Introduction to the Mathematics of Big Data. Philippe B. Laval
|
|
|
- Michael Skinner
- 10 years ago
- Views:
Transcription
1 Introduction to the Mathematics of Big Data Philippe B. Laval Fall 2015
2 Introduction In recent years, Big Data has become more than just a buzz word. Every major field of science, engineering, business, and finance produces huge amount of data [4]. This data, has to be generated, acquired, stored, then repeatedly processed and analyzed. Because Big Data has affected so many disciplines, some even talk about the Big Data revolution. In fact, Big Data is mentioned not only in books, but also in various magazines [2], [3], [5], [6], [7], and [8]. But what is Big Data and how big is Big Data? This class will give a short overview of Big Data, will discuss the issues associated with Big Data, and will provide some answers. Big Data is a new area which covers many disciplines and technologies. This class will focus on scientific data and on the mathematical techniques used to address some of the issues which arise with Big Data. The computer science and statistical techniques used to address the same issues are equally important but will not be addressed in this class. vii
3 Part I Basic Concepts 1
4 Chapter 1 Mathematics and Big Data 1.1 Definitions and Overview of the Issues with Big Data What is Big Data? Big Data is still a new area, evolving quickly. Many of the definitions and techniques are still evolving rapidly and are therefore not formal. As of the writing of these notes, here is how big data is defined. Definition Big Data refers to a data set that is so large and/or complex that it cannot be perceived, acquired, managed, and processed by traditional Information Technology (IT) and software/hardware tools within a tolerable time [1]. Of course, this definition is not absolute. As technology improves, the amount of data that can be processed within a tolerable time also increases. With this definition, Big Data, ten years ago, would have been much smaller than today. In addition, the notion of tolerable time is also relative. Medical doctors are known to be impatient; they do not want to have to wait a lot between the time an image is captured and the time it is available for them to analyze. In contrast, scientists studying outer space wait years before receiving images taken and sent by some probe. Big Data can be characterized by the three V s. 1. Volume: refers to the huge volume of data that is generated and has to be stored and analyzed. 2. Variety: refers to the different types of data (text, images, sound). Data can also be structured or unstructured. The complexity of the data can also drastically change. 3. Velocity: refers to the fact that more and more data is being generated at a faster and faster pace. 3
5 4 CHAPTER 1. MATHEMATICS AND BIG DATA Some researchers have now started to add a fourth V, Value. It refers to the value that could be saved if Big Data techniques were creatively and effectively used to improve effi ciency and quality. Big Data has given rise to several new and related technologies. These would be studied in a class approaching this subject from the computer science point of view. These related technologies include: 1. Cloud computing. 2. Internet of Things (IoT). 3. Data Centers. 4. Hadoop How Big is Big Data? The smallest unit of measurement for data is a bit (b). A bit can be either 0 or 1 and is therefore not large enough to hold any data. A byte (B), which is 8 bits, is used as the fundamental unit of measurement for data. A byte can hold 2 8 = 256 different values, which is enough to represent the standard ASCII characters, such as letters, numbers and some basic symbols. Following the tradition of the metric system, terms to measure large quantities of data can be formed using SI prefixes as shown in the table below. These prefixes are often used for multiple of bytes. For example, a kilobyte is 10 3 bytes since kilo means Because Big Data is so large, the prefixes used for it are not known to the public. We review them in the table below. Prefix Unit Name Symbol SI Meaning kilo kilobyte kb or KB 10 3 mega megabyte MB 10 6 = ( 10 3) 2 giga gigabyte GB 10 9 = ( 10 3) 3 tera terabyte TB = ( 10 3) 4 peta petabyte PB = ( 10 3) 5 exa exabyte EB = ( 10 3) 6 zetta zettabyte ZB = ( 10 3) 7 yotta yottabyte YB = ( 10 3) 8 It is hard to measure how big Big Data is, as the size of Big Data is constantly increasing, and increasing at a faster and faster rate. More than a specific number, what is important is an order of magnitude. Here are some figures though. The site has some figures from Below are similar but more recent figures.
6 1.1. DEFINITIONS AND OVERVIEW OF THE ISSUES WITH BIG DATA5 Every day, humanity tweets 500 million times [2]. Every day, humanity shares 70 million photos on Instagram [2]. Every day, humanity watches 4 billion videos on Facebook [2]. Every minute, we upload 300 hours of new content on YouTube [2]. A 2014 study by the market-research firm IDC estimated that the world of digital data would grow by a factor of 10 from 2013 to 2020, to 44 zettabytes [2] Issues with Big Data With new technologies, as more and more objects are connected, more and more data is being produced every day. This data has to be generated, acquired, stored, transmitted, and analyzed. There are issues to deal with at each stage of this data pipeline. Acquisition/storage: the total data generated is larger than the total storage capacity. Hence, we have to find ways to store data more effi ciently. Transmission: the increase in the generation rate of this data is far greater than the increase in communication rate. The analysis of a data set can be very complex. Even if it is feasible, it may take a long time. There are additional issues to consider. Data can be noisy, hence it has to be processed to remove as much noise as possible, without modifying the data. Data is also often unstructured. Think of the data we get from social networks. It is a mixture of text, voice, images, videos. What someone is looking for in a data set is not likely to come from a table in which data is nicely organized, as it was the case in the past. Data can also be dynamic, hence it has to be processed in real time. Mathematics plays an important role in addressing these issues, as we will see. More specifically, mathematics......allows us to formalize both the data and the problem. In other words, it allows us to transform a complex problem into a mathematical problem on which we can use all the tools mathematics has at its disposal....provides a big "chest" of tools or methodologies. Mathematics does have a very large chest of tools.
7 6 CHAPTER 1. MATHEMATICS AND BIG DATA...allows validation of the methodologies (proof of functionality). Think, for example, about a noisy image that we clean to see what it has to show us. It may be a medical image. How do we know that the procedure used to remove noise is not going to insert features which were not in the original image? Exercises 1. Write a paragraph explaining what cloud computing is and how it relates to Big Data. 2. Write a paragraph explaining what IoT is and how it relates to Big Data. 3. Write a paragraph explaining what Data Centers are and how they relate to Big Data. 4. Write a paragraph explaining what Hadoop is and how it relates to Big Data. 5. Give examples in which Big Data plays and will play an important role.
8 Bibliography [1] M. C, S. M, Y. Z, V. C. L, Big Data: Related Technologies, Challenges and Future Prospects, Springer, [2] L. G, What s this all about?, [3] F. L R. I, Google le nouvel einstein, [4] K.-C. L, H. J, L. T. Y, A. C, Big Data: Algorithms, Analytics, and Applications, CRC Press, [5] T. M P, Will our data drown us, [6] T. P, Giving your body a "check engine" light, [7] L. S, Should you get paid for your data, [8] E. S, Their prescription: Big data,
Introduction to Predictive Analytics. Dr. Ronen Meiri [email protected]
Introduction to Predictive Analytics Dr. Ronen Meiri Outline From big data to predictive analytics Predictive Analytics vs. BI Intelligent platforms What can we do with it. The modeling process. Example
Doing Multidisciplinary Research in Data Science
Doing Multidisciplinary Research in Data Science Assoc.Prof. Abzetdin ADAMOV CeDAWI - Center for Data Analytics and Web Insights Qafqaz University [email protected] http://ce.qu.edu.az/~aadamov 16 May
A Survey on Big Data Concepts and Tools
A Survey on Big Data Concepts and Tools D. Rajasekar 1, C. Dhanamani 2, S. K. Sandhya 3 1,3 PG Scholar, 2 Assistant Professor, Department of Computer Science and Engineering, Sri Krishna College of Engineering
Cloud storage Megas, Gigas and Teras
Cloud storage Megas, Gigas and Teras I think that I need cloud storage. I have photos, videos, music and documents on my computer that I can only retrieve from my computer. If my computer got struck by
The Big Deal about Big Data. Mike Skinner, CPA CISA CITP HORNE LLP
The Big Deal about Big Data Mike Skinner, CPA CISA CITP HORNE LLP Mike Skinner, CPA CISA CITP Senior Manager, IT Assurance & Risk Services HORNE LLP Focus areas: IT security & risk assessment IT governance,
Surfing the Data Tsunami: A New Paradigm for Big Data Processing and Analytics
Surfing the Data Tsunami: A New Paradigm for Big Data Processing and Analytics Dr. Liangxiu Han Future Networks and Distributed Systems Group (FUNDS) School of Computing, Mathematics and Digital Technology,
SECURITY MEETS BIG DATA. Achieve Effectiveness And Efficiency. Copyright 2012 EMC Corporation. All rights reserved.
SECURITY MEETS BIG DATA Achieve Effectiveness And Efficiency 1 IN 2010 THE DIGITAL UNIVERSE WAS 1.2 ZETTABYTES 1,000,000,000,000,000,000,000 Zetta Exa Peta Tera Giga Mega Kilo Byte Source: 2010 IDC Digital
So Just What Is Big Data? James E. Tcheng, MD, FACC, FSCAI
So Just What Is Big Data? James E. Tcheng, MD, FACC, FSCAI Disclosures James E. Tcheng, MD, FACC, FSCAI Affiliations / Financial Relationships / Other RWI ACC Chair, Informatics and Health IT Task Force
Applications for Business Intelligence, Predictive Analytics and Big Data
Finance, Management, & Operations Applications for Business Intelligence, Predictive Analytics and Big Data Patrick Bogan, Chief Information Officer, Fuzion Analytics Kyle Korzenowski, Chief Information
BIG DATA: ARE YOU READY? Andy Kyiet Demand Flow Intelligence May, 2013
BIG DATA: ARE YOU READY? Andy Kyiet Demand Flow Intelligence May, 2013 PERSONAL BACKGROUND Founder of the first specialist Service Management & Helpdesk System provider in Europe Past President of AFSMI
Definition of Computers. INTRODUCTION to COMPUTERS. Historical Development ENIAC
Definition of Computers INTRODUCTION to COMPUTERS Bülent Ecevit University Department of Environmental Engineering A general-purpose machine that processes data according to a set of instructions that
Computer Logic (2.2.3)
Computer Logic (2.2.3) Distinction between analogue and discrete processes and quantities. Conversion of analogue quantities to digital form. Using sampling techniques, use of 2-state electronic devices
Big Data: Study in Structured and Unstructured Data
Big Data: Study in Structured and Unstructured Data Motashim Rasool 1, Wasim Khan 2 [email protected], [email protected] Abstract With the overlay of digital world, Information is available
Two Recent LE Use Cases
Two Recent LE Use Cases Case Study I Have A Bomb On This Plane (Miami Airport) In January 2012, an airline passenger tweeted she had a bomb on a Jet Blue commercial aircraft at the Miami International
Age of Big data. Presented by: Mohammad Iqbal BCM -2014
Age of Presented by: Mohammad Iqbal BCM -2014 Agenda Big? Big evolution from Big? Name Symbol Value Kilobyte KB 10^3 BIG DATA Megabyte MB 10^6 Gigabyte GB 10^9 Terabyte TB 10^12 Petabyte PB 10^15 So large
SCALABLE FILE SHARING AND DATA MANAGEMENT FOR INTERNET OF THINGS
Sean Lee Solution Architect, SDI, IBM Systems SCALABLE FILE SHARING AND DATA MANAGEMENT FOR INTERNET OF THINGS Agenda Converging Technology Forces New Generation Applications Data Management Challenges
HP Vertica at MIT Sloan Sports Analytics Conference March 1, 2013 Will Cairns, Senior Data Scientist, HP Vertica
HP Vertica at MIT Sloan Sports Analytics Conference March 1, 2013 Will Cairns, Senior Data Scientist, HP Vertica So What s the market s definition of Big Data? Datasets whose volume, velocity, variety
Architecting for Big Data Analytics and Beyond: A New Framework for Business Intelligence and Data Warehousing
Architecting for Big Data Analytics and Beyond: A New Framework for Business Intelligence and Data Warehousing Wayne W. Eckerson Director of Research, TechTarget Founder, BI Leadership Forum Business Analytics
Algorithms and Methods for Distributed Storage Networks 7 File Systems Christian Schindelhauer
Algorithms and Methods for Distributed Storage Networks 7 File Systems Institut für Informatik Wintersemester 2007/08 Literature Storage Virtualization, Technologies for Simplifying Data Storage and Management,
Majed Al-Ghandour, PhD, PE, CPM Division of Planning and Programming NCDOT 2016 NCAMPO Conference- Greensboro, NC May 12, 2016
Big Data! Majed Al-Ghandour, PhD, PE, CPM Division of Planning and Programming NCDOT 2016 NCAMPO Conference- Greensboro, NC May 12, 2016 Big Data: Data Analytical Tools for Decision Support 2 Outline Introduce
Introducing Big Data. Abstract. with Small Changes. Agenda. Big Data in the News. Bits and Bytes
Introducing Big Data in Stat 101 with Small Changes 17 Nov 2013 Introducing Big Data in Stat 101 with Small Changes John D. McKenzie, Jr. Babson College Babson Park, MA 02457 0310 [email protected] DSI
Analytical Tools: What Auditors Need to Know About Big Data
Analytical Tools: What Auditors Need to Know About Big Data Timothy M. Persons, Ph.D. Chief Scientist U.S. Government Accountability Office [email protected] / www.gao.gov / @GAOChfScientist Presentation
Digital Earth: Big Data, Heritage and Social Science
Digital Earth: Big Data, Heritage and Social Science The impact on geographic information and GIS Geographic Information Systems Analysis for Decision Support Impact of Big Data Digital Earth Citizen Engagement
Big Data: Public Sector Opportunities, Challenges, and Implications
Big Data: Public Sector Opportunities, Challenges, and Implications Timothy M. Persons, Ph.D. Chief Scientist U.S. Government Accountability Office [email protected] / www.gao.gov / @GAOChfScientist Presentation
Big data and its transformational effects
Big data and its transformational effects Professor Fai Cheng Head of Research & Technology September 2015 Working together for a safer world Topics Lloyd s Register Big Data Data driven world Data driven
BIG DATA CHALLENGES AND PERSPECTIVES
BIG DATA CHALLENGES AND PERSPECTIVES Meenakshi Sharma 1, Keshav Kishore 2 1 Student of Master of Technology, 2 Head of Department, Department of Computer Science and Engineering, A P Goyal Shimla University,
CAP4773/CIS6930 Projects in Data Science, Fall 2014 [Review] Overview of Data Science
CAP4773/CIS6930 Projects in Data Science, Fall 2014 [Review] Overview of Data Science Dr. Daisy Zhe Wang CISE Department University of Florida August 25th 2014 20 Review Overview of Data Science Why Data
Big Data Streams. Analytics Challenges, Analysis, and Applications. Adel M. Alimi
Big Data Streams 1 Analytics Challenges, Analysis, and Applications Adel M. Alimi REGIM-Lab., University of Sfax, Tunisia http://adel.alimi.regim.org [email protected] 2 Evolution of Technology 3 Nano,
Problems to store, transfer and process the Big Data 6/2/2016 GIANG TRAN - [email protected] 1
Problems to store, transfer and process the Big Data COURSE: COMPUTING CLUSTERS, GRIDS, AND CLOUDS LECTURER: ANDREY SHEVEL ITMO UNIVERSITY SAINT PETERSBURG 6/2/2016 GIANG TRAN - [email protected]
Oracle Big Data for Dummies
Oracle Big Data for Dummies Sai Janakiram Penumuru WW Product Expert Cloud Platforms The Father of Microbiology First Microbiologist Antonie Philips van Leeuwenhoek 2 Sai Janakiram Penumuru o o o o o o
UNDERSTANDING THE BIG DATA PROBLEMS AND THEIR SOLUTIONS USING HADOOP AND MAP-REDUCE
UNDERSTANDING THE BIG DATA PROBLEMS AND THEIR SOLUTIONS USING HADOOP AND MAP-REDUCE Mr. Swapnil A. Kale 1, Prof. Sangram S.Dandge 2 1 ME (CSE), First Year, Department of CSE, Prof. Ram Meghe Institute
Data Centric Computing Revisited
Piyush Chaudhary Technical Computing Solutions Data Centric Computing Revisited SPXXL/SCICOMP Summer 2013 Bottom line: It is a time of Powerful Information Data volume is on the rise Dimensions of data
Introduction to Computer & Information Systems
Introduction to Computer & Information Systems Binnur Kurt [email protected] Istanbul Technical University Computer Engineering Department Copyleft 2005 1 Version 0.1 About the Lecturer BSc İTÜ, Computer
Turning Big Data into Big Decisions Delivering on the High Demand for Data
Turning Big Data into Big Decisions Delivering on the High Demand for Data Michael Ho, Vice President of Professional Services Digital Government Institute s Government Big Data Conference, October 31,
What Is Big Data? Craig C. Douglas University of Wyoming
What Is Big Data? Craig C. Douglas University of Wyoming What Is Big Data?... It Depends Unit Approximately 10 n Related to Kilobyte (KB) 1,000 bytes 3 Circa 1952 computer memory 32 KB Apollo 11 computer
How To Use Big Data In Healthcare
Big data challenges hll and opportunities in healthcare: h application to detecting faint signals Dr. Greg Slabaugh City University London School of Informatics Data, data, and more data According to IBM,
CIS 4930/6930 Spring 2014 Introduction to Data Science Data Intensive Computing. University of Florida, CISE Department Prof.
CIS 4930/6930 Spring 2014 Introduction to Data Science Data Intensive Computing University of Florida, CISE Department Prof. Daisy Zhe Wang Data Science Overview Why, What, How, Who Outline Why Data Science?
Big Data Analytics: Collecting, Analyzing and Decision Making
Big Data Analytics: Collecting, Analyzing and Decision Making Defining Big Data Jennifer Jones, Senior Indirect Sales Manager, CBTS Thought Leader Definitions Oracle - Derivation of value from traditional,
Peter Rakers De Verstoring van Big Data
Peter Rakers De Verstoring van Big Data Na globalisatie en digitalisatie komt dataficatie, het continue genereren van real time gegevens. Voor veel bedrijven werkt dit fenomeen eerder verstorend. Peter
Now, Next and the Future: IT, Big Data and other Implications for RIM. Presented by Michael S. Smith / http://about.me/mikessmith
Now, Next and the Future: IT, Big Data and other Implications for RIM Agenda for This Afternoon Now: What trends are creating implications within the profession? Next: Why is IT now concerned about RIM?
Big Systems, Big Data
Big Systems, Big Data When considering Big Distributed Systems, it can be noted that a major concern is dealing with data, and in particular, Big Data Have general data issues (such as latency, availability,
CSC590: Selected Topics BIG DATA & DATA MINING. Lecture 2 Feb 12, 2014 Dr. Esam A. Alwagait
CSC590: Selected Topics BIG DATA & DATA MINING Lecture 2 Feb 12, 2014 Dr. Esam A. Alwagait Agenda Introduction What is Big Data Why Big Data? Characteristics of Big Data Applications of Big Data Problems
WHAT IS BIG DATA? David Bechtold
WHAT IS BIG DATA? David Bechtold Agenda 1. Introduction 2. What is Big Data? 3. Big Data a perspective 4. Characteristic of Big Data Three Vs 5. A Fourth V..? 6. Examples 7. How did we get here?... A historical
Gi-Joon Nam, IBM Research - Austin Sani R. Nassif, Radyalis. Opportunities in Power Distribution Network System Optimization (from EDA Perspective)
Gi-Joon Nam, IBM Research - Austin Sani R. Nassif, Radyalis Opportunities in Power Distribution Network System Optimization (from EDA Perspective) Outline! SmartGrid: What it is! Power Distribution Network
Clustering Big Data. Anil K. Jain. (with Radha Chitta and Rong Jin) Department of Computer Science Michigan State University November 29, 2012
Clustering Big Data Anil K. Jain (with Radha Chitta and Rong Jin) Department of Computer Science Michigan State University November 29, 2012 Outline Big Data How to extract information? Data clustering
Big Data Buzzwords From A to Z. By Rick Whiting, CRN 4:00 PM ET Wed. Nov. 28, 2012
Big Data Buzzwords From A to Z By Rick Whiting, CRN 4:00 PM ET Wed. Nov. 28, 2012 Big Data Buzzwords Big data is one of the, well, biggest trends in IT today, and it has spawned a whole new generation
Of all the data in recorded human history, 90 percent has been created in the last two years. - Mark van Rijmenam, Think Bigger, 2014
What is Big Data? Of all the data in recorded human history, 90 percent has been created in the last two years. - Mark van Rijmenam, Think Bigger, 2014 Data in the Twentieth Century and before In 1663,
Pervasive Location Analytics and A Billion Dollar Opportunity. Jitender Aswani, Portfolio Strategist, Business Analytics, SAP
[ Pervasive Location Analytics and A Billion Dollar Opportunity Jitender Aswani, Portfolio Strategist, Business Analytics, SAP Agenda 1. Big Data & Pervasive Nature of Location-Based Solutions 2. Location
So What s the Big Deal?
So What s the Big Deal? Presentation Agenda Introduction What is Big Data? So What is the Big Deal? Big Data Technologies Identifying Big Data Opportunities Conducting a Big Data Proof of Concept Big Data
The Next Wave of Data Management. Is Big Data The New Normal?
The Next Wave of Data Management Is Big Data The New Normal? Table of Contents Introduction 3 Separating Reality and Hype 3 Why Are Firms Making IT Investments In Big Data? 4 Trends In Data Management
What happens when Big Data and Master Data come together?
What happens when Big Data and Master Data come together? Jeremy Pritchard Master Data Management fgdd 1 What is Master Data? Master data is data that is shared by multiple computer systems. The Information
AN INTRO TO DATA MANAGEMENT
AN INTRO TO DATA MANAGEMENT HOW TO USE DATA TO SUCCEED AT YOUR JOB by: TABLE OF CONTENTS Chapter 1: The Rise of Global Data Chapter 2: Taking Advantage of Big Data Chapter 3: Data Projects from Start to
Danny Wang, Ph.D. Vice President of Business Strategy and Risk Management Republic Bank
Danny Wang, Ph.D. Vice President of Business Strategy and Risk Management Republic Bank Agenda» Overview» What is Big Data?» Accelerates advances in computer & technologies» Revolutionizes data measurement»
Chapter 1. Contrasting traditional and visual analytics approaches
Chapter 1 Understanding Big Data Analytics In This Chapter Defining Big Data Understanding Big Data Analytics Contrasting traditional and visual analytics approaches The era of Big Data is upon us. The
Architectures for massive data management
Architectures for massive data management Apache Kafka, Samza, Storm Albert Bifet [email protected] October 20, 2015 Stream Engine Motivation Digital Universe EMC Digital Universe with
Introduction to Engineering Using Robotics Experiments Lecture 17 Big Data
Introduction to Engineering Using Robotics Experiments Lecture 17 Big Data Yinong Chen 2 Big Data Big Data Technologies Cloud Computing Service and Web-Based Computing Applications Industry Control Systems
BIG DATA FUNDAMENTALS
BIG DATA FUNDAMENTALS Timeframe Minimum of 30 hours Use the concepts of volume, velocity, variety, veracity and value to define big data Learning outcomes Critically evaluate the need for big data management
Computers. Hardware. The Central Processing Unit (CPU) CMPT 125: Lecture 1: Understanding the Computer
Computers CMPT 125: Lecture 1: Understanding the Computer Tamara Smyth, [email protected] School of Computing Science, Simon Fraser University January 3, 2009 A computer performs 2 basic functions: 1.
International Journal of Advancements in Research & Technology, Volume 3, Issue 5, May-2014 18 ISSN 2278-7763. BIG DATA: A New Technology
International Journal of Advancements in Research & Technology, Volume 3, Issue 5, May-2014 18 BIG DATA: A New Technology Farah DeebaHasan Student, M.Tech.(IT) Anshul Kumar Sharma Student, M.Tech.(IT)
Outline. mass storage hash functions. logical key values nested tables. storing information between executions using DBM files
Outline 1 Files and Databases mass storage hash functions 2 Dictionaries logical key values nested tables 3 Persistent Data storing information between executions using DBM files 4 Rule Based Programming
Taming the Beast of Big Data
Taming the Beast of Big Data Jeff Zakrzewski Vice President Sogeti USA Local Touch, Global Reach 1 Agenda What is Big Data? Some Sources of Big Data Approaches to Big Data The Hadoop Buzz Vertical Perspective
Oracle Big Data for Dummies
Oracle Big Data for Dummies Sai Janakiram Penumuru WW Product Expert Cloud Platforms Hewlett-Packard, India The Father of Microbiology first microbiologist Antonie Philips van Leeuwenhoek 2 Sai Janakiram
416 Agriculture Hall Michigan State University 517-355-3776 http://support.anr.msu.edu [email protected]
416 Agriculture Hall Michigan State University 517-355-3776 http://support.anr.msu.edu [email protected] Title: ANR TS How To Efficiently Remove Items In Outlook To Free Up Space Document No. - 162 Revision
Survey of Big Data Benchmarking
Page 1 of 7 Survey of Big Data Benchmarking Kyle Cooper, [email protected] (A paper written under the guidance of Prof. Raj Jain) Download Abstract: The purpose of this paper is provide a survey of up to
Big Data System and Architecture
CHANGE, a 2012 DAC workshop 2nd International Workshop on Computing in Heterogeneous, Autonomous 'N' Goal-oriented Environments Moscone Center, San Francisco, California, June 3, 2012 Big Data System and
Hadoop Big Data for Processing Data and Performing Workload
Hadoop Big Data for Processing Data and Performing Workload Girish T B 1, Shadik Mohammed Ghouse 2, Dr. B. R. Prasad Babu 3 1 M Tech Student, 2 Assosiate professor, 3 Professor & Head (PG), of Computer
Reducer Load Balancing and Lazy Initialization in Map Reduce Environment S.Mohanapriya, P.Natesan
Reducer Load Balancing and Lazy Initialization in Map Reduce Environment S.Mohanapriya, P.Natesan Abstract Big Data is revolutionizing 21st-century with increasingly huge amounts of data to store and be
To convert an arbitrary power of 2 into its English equivalent, remember the rules of exponential arithmetic:
Binary Numbers In computer science we deal almost exclusively with binary numbers. it will be very helpful to memorize some binary constants and their decimal and English equivalents. By English equivalents
BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB
BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB Planet Size Data!? Gartner s 10 key IT trends for 2012 unstructured data will grow some 80% over the course of the next
The HP IT Transformation Story
The HP IT Transformation Story Continued consolidation and infrastructure transformation impacts to the physical data center Dave Rotheroe, October, 2015 Why do data centers exist? Business Problem Application
Modern (Computational) Approaches to Big Data Analytics. CSC 576 Computer Science, University of Rochester Instructor: Ji Liu
Modern (Computational) Approaches to Big Data Analytics CSC 576 Computer Science, University of Rochester Instructor: Ji Liu Big Data in Academy SIGKDD 2014 (program page, found 14 big data, 50+ large
Discovering Computers 2008. Chapter 7 Storage
Discovering Computers 2008 Chapter 7 Storage Chapter 7 Objectives Differentiate between storage devices and storage media Describe the characteristics of magnetic disks Describe the characteristics of
Ali Eghlima Ph.D Director of Bioinformatics. A Bioinformatics Research & Consulting Group
A Bioinformatics Research & Consulting Group Adding Omics Data to Electronic Health Record, A paradigm Shift in Big Data Modeling, Analytics and Storage management for Healthcare and Life Sciences Organizations
International Journal of Advanced Engineering Research and Applications (IJAERA) ISSN: 2454-2377 Vol. 1, Issue 6, October 2015. Big Data and Hadoop
ISSN: 2454-2377, October 2015 Big Data and Hadoop Simmi Bagga 1 Satinder Kaur 2 1 Assistant Professor, Sant Hira Dass Kanya MahaVidyalaya, Kala Sanghian, Distt Kpt. INDIA E-mail: [email protected]
Improving Data Processing Speed in Big Data Analytics Using. HDFS Method
Improving Data Processing Speed in Big Data Analytics Using HDFS Method M.R.Sundarakumar Assistant Professor, Department Of Computer Science and Engineering, R.V College of Engineering, Bangalore, India
# Not a part of 1Z0-061 or 1Z0-144 Certification test, but very important technology in BIG DATA Analysis
Section 9 : Case Study # Objectives of this Session The Motivation For Hadoop What problems exist with traditional large-scale computing systems What requirements an alternative approach should have How
Managing Cloud Server with Big Data for Small, Medium Enterprises: Issues and Challenges
Managing Cloud Server with Big Data for Small, Medium Enterprises: Issues and Challenges Prerita Gupta Research Scholar, DAV College, Chandigarh Dr. Harmunish Taneja Department of Computer Science and
DATA ANALYTICS: GO BIG OR GO HOME
SPECIAL ADVERTISING SECTION businessweek.com/adsections DATA ANALYTICS: GO BIG OR GO HOME S1 THE ERA OF BIG DATA a time when petabytes of information on consumer behavior and countless other topics fly
