Dr. Katiraie Practice Quiz 2 on Sections 3.1 and 3.2 Name: Date:
|
|
|
- Amos Matthews
- 10 years ago
- Views:
Transcription
1 Dr. Katiraie Practice Quiz 2 on Sections 3.1 and 3.2 Name: Date: 1. Suppose that a music club charges $12 per CD but offers a 5% discount on orders larger than 10 CDs. Then the cost per order is a linear function of the number of CDs ordered. 2. Suppose you wrote 250 words of a sociology paper yesterday and today began typing at a rate of 40 words per minute. Then the total number of words typed is a linear function of the number of minutes since you began typing today. 3. Below is a scatterplot and trend line showing the number of high school graduates at a local high school each year since 2003: Does the trend line appear to offer an appropriate way to analyze the data? Explain your reasoning. Page 1
2 4. Below is a scatterplot and trend line showing the number of employees at a mid-size company each year since 2005: During which years was the number of employees more than would have been expected from the linear trend? 5. Suppose for a certain site there are initially 30 parts per million of a dangerous contaminant and that a cleaning process removes 5% of the remaining contaminant each day. How much contaminant (in parts per million) is removed after three days? 6. The growth rate of the speed of sound in relation to the temperature in degrees Fahrenheit is a linear function. The speed of sound at 0 degrees Fahrenheit is feet per second. For every 1 degree Fahrenheit rise in temperature, the speed of sound increases by 1.1 feet per second. Identify the initial value of the linear function that gives the speed of sound in terms of temperature. A) ft per second B) ft per second C) ft per second D) ft per second 7. The growth rate of the speed of sound in relation to the temperature in degrees Fahrenheit is a linear function. The speed of sound at 0 degrees Fahrenheit is feet per second. For every 1 degree Fahrenheit rise in temperature, the speed of sound increases by 1.1 feet per second. A 20 degree Fahrenheit rise in temperature would provide what increase in the speed of sound? A) 20 ft per second B) 21 ft per second C) 22 ft per second D) 25 ft per second Page 2
3 8. The growth rate of the speed of sound in relation to the temperature in degrees Fahrenheit is a linear function. The speed of sound at 0 degrees Fahrenheit is feet per second. For every 1 degree Fahrenheit rise in temperature, the speed of sound increases by 1.1 feet per second. What would the speed of sound be after a 67 degree Fahrenheit rise in temperature? A) 73.7 ft per second B) ft per seond C) ft per second D) ft per second 9. On rural highways, the average speed S (in miles per hour) is related to the amount of curvature C (in degrees) of the road. Suppose that on a straight road (C = 0), the average speed is 47.5 miles per hour and that this decreases by mph for each additional degree of curvature. Find the slope of the linear function expressing S in terms of C. A) mph B) mph C) mph D) mph 10. On rural highways, the average speed S (in miles per hour) is related to the amount of curvature C (in degrees) of the road. Suppose that on a straight road (C = 0), the average speed is 47.5 miles per hour and that this decreases by mph for each additional degree of curvature. Find the formula expressing S as a linear function of C. A) S = 0.647C B) S = 47.5C C) S = 47.5C D) S = C The half-life of carbon-14 is 5770 years. Suppose we have an organic sample that is 15,000 years old. Determine what percentage of the original amount of carbon-14 remains after 15,000 years. 12. A(n) function is a function that changes at a constant percentage rate. A) logarithmic B) linear C) exponential D) increasing Page 3
4 13. The formula for an exponential function y of t is: A) y = Initial value Base B) y = Initial value Base t C) y = Base (Initial value) t D) y = Initial value + Base t 14. An exponential function y of t is characterized by the following property: When t increases by 1, to find the new value of y, we multiply the current value by. A) t + 1 B) t 1 C) the initial value D) the base 15. Typically, exponential growth starts rapidly and then increases slowly. 16. A quantity grows exponentially when it increases by a percentage over a given period. A) growing B) reducing C) constant D) linear 17. A quantity decays when it decreases by a constant percentage over a given period. A) linearly B) exponentially C) logarithmically D) evenly 18. Typically, exponential decay is rapid at first but eventually slows. Page 4
5 19. The of a radioactive substance is the time it takes for half of the substance to decay. A) doubling time B) half-life C) shelf-life D) halving time 20. Suppose Mark's salary grows by $2500 each year and Sarah's salary grows by 2.5% each year. Which one has a salary that grows exponentially? A) Mark B) Sarah C) Both D) Neither 21. Water is pumped into a tank at a rate of 12 gallons per minute. What type of function describes the amount of water in the tank? A) Linear B) Exponential C) Logarithmic D) Constant 22. An investment grows according to the rule: Next month's balance = Current balance. Find the percentage increase each month. A) 1.3% B) 0.3% C) 3.0% D) 1.003% 23. Suppose the number of internet domain hosts grew according to the rule: Next year's number = 1.47 Current number. If the number of domain hosts initially was 8.4 million, find an exponential function that gives the number of hosts, H, in terms of time, t. Page 5
6 Answer Key 1. B 2. A 3. The trend line is not an appropriate way to analyze the data because the data does not represent a linear relationship. The scatterplot indicates an inconsistent growth rate, so a linear trend line does not represent the data accurately , 2009, ppm 6. A 7. C 8. D 9. B 10. D % 12. C 13. B 14. D 15. B 16. C 17. B 18. A 19. B 20. B 21. A 22. B 23. H = 8.4 (1.47) t Page 6
Logarithmic and Exponential Equations
11.5 Logarithmic and Exponential Equations 11.5 OBJECTIVES 1. Solve a logarithmic equation 2. Solve an exponential equation 3. Solve an application involving an exponential equation Much of the importance
How To Calculate Energy In Quadrons
Problem Examples 1. Suppose the San Antonio population growth rate were 3.5%/year. What would be the doubling time for San Antonio's population? DT = 70/3.5 = 20 years 2. There are 1.2 million people in
4.1 INTRODUCTION TO THE FAMILY OF EXPONENTIAL FUNCTIONS
Functions Modeling Change: A Preparation for Calculus, 4th Edition, 2011, Connally 4.1 INTRODUCTION TO THE FAMILY OF EXPONENTIAL FUNCTIONS Functions Modeling Change: A Preparation for Calculus, 4th Edition,
CHAPTER FIVE. Solutions for Section 5.1. Skill Refresher. Exercises
CHAPTER FIVE 5.1 SOLUTIONS 265 Solutions for Section 5.1 Skill Refresher S1. Since 1,000,000 = 10 6, we have x = 6. S2. Since 0.01 = 10 2, we have t = 2. S3. Since e 3 = ( e 3) 1/2 = e 3/2, we have z =
Tutorial on Using Excel Solver to Analyze Spin-Lattice Relaxation Time Data
Tutorial on Using Excel Solver to Analyze Spin-Lattice Relaxation Time Data In the measurement of the Spin-Lattice Relaxation time T 1, a 180 o pulse is followed after a delay time of t with a 90 o pulse,
8.7 Exponential Growth and Decay
Section 8.7 Exponential Growth and Decay 847 8.7 Exponential Growth and Decay Exponential Growth Models Recalling the investigations in Section 8.3, we started by developing a formula for discrete compound
Lecture 9: Lines. m = y 2 y 1 x 2 x 1
Lecture 9: Lines If we have two distinct points in the Cartesian plane, there is a unique line which passes through the two points. We can construct it by joining the points with a straight edge and extending
Differential Equations
40 CHAPTER 15 Differential Equations In many natural conditions the rate at which the amount of an object changes is directly proportional to the amount of the object itself. For example: 1) The marginal
ALGEBRA I (Common Core)
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA I (Common Core) Wednesday, August 12, 2015 8:30 to 11:30 a.m. MODEL RESPONSE SET Table of Contents Question 25...................
Algebra 2 Unit 8 (Chapter 7) CALCULATORS ARE NOT ALLOWED
Algebra Unit 8 (Chapter 7) CALCULATORS ARE NOT ALLOWED. Graph eponential functions. (Sections 7., 7.) Worksheet 6. Solve eponential growth and eponential decay problems. (Sections 7., 7.) Worksheet 8.
Solutions to Exercises, Section 4.5
Instructor s Solutions Manual, Section 4.5 Exercise 1 Solutions to Exercises, Section 4.5 1. How much would an initial amount of $2000, compounded continuously at 6% annual interest, become after 25 years?
Section 4-7 Exponential and Logarithmic Equations. Solving an Exponential Equation. log 2. 3 2 log 5. log 2 1.4406
314 4 INVERSE FUNCTIONS; EXPONENTIAL AND LOGARITHMIC FUNCTIONS Section 4-7 Exponential and Logarithmic Equations Exponential Equations Logarithmic Equations Change of Base Equations involving exponential
AP Physics 1 and 2 Lab Investigations
AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks
Temperature Scales. The metric system that we are now using includes a unit that is specific for the representation of measured temperatures.
Temperature Scales INTRODUCTION The metric system that we are now using includes a unit that is specific for the representation of measured temperatures. The unit of temperature in the metric system is
COMPETENCY TEST SAMPLE TEST. A scientific, non-graphing calculator is required for this test. C = pd or. A = pr 2. A = 1 2 bh
BASIC MATHEMATICS COMPETENCY TEST SAMPLE TEST 2004 A scientific, non-graphing calculator is required for this test. The following formulas may be used on this test: Circumference of a circle: C = pd or
Functions Modeling Change: A Precalculus Course. Marcel B. Finan Arkansas Tech University c All Rights Reserved
Functions Modeling Change: A Precalculus Course Marcel B. Finan Arkansas Tech University c All Rights Reserved 1 PREFACE This supplement consists of my lectures of a freshmen-level mathematics class offered
Basic Math for the Small Public Water Systems Operator
Basic Math for the Small Public Water Systems Operator Small Public Water Systems Technology Assistance Center Penn State Harrisburg Introduction Area In this module we will learn how to calculate the
Extra Practice 5.3 3. 3. 5y3-2y2- y - y. y + 1 1. 2 - 2. 6. 14xy- 6x2 - x2-6x + 2xy _. 7. ry + xy2 = xy 8. ~---~--- Name DISTRIBUTING DIVISION
Extra Practice 5.3 DISTRIBUTING DIVISION Divide. 10x 2 + 6x + 2 1. 2-12x + 18y 2. 6 12x + 18y - 3. 3 2x + y 14xy- 6x2-4. 2x 5. x2-6x + 2xy _ X 6. 5y3-2y2- y - y 7. ry + xy2 = xy x(y + 1) + 2(y + 1) 8.
Algebra EOC Practice Test #4
Class: Date: Algebra EOC Practice Test #4 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. For f(x) = 3x + 4, find f(2) and find x such that f(x) = 17.
Algebra II New Summit School High School Diploma Program
Syllabus Course Description: Algebra II is a two semester course. Students completing this course will earn 1.0 unit upon completion. Required Materials: 1. Student Text Glencoe Algebra 2: Integration,
16 21 Linear vs. Exponential.notebook May 14, 2014. LT 1c: I can compare linear vs. exponential change.
LT 1c: I can compare linear vs. exponential change. The Situation: You have $1,000 saved. Now, you need to figure out which bank you want to invest your money in. You can choose from the following two
REVIEW SHEETS INTRODUCTORY PHYSICAL SCIENCE MATH 52
REVIEW SHEETS INTRODUCTORY PHYSICAL SCIENCE MATH 52 A Summary of Concepts Needed to be Successful in Mathematics The following sheets list the key concepts which are taught in the specified math course.
Skills Practice Skills Practice for Lesson 1.1
Skills Practice Skills Practice for Lesson. Name Date Tanks a Lot Introduction to Linear Functions Vocabular Define each term in our own words.. function A function is a relation that maps each value of
Area & Volume. 1. Surface Area to Volume Ratio
1 1. Surface Area to Volume Ratio Area & Volume For most cells, passage of all materials gases, food molecules, water, waste products, etc. in and out of the cell must occur through the plasma membrane.
Growth Models. Linear (Algebraic) Growth. Growth Models 95
Growth Models 95 Growth Models Populations of people, animals, and items are growing all around us. By understanding how things grow, we can better understand what to expect in the future. Linear (Algebraic)
Algebra 1 Advanced Mrs. Crocker. Final Exam Review Spring 2014
Name: Mod: Algebra 1 Advanced Mrs. Crocker Final Exam Review Spring 2014 The exam will cover Chapters 6 10 You must bring a pencil, calculator, eraser, and exam review flip book to your exam. You may bring
Problem Solving and Data Analysis
Chapter 20 Problem Solving and Data Analysis The Problem Solving and Data Analysis section of the SAT Math Test assesses your ability to use your math understanding and skills to solve problems set in
Summer Assignment for incoming Fairhope Middle School 7 th grade Advanced Math Students
Summer Assignment for incoming Fairhope Middle School 7 th grade Advanced Math Students Studies show that most students lose about two months of math abilities over the summer when they do not engage in
Chapter 7 Outline Math 236 Spring 2001
Chapter 7 Outline Math 236 Spring 2001 Note 1: Be sure to read the Disclaimer on Chapter Outlines! I cannot be responsible for misfortunes that may happen to you if you do not. Note 2: Section 7.9 will
One basic concept in math is that if we multiply a number by 1, the result is equal to the original number. For example,
MA 35 Lecture - Introduction to Unit Conversions Tuesday, March 24, 205. Objectives: Introduce the concept of doing algebra on units. One basic concept in math is that if we multiply a number by, the result
MATH 34A REVIEW FOR MIDTERM 2, WINTER 2012. 1. Lines. (1) Find the equation of the line passing through (2,-1) and (-2,9). y = 5
MATH 34A REVIEW FOR MIDTERM 2, WINTER 2012 ANSWERS 1. Lines (1) Find the equation of the line passing through (2,-1) and (-2,9). y = 5 2 x + 4. (2) Find the equation of the line which meets the x-axis
Midterm 2 Review Problems (the first 7 pages) Math 123-5116 Intermediate Algebra Online Spring 2013
Midterm Review Problems (the first 7 pages) Math 1-5116 Intermediate Algebra Online Spring 01 Please note that these review problems are due on the day of the midterm, Friday, April 1, 01 at 6 p.m. in
Chemical Kinetics. Reaction Rate: The change in the concentration of a reactant or a product with time (M/s). Reactant Products A B
Reaction Rates: Chemical Kinetics Reaction Rate: The change in the concentration of a reactant or a product with time (M/s). Reactant Products A B change in number of moles of B Average rate = change in
Appendix C: Conversions and Calculations
Appendix C: Conversions and Calculations Effective application of pesticides depends on many factors. One of the more important is to correctly calculate the amount of material needed. Unless you have
Section 1.4. Difference Equations
Difference Equations to Differential Equations Section 1.4 Difference Equations At this point almost all of our sequences have had explicit formulas for their terms. That is, we have looked mainly at sequences
Activity 3.2 Unit Conversion
Activity 3.2 Unit Conversion Introduction Engineers of all disciplines are constantly required to work with measurements of a variety of quantities length, area, volume, mass, force, time, temperature,
2312 test 2 Fall 2010 Form B
2312 test 2 Fall 2010 Form B 1. Write the slope-intercept form of the equation of the line through the given point perpendicular to the given lin point: ( 7, 8) line: 9x 45y = 9 2. Evaluate the function
FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA
FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA 1.1 Solve linear equations and equations that lead to linear equations. a) Solve the equation: 1 (x + 5) 4 = 1 (2x 1) 2 3 b) Solve the equation: 3x
Return on Investment (ROI)
ROI 1 Return on Investment (ROI) Prepared by Sarah Major What is ROI? Return on investment (ROI) is a measure that investigates the amount of additional profits produced due to a certain investment. Businesses
Algebra I. In this technological age, mathematics is more important than ever. When students
In this technological age, mathematics is more important than ever. When students leave school, they are more and more likely to use mathematics in their work and everyday lives operating computer equipment,
PRIMARY CONTENT MODULE Algebra I -Linear Equations & Inequalities T-71. Applications. F = mc + b.
PRIMARY CONTENT MODULE Algebra I -Linear Equations & Inequalities T-71 Applications The formula y = mx + b sometimes appears with different symbols. For example, instead of x, we could use the letter C.
c. Construct a boxplot for the data. Write a one sentence interpretation of your graph.
MBA/MIB 5315 Sample Test Problems Page 1 of 1 1. An English survey of 3000 medical records showed that smokers are more inclined to get depressed than non-smokers. Does this imply that smoking causes depression?
Relationships Between Two Variables: Scatterplots and Correlation
Relationships Between Two Variables: Scatterplots and Correlation Example: Consider the population of cars manufactured in the U.S. What is the relationship (1) between engine size and horsepower? (2)
How To Understand And Solve Algebraic Equations
College Algebra Course Text Barnett, Raymond A., Michael R. Ziegler, and Karl E. Byleen. College Algebra, 8th edition, McGraw-Hill, 2008, ISBN: 978-0-07-286738-1 Course Description This course provides
Objectives. Materials
Activity 4 Objectives Understand what a slope field represents in terms of Create a slope field for a given differential equation Materials TI-84 Plus / TI-83 Plus Graph paper Introduction One of the ways
Nonlinear Systems and the Conic Sections
C H A P T E R 11 Nonlinear Systems and the Conic Sections x y 0 40 Width of boom carpet Most intense sonic boom is between these lines t a cruising speed of 1,40 miles per hour, the Concorde can fly from
Math 120 Final Exam Practice Problems, Form: A
Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,
Mathematics Placement Examination (MPE)
Practice Problems for Mathematics Placement Eamination (MPE) Revised August, 04 When you come to New Meico State University, you may be asked to take the Mathematics Placement Eamination (MPE) Your inital
Dimensional Analysis and Exponential Models
MAT 42 College Mathematics Module XP Dimensional Analysis and Exponential Models Terri Miller revised December 3, 200. Dimensional Analysis The purpose of this section is to convert between various types
LABORATORY 7 RADIOMETRIC DATING. This laboratory is divided into 3 parts. Part 1 is to be done BEFORE you come to your weekly laboratory class.
RADIOMETRIC DATING This laboratory is divided into 3 parts. Part 1 is to be done BEFORE you come to your weekly laboratory class. Part 1, which also appears in your lab book, follows next. If there are
TI-B 103 (94) Test Method Activation Energy for the Maturity Method
Activation Energy for the Maturity Method Danish Technological Institute Building Technology Activation Energy for the Maturity Method Descriptors: Concrete, Properties, Maturity, Activation Energy PRELIMINARY
BookTOC.txt. 1. Functions, Graphs, and Models. Algebra Toolbox. Sets. The Real Numbers. Inequalities and Intervals on the Real Number Line
College Algebra in Context with Applications for the Managerial, Life, and Social Sciences, 3rd Edition Ronald J. Harshbarger, University of South Carolina - Beaufort Lisa S. Yocco, Georgia Southern University
Algebra 2. Linear Functions as Models Unit 2.5. Name:
Algebra 2 Linear Functions as Models Unit 2.5 Name: 1 2 Name: Sec 4.4 Evaluating Linear Functions FORM A FORM B y = 5x 3 f (x) = 5x 3 Find y when x = 2 Find f (2). y = 5x 3 f (x) = 5x 3 y = 5(2) 3 f (2)
Week 2: Exponential Functions
Week 2: Exponential Functions Goals: Introduce exponential functions Study the compounded interest and introduce the number e Suggested Textbook Readings: Chapter 4: 4.1, and Chapter 5: 5.1. Practice Problems:
Dimensional Analysis; Exponential and Logarithmic Growth/Decay
MAT 42 College Mathematics Module #5 Dimensional Analysis; Exponential and Logarithmic Growth/Decay Terri Miller Spring 2009 revised November 7, 2009. Dimensional Analysis The purpose of this section is
Determining the Productivity of Instructional Systems
Determining the Productivity of Instructional Systems Dr. Philip McGee, Program Coordinator of the Masters in Human Resource Development, Clemson University, South Carolina ABSTRACT The Productivity Model
9 Exponential Models CHAPTER. Chapter Outline. www.ck12.org Chapter 9. Exponential Models
www.ck12.org Chapter 9. Eponential Models CHAPTER 9 Eponential Models Chapter Outline 9.1 EXPONENTIAL GROWTH 9.2 EXPONENTIAL DECAY 9.3 REVISITING RATE OF CHANGE 9.4 A QUICK REVIEW OF LOGARITHMS 9.5 USING
The Correlation Coefficient
The Correlation Coefficient Lelys Bravo de Guenni April 22nd, 2015 Outline The Correlation coefficient Positive Correlation Negative Correlation Properties of the Correlation Coefficient Non-linear association
METRIC CONVERSION TABLE Multiply By To Obtain Millimetres 0.03937 Inches Millimetres 0.003281 Feet Metres 3.281 Feet Kilometres 0.
Linear Measure Square Measure or Area Volume or Capacity Mass Density Force* Pressure* or Stress* Temperature METRIC CONVERSION TABLE Multiply By To Obtain Millimetres 0.03937 Inches Millimetres 0.003281
Solutions of Equations in Two Variables
6.1 Solutions of Equations in Two Variables 6.1 OBJECTIVES 1. Find solutions for an equation in two variables 2. Use ordered pair notation to write solutions for equations in two variables We discussed
Systems of Linear Equations: Two Variables
OpenStax-CNX module: m49420 1 Systems of Linear Equations: Two Variables OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 In this section,
Chapter 22 The Cost of Production Extra Multiple Choice Questions for Review
Chapter 22 The Cost of Production Extra Multiple Choice Questions for Review 1. Implicit costs are: A) equal to total fixed costs. B) comprised entirely of variable costs. C) "payments" for self-employed
1. Which of the 12 parent functions we know from chapter 1 are power functions? List their equations and names.
Pre Calculus Worksheet. 1. Which of the 1 parent functions we know from chapter 1 are power functions? List their equations and names.. Analyze each power function using the terminology from lesson 1-.
1.3 Algebraic Expressions
1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,
Chapter 4: Exponential and Logarithmic Functions
Chapter 4: Eponential and Logarithmic Functions Section 4.1 Eponential Functions... 15 Section 4. Graphs of Eponential Functions... 3 Section 4.3 Logarithmic Functions... 4 Section 4.4 Logarithmic Properties...
MATD 0390 - Intermediate Algebra Review for Pretest
MATD 090 - Intermediate Algebra Review for Pretest. Evaluate: a) - b) - c) (-) d) 0. Evaluate: [ - ( - )]. Evaluate: - -(-7) + (-8). Evaluate: - - + [6 - ( - 9)]. Simplify: [x - (x - )] 6. Solve: -(x +
3 More on Accumulation and Discount Functions
3 More on Accumulation and Discount Functions 3.1 Introduction In previous section, we used 1.03) # of years as the accumulation factor. This section looks at other accumulation factors, including various
1.3 LINEAR EQUATIONS IN TWO VARIABLES. Copyright Cengage Learning. All rights reserved.
1.3 LINEAR EQUATIONS IN TWO VARIABLES Copyright Cengage Learning. All rights reserved. What You Should Learn Use slope to graph linear equations in two variables. Find the slope of a line given two points
(Exemplar) Syllabus Math 115 College Algebra
Contact Information: Instructor: Dr. Liz Brown Office: Root Hall A-144 Office Phone: (812)237-3423 email address: [email protected] Office Hours: TBA (Exemplar) Syllabus Math 115 College Algebra Required
Using simulation to calculate the NPV of a project
Using simulation to calculate the NPV of a project Marius Holtan Onward Inc. 5/31/2002 Monte Carlo simulation is fast becoming the technology of choice for evaluating and analyzing assets, be it pure financial
Final Word Problem Practice #1
Final Word Problem Practice #1 Beginning Algebra / Math 100 Fall 2013 506 (Prof. Miller) Student Name/ID: Instructor Note: Assignment: Set up a tutoring appointment with one of the campus tutors or with
How To Calculate A Balance On A Savings Account
319 CHAPTER 4 Personal Finance The following is an article from a Marlboro, Massachusetts newspaper. NEWSPAPER ARTICLE 4.1: LET S TEACH FINANCIAL LITERACY STEPHEN LEDUC WED JAN 16, 2008 Boston - Last week
CURVE FITTING LEAST SQUARES APPROXIMATION
CURVE FITTING LEAST SQUARES APPROXIMATION Data analysis and curve fitting: Imagine that we are studying a physical system involving two quantities: x and y Also suppose that we expect a linear relationship
DERIVATIVES AS MATRICES; CHAIN RULE
DERIVATIVES AS MATRICES; CHAIN RULE 1. Derivatives of Real-valued Functions Let s first consider functions f : R 2 R. Recall that if the partial derivatives of f exist at the point (x 0, y 0 ), then we
Algebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard
Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express
Section 4.5 Exponential and Logarithmic Equations
Section 4.5 Exponential and Logarithmic Equations Exponential Equations An exponential equation is one in which the variable occurs in the exponent. EXAMPLE: Solve the equation x = 7. Solution 1: We have
a. all of the above b. none of the above c. B, C, D, and F d. C, D, F e. C only f. C and F
FINAL REVIEW WORKSHEET COLLEGE ALGEBRA Chapter 1. 1. Given the following equations, which are functions? (A) y 2 = 1 x 2 (B) y = 9 (C) y = x 3 5x (D) 5x + 2y = 10 (E) y = ± 1 2x (F) y = 3 x + 5 a. all
Section 2.5 Average Rate of Change
Section.5 Average Rate of Change Suppose that the revenue realized on the sale of a company s product can be modeled by the function R( x) 600x 0.3x, where x is the number of units sold and R( x ) is given
Algebra I Vocabulary Cards
Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression
What are the place values to the left of the decimal point and their associated powers of ten?
The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything
Math 1314 Lesson 8 Business Applications: Break Even Analysis, Equilibrium Quantity/Price
Math 1314 Lesson 8 Business Applications: Break Even Analysis, Equilibrium Quantity/Price Three functions of importance in business are cost functions, revenue functions and profit functions. Cost functions
Question 2: How do you solve a matrix equation using the matrix inverse?
Question : How do you solve a matrix equation using the matrix inverse? In the previous question, we wrote systems of equations as a matrix equation AX B. In this format, the matrix A contains the coefficients
Review of Intermediate Algebra Content
Review of Intermediate Algebra Content Table of Contents Page Factoring GCF and Trinomials of the Form + b + c... Factoring Trinomials of the Form a + b + c... Factoring Perfect Square Trinomials... 6
Summer Math Exercises. For students who are entering. Pre-Calculus
Summer Math Eercises For students who are entering Pre-Calculus It has been discovered that idle students lose learning over the summer months. To help you succeed net fall and perhaps to help you learn
SPCC Plan - Calculation Guidance
SPCC Plan - Calculation Guidance The following example compares two different design criteria: one based on the volume of the tank and one based on precipitation. Scenario: A 20,000-gallon horizontal tank
Mathematics Common Core Sample Questions
New York State Testing Program Mathematics Common Core Sample Questions Grade The materials contained herein are intended for use by New York State teachers. Permission is hereby granted to teachers and
= 800 kg/m 3 (note that old units cancel out) 4.184 J 1000 g = 4184 J/kg o C
Units and Dimensions Basic properties such as length, mass, time and temperature that can be measured are called dimensions. Any quantity that can be measured has a value and a unit associated with it.
Designer: Nathan Kimball. Stage 1 Desired Results
Interpolation Subject: Science, math Grade: 6-8 Time: 4 minutes Topic: Reading Graphs Designer: Nathan Kimball Stage 1 Desired Results Lesson Overview: In this activity students work with the direct linear
Administrative - Master Syllabus COVER SHEET
Administrative - Master Syllabus COVER SHEET Purpose: It is the intention of this to provide a general description of the course, outline the required elements of the course and to lay the foundation for
Florida Algebra 1 End-of-Course Assessment Item Bank, Polk County School District
Benchmark: MA.912.A.2.3; Describe the concept of a function, use function notation, determine whether a given relation is a function, and link equations to functions. Also assesses MA.912.A.2.13; Solve
Exponential, Logistic, and Logarithmic Functions
5144_Demana_Ch03pp275-348 1/13/06 12:19 PM Page 275 CHAPTER 3 Eponential, Logistic, and Logarithmic Functions 3.1 Eponential and Logistic Functions 3.2 Eponential and Logistic Modeling 3.3 Logarithmic
1.1 Practice Worksheet
Math 1 MPS Instructor: Cheryl Jaeger Balm 1 1.1 Practice Worksheet 1. Write each English phrase as a mathematical expression. (a) Three less than twice a number (b) Four more than half of a number (c)
CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA
We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical
The human body core temperature is constant around 37.1±1.0 o C ( degree Fahrenheit = degree Celsius 1.8 + 32 )
The human body core temperature is constant around 37.1±1.0 o C ( degree Fahrenheit = degree Celsius 1.8 + 32 ) ( good to 20% over this range of T a and T skin ) 1. What is wind chill temperature?
Percent, Sales Tax, & Discounts
Percent, Sales Tax, & Discounts Many applications involving percent are based on the following formula: Note that of implies multiplication. Suppose that the local sales tax rate is 7.5% and you purchase
Secondary Mathematics I: An Integrated Approach Module 4 Linear and Exponential Functions
1 Secondary Mathematics I: An Integrated Approach Module 4 Linear and Exponential Functions By The Mathematics Vision Project: Scott Hendrickson, Joleigh Honey, Barbara Kuehl, Travis Lemon, Janet Sutorius
