovering
Associate Professor, Department of CSE, Shri Vishnu Engineering College for Women, Andhra Pradesh, India 2
Volume 6, Issue 3, March 2016 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Special Issue
Lecture 32 Big Data. 1. Big Data problem 2. Why the excitement about big data 3. What is MapReduce 4. What is Hadoop 5. Get started with Hadoop
Lecture 32 Big Data 1. Big Data problem 2. Why the excitement about big data 3. What is MapReduce 4. What is Hadoop 5. Get started with Hadoop 1 2 Big Data Problems Data explosion Data from users on social
Big Application Execution on Cloud using Hadoop Distributed File System
Big Application Execution on Cloud using Hadoop Distributed File System Ashkan Vates*, Upendra, Muwafaq Rahi Ali RPIIT Campus, Bastara Karnal, Haryana, India ---------------------------------------------------------------------***---------------------------------------------------------------------
Research on Clustering Analysis of Big Data Yuan Yuanming 1, 2, a, Wu Chanle 1, 2
Advanced Engineering Forum Vols. 6-7 (2012) pp 82-87 Online: 2012-09-26 (2012) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/aef.6-7.82 Research on Clustering Analysis of Big Data
Hadoop. http://hadoop.apache.org/ Sunday, November 25, 12
Hadoop http://hadoop.apache.org/ What Is Apache Hadoop? The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using
ESS event: Big Data in Official Statistics. Antonino Virgillito, Istat
ESS event: Big Data in Official Statistics Antonino Virgillito, Istat v erbi v is 1 About me Head of Unit Web and BI Technologies, IT Directorate of Istat Project manager and technical coordinator of Web
Managing Cloud Server with Big Data for Small, Medium Enterprises: Issues and Challenges
Managing Cloud Server with Big Data for Small, Medium Enterprises: Issues and Challenges Prerita Gupta Research Scholar, DAV College, Chandigarh Dr. Harmunish Taneja Department of Computer Science and
Getting Started with Hadoop. Raanan Dagan Paul Tibaldi
Getting Started with Hadoop Raanan Dagan Paul Tibaldi What is Apache Hadoop? Hadoop is a platform for data storage and processing that is Scalable Fault tolerant Open source CORE HADOOP COMPONENTS Hadoop
Hadoop Architecture. Part 1
Hadoop Architecture Part 1 Node, Rack and Cluster: A node is simply a computer, typically non-enterprise, commodity hardware for nodes that contain data. Consider we have Node 1.Then we can add more nodes,
Big Data - Infrastructure Considerations
April 2014, HAPPIEST MINDS TECHNOLOGIES Big Data - Infrastructure Considerations Author Anand Veeramani / Deepak Shivamurthy SHARING. MINDFUL. INTEGRITY. LEARNING. EXCELLENCE. SOCIAL RESPONSIBILITY. Copyright
How to use Big Data in Industry 4.0 implementations. LAURI ILISON, PhD Head of Big Data and Machine Learning
How to use Big Data in Industry 4.0 implementations LAURI ILISON, PhD Head of Big Data and Machine Learning Big Data definition? Big Data is about structured vs unstructured data Big Data is about Volume
Hadoop: A Framework for Data- Intensive Distributed Computing. CS561-Spring 2012 WPI, Mohamed Y. Eltabakh
1 Hadoop: A Framework for Data- Intensive Distributed Computing CS561-Spring 2012 WPI, Mohamed Y. Eltabakh 2 What is Hadoop? Hadoop is a software framework for distributed processing of large datasets
CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop)
CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Spring 2016 MapReduce MapReduce is a programming model
Processing of Hadoop using Highly Available NameNode
Processing of Hadoop using Highly Available NameNode 1 Akash Deshpande, 2 Shrikant Badwaik, 3 Sailee Nalawade, 4 Anjali Bote, 5 Prof. S. P. Kosbatwar Department of computer Engineering Smt. Kashibai Navale
International Journal of Advancements in Research & Technology, Volume 3, Issue 5, May-2014 18 ISSN 2278-7763. BIG DATA: A New Technology
International Journal of Advancements in Research & Technology, Volume 3, Issue 5, May-2014 18 BIG DATA: A New Technology Farah DeebaHasan Student, M.Tech.(IT) Anshul Kumar Sharma Student, M.Tech.(IT)
Introduction to Hadoop HDFS and Ecosystems. Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data
Introduction to Hadoop HDFS and Ecosystems ANSHUL MITTAL Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data Topics The goal of this presentation is to give
Data Refinery with Big Data Aspects
International Journal of Information and Computation Technology. ISSN 0974-2239 Volume 3, Number 7 (2013), pp. 655-662 International Research Publications House http://www. irphouse.com /ijict.htm Data
Big Data: Issues, Challenges, Tools and Good Practices
Big Data: Issues, Challenges, Tools and Good Practices Avita Katal Mohammad Wazid R H Goudar Department of CSE Department of CSE Department of CSE Graphic Era University Graphic Era University Graphic
http://www.paper.edu.cn
5 10 15 20 25 30 35 A platform for massive railway information data storage # SHAN Xu 1, WANG Genying 1, LIU Lin 2** (1. Key Laboratory of Communication and Information Systems, Beijing Municipal Commission
Mining of Web Server Logs in a Distributed Cluster Using Big Data Technologies
Mining of Web Server Logs in a Distributed Cluster Using Big Data Technologies Savitha K Dept. of Computer Science, Research Scholar PSGR Krishnammal College for Women Coimbatore, India. Vijaya MS Dept.
CSE-E5430 Scalable Cloud Computing Lecture 2
CSE-E5430 Scalable Cloud Computing Lecture 2 Keijo Heljanko Department of Computer Science School of Science Aalto University [email protected] 14.9-2015 1/36 Google MapReduce A scalable batch processing
Hadoop Big Data for Processing Data and Performing Workload
Hadoop Big Data for Processing Data and Performing Workload Girish T B 1, Shadik Mohammed Ghouse 2, Dr. B. R. Prasad Babu 3 1 M Tech Student, 2 Assosiate professor, 3 Professor & Head (PG), of Computer
International Journal of Advance Research in Computer Science and Management Studies
Volume 2, Issue 8, August 2014 ISSN: 2321 7782 (Online) International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online
A Brief Outline on Bigdata Hadoop
A Brief Outline on Bigdata Hadoop Twinkle Gupta 1, Shruti Dixit 2 RGPV, Department of Computer Science and Engineering, Acropolis Institute of Technology and Research, Indore, India Abstract- Bigdata is
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK A COMPREHENSIVE VIEW OF HADOOP ER. AMRINDER KAUR Assistant Professor, Department
Detection of Distributed Denial of Service Attack with Hadoop on Live Network
Detection of Distributed Denial of Service Attack with Hadoop on Live Network Suchita Korad 1, Shubhada Kadam 2, Prajakta Deore 3, Madhuri Jadhav 4, Prof.Rahul Patil 5 Students, Dept. of Computer, PCCOE,
Apache Hadoop new way for the company to store and analyze big data
Apache Hadoop new way for the company to store and analyze big data Reyna Ulaque Software Engineer Agenda What is Big Data? What is Hadoop? Who uses Hadoop? Hadoop Architecture Hadoop Distributed File
R.K.Uskenbayeva 1, А.А. Kuandykov 2, Zh.B.Kalpeyeva 3, D.K.Kozhamzharova 4, N.K.Mukhazhanov 5
Distributed data processing in heterogeneous cloud environments R.K.Uskenbayeva 1, А.А. Kuandykov 2, Zh.B.Kalpeyeva 3, D.K.Kozhamzharova 4, N.K.Mukhazhanov 5 1 [email protected], 2 [email protected],
A Database Hadoop Hybrid Approach of Big Data
A Database Hadoop Hybrid Approach of Big Data Rupali Y. Behare #1, Prof. S.S.Dandge #2 M.E. (Student), Department of CSE, Department, PRMIT&R, Badnera, SGB Amravati University, India 1. Assistant Professor,
ISSN: 2320-1363 CONTEXTUAL ADVERTISEMENT MINING BASED ON BIG DATA ANALYTICS
CONTEXTUAL ADVERTISEMENT MINING BASED ON BIG DATA ANALYTICS A.Divya *1, A.M.Saravanan *2, I. Anette Regina *3 MPhil, Research Scholar, Muthurangam Govt. Arts College, Vellore, Tamilnadu, India Assistant
Big Data on Cloud Computing- Security Issues
Big Data on Cloud Computing- Security Issues K Subashini, K Srivaishnavi UG Student, Department of CSE, University College of Engineering, Kanchipuram, Tamilnadu, India ABSTRACT: Cloud computing is now
Big Data on Microsoft Platform
Big Data on Microsoft Platform Prepared by GJ Srinivas Corporate TEG - Microsoft Page 1 Contents 1. What is Big Data?...3 2. Characteristics of Big Data...3 3. Enter Hadoop...3 4. Microsoft Big Data Solutions...4
An Oracle White Paper November 2010. Leveraging Massively Parallel Processing in an Oracle Environment for Big Data Analytics
An Oracle White Paper November 2010 Leveraging Massively Parallel Processing in an Oracle Environment for Big Data Analytics 1 Introduction New applications such as web searches, recommendation engines,
Large-Scale Data Sets Clustering Based on MapReduce and Hadoop
Journal of Computational Information Systems 7: 16 (2011) 5956-5963 Available at http://www.jofcis.com Large-Scale Data Sets Clustering Based on MapReduce and Hadoop Ping ZHOU, Jingsheng LEI, Wenjun YE
Data Mining in the Swamp
WHITE PAPER Page 1 of 8 Data Mining in the Swamp Taming Unruly Data with Cloud Computing By John Brothers Business Intelligence is all about making better decisions from the data you have. However, all
Hadoop Technology for Flow Analysis of the Internet Traffic
Hadoop Technology for Flow Analysis of the Internet Traffic Rakshitha Kiran P PG Scholar, Dept. of C.S, Shree Devi Institute of Technology, Mangalore, Karnataka, India ABSTRACT: Flow analysis of the internet
Hadoop Submitted in partial fulfillment of the requirement for the award of degree of Bachelor of Technology in Computer Science
A Seminar report On Hadoop Submitted in partial fulfillment of the requirement for the award of degree of Bachelor of Technology in Computer Science SUBMITTED TO: www.studymafia.org SUBMITTED BY: www.studymafia.org
Open source large scale distributed data management with Google s MapReduce and Bigtable
Open source large scale distributed data management with Google s MapReduce and Bigtable Ioannis Konstantinou Email: [email protected] Web: http://www.cslab.ntua.gr/~ikons Computing Systems Laboratory
Distributed Framework for Data Mining As a Service on Private Cloud
RESEARCH ARTICLE OPEN ACCESS Distributed Framework for Data Mining As a Service on Private Cloud Shraddha Masih *, Sanjay Tanwani** *Research Scholar & Associate Professor, School of Computer Science &
DATA MINING WITH HADOOP AND HIVE Introduction to Architecture
DATA MINING WITH HADOOP AND HIVE Introduction to Architecture Dr. Wlodek Zadrozny (Most slides come from Prof. Akella s class in 2014) 2015-2025. Reproduction or usage prohibited without permission of
L1: Introduction to Hadoop
L1: Introduction to Hadoop Feng Li [email protected] School of Statistics and Mathematics Central University of Finance and Economics Revision: December 1, 2014 Today we are going to learn... 1 General
Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware
Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware Created by Doug Cutting and Mike Carafella in 2005. Cutting named the program after
IMPROVED FAIR SCHEDULING ALGORITHM FOR TASKTRACKER IN HADOOP MAP-REDUCE
IMPROVED FAIR SCHEDULING ALGORITHM FOR TASKTRACKER IN HADOOP MAP-REDUCE Mr. Santhosh S 1, Mr. Hemanth Kumar G 2 1 PG Scholor, 2 Asst. Professor, Dept. Of Computer Science & Engg, NMAMIT, (India) ABSTRACT
Outline. High Performance Computing (HPC) Big Data meets HPC. Case Studies: Some facts about Big Data Technologies HPC and Big Data converging
Outline High Performance Computing (HPC) Towards exascale computing: a brief history Challenges in the exascale era Big Data meets HPC Some facts about Big Data Technologies HPC and Big Data converging
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK A REVIEW ON BIG DATA MANAGEMENT AND ITS SECURITY PRUTHVIKA S. KADU 1, DR. H. R.
A Multilevel Secure MapReduce Framework for Cross-Domain Information Sharing in the Cloud
A Multilevel Secure MapReduce Framework for Cross-Domain Information Sharing in the Cloud Thuy D. Nguyen, Cynthia E. Irvine, Jean Khosalim Department of Computer Science Ground System Architectures Workshop
Welcome to the unit of Hadoop Fundamentals on Hadoop architecture. I will begin with a terminology review and then cover the major components
Welcome to the unit of Hadoop Fundamentals on Hadoop architecture. I will begin with a terminology review and then cover the major components of Hadoop. We will see what types of nodes can exist in a Hadoop
Data Solutions with Hadoop
Data Solutions with Hadoop Reducing Costs using Open Source Software Aaryan Gupta Darshil Shah Mark Williams Contact: Aaryan Gupta [email protected] Darshil Shah [email protected] Mark Williams [email protected]
Problem Solving Hands-on Labware for Teaching Big Data Cybersecurity Analysis
, 22-24 October, 2014, San Francisco, USA Problem Solving Hands-on Labware for Teaching Big Data Cybersecurity Analysis Teng Zhao, Kai Qian, Dan Lo, Minzhe Guo, Prabir Bhattacharya, Wei Chen, and Ying
International Journal of Advancements in Research & Technology, Volume 3, Issue 2, February-2014 10 ISSN 2278-7763
International Journal of Advancements in Research & Technology, Volume 3, Issue 2, February-2014 10 A Discussion on Testing Hadoop Applications Sevuga Perumal Chidambaram ABSTRACT The purpose of analysing
Hadoop Operations Management for Big Data Clusters in Telecommunication Industry
Hadoop Operations Management for Big Data Clusters in Telecommunication Industry N. Kamalraj Asst. Prof., Department of Computer Technology Dr. SNS Rajalakshmi College of Arts and Science Coimbatore-49
Survey on Load Rebalancing for Distributed File System in Cloud
Survey on Load Rebalancing for Distributed File System in Cloud Prof. Pranalini S. Ketkar Ankita Bhimrao Patkure IT Department, DCOER, PG Scholar, Computer Department DCOER, Pune University Pune university
Volume 3, Issue 8, August 2015 International Journal of Advance Research in Computer Science and Management Studies
Volume 3, Issue 8, August 2015 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online at: www.ijarcsms.com An
Application Development. A Paradigm Shift
Application Development for the Cloud: A Paradigm Shift Ramesh Rangachar Intelsat t 2012 by Intelsat. t Published by The Aerospace Corporation with permission. New 2007 Template - 1 Motivation for the
Big Data and Hadoop. Sreedhar C, Dr. D. Kavitha, K. Asha Rani
Big Data and Hadoop Sreedhar C, Dr. D. Kavitha, K. Asha Rani Abstract Big data has become a buzzword in the recent years. Big data is used to describe a massive volume of both structured and unstructured
Cloud Computing based on the Hadoop Platform
Cloud Computing based on the Hadoop Platform Harshita Pandey 1 UG, Department of Information Technology RKGITW, Ghaziabad ABSTRACT In the recent years,cloud computing has come forth as the new IT paradigm.
Keywords: Big Data, Hadoop, cluster, heterogeneous, HDFS, MapReduce
Volume 5, Issue 9, September 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com A Study of
Enhancing MapReduce Functionality for Optimizing Workloads on Data Centers
Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 2, Issue. 10, October 2013,
Implement Hadoop jobs to extract business value from large and varied data sets
Hadoop Development for Big Data Solutions: Hands-On You Will Learn How To: Implement Hadoop jobs to extract business value from large and varied data sets Write, customize and deploy MapReduce jobs to
Parallel Data Mining and Assurance Service Model Using Hadoop in Cloud
Parallel Data Mining and Assurance Service Model Using Hadoop in Cloud Aditya Jadhav, Mahesh Kukreja E-mail: [email protected] & [email protected] Abstract : In the information industry,
Hadoop MapReduce and Spark. Giorgio Pedrazzi, CINECA-SCAI School of Data Analytics and Visualisation Milan, 10/06/2015
Hadoop MapReduce and Spark Giorgio Pedrazzi, CINECA-SCAI School of Data Analytics and Visualisation Milan, 10/06/2015 Outline Hadoop Hadoop Import data on Hadoop Spark Spark features Scala MLlib MLlib
