A Seamless Handover Mechanism for IEEE e Broadband Wireless Access
|
|
|
- Blake Gordon
- 10 years ago
- Views:
Transcription
1 A Seamless Handover Mechanism for IEEE e Broadband Wireless Access Kyung-ah Kim 1, Chong-Kwon Kim 2, and Tongsok Kim 1 1 Marketing & Technology Lab., KT, Seoul, Republic of Korea, {kka1,tongsok}@kt.co.kr 2 School of Electrical Engineering and Computer Science, Seoul National University, Seoul, Republic of Korea [email protected] Abstract. Handover is one of the most important factors that may degrade the performance of TCP connections and real-time applications in wireless data networks. We developed a loss-free handover scheme called LPM (Last Packet Marking) for IEEE e-based broadband wireless access networks. By integrating MAC and network layer handovers efficiently, LPM minimizes the handover delay and eliminates packet losses during handover. Our performance study shows that LPM achieves loss-free packet delivery without packet duplication and increases TCP throughput significantly. 1 Introduction At present, existing WLAN has several limitations such as narrow transmission coverage and the interference problem caused by using the ISM (Industrial, Scientific, Medical) band. In order to achieve a higher date rate and wider cell range, the IEEE committee initiated a project which standardizes a WBA (Wireless Broadband Access) technologies. The project [1] first specified the MAC and physical layers of broadband fixed wireless access system over the GHz band. It provides up to several tens of Mbps by using fixed antennas and fixed (Mobile Subscriber Station) in urban and suburban areas. In addition, the IEEE a [2] modifies the MAC physical layer specifications that facilitates the non-line-of-sight communications over the 2-11 GHz. Furthermore, the baseline specification is now being amended again for mobility enhancement (60km/h) under IEEE TGe Mobile Wireless MAN [3], which also deals with transmission power control and power saving. Compared to wired transmission systems, wireless systems suffer from limited bandwidth and error-prone transmissions. In addition, packet losses and service disruptions may occur during cell HOs (Handovers) in cellular networks. For the TCP, in particular, lost packets during HO severely degrade the TCP This work was supported in part by the Brain Korea 21 Project in 2004 and grant No. (R ) from the Basic Research Program of the Korea Science & Engineering Foundation.
2 2 Kyung-ah Kim et al. performance because of the sensitivity of the TCP mechanism for packet loss. The TCP retransmits the lost packets and slows down its transmission rate. Even worse, when multiple packets are lost during one congestion window, TCP senders enter into the slow-start phase and decrease the packet sending rate severely. In this paper, we propose a seamless HO scheme called LPM (Last Packet Marking) for intra-domain mobility in IEEE e-based broadband wireless packet networks. LPM merges MAC and network layer HO procedures to reduce HO time and assures a safe HO by preparing the routing update before the real HO. This paper is structured as follows: In section 2, we briefly preview the IEEE TGe HO procedure and overview the micro-mobility protocols. In section 3, we describe a LPM method for seamless HO on IEEE e-based wireless broadband access networks. Then, we verify the LPM through computer simulations and present the conclusions in section 5. 2 Background 2.1 IEEE TGe Handover Let us explain the IEEE TGe HO procedure briefly. A BS periodically broadcasts a neighbor advertisement management message to identify the network and define the characteristics of the neighbor BS to associated (Mobile Service Station). An may decode this message to find out information about the parameters of the neighbor BS. Each will thus be able to scan the neighbor BS and measure the signal strength. If necessary, an may select neighbor BS and prepare for the future HO by performing ranging and association procedures. Through ranging, the can acquire the timing, power and frequency adjustment information of the neighbor BS. The target BS- association information is reported to the serving BS. The MAC layer (L2) HO is divided into two phases; the HO pre-registration phase and the real HO phase. During HO pre-registration, the target BS is selected and pre-registered with the. However, the connection to the currently serving BS is maintained and packets may exchanged during the pre-registration phase. In the real HO, releases the serving BS and re-associates with the target BS. Now, let s look into the HO procedure in greater detail. Either an or a serving BS may initiate the HO pre-registration. When the initiates the HO pre-registration, it may indicate a possible target BS from a signal-quality point of view. After the or the serving BS initiates HO pre-registration, the serving BS may acquire information from the neighbor BS regarding their capability of serving the requesting. The serving BS may further notify the neighbor BS (through the backbone) of the impending HO. Fig. 1 shows an example of MAC layer HO call flow initiated by the [3]. After receiving the HO request (HO-REQ) from the, the serving BS sends an HO-prenotification to the candidate target BSs, and the receiving party responds with
3 M Title Suppressed Due to Excessive Length 3 an HO-pre-notification-response, which include ACK or NACK of impending HO for the. Then, the serving BS selects the target BS and sends an HO-RSP message, including the target BS-ID, to the. The shall transmit an HO-IND message for final indication that it is about to perform a real HO. After the HO pre-registration phase, the real HO procedure is started. The serving BS releases the and the synchronizes with the target BS. Thereafter reauthorization and re-establishment of IP connectivity are taken. Se r v i n g B S T a r g e t B S1 T a r g e t B S2 DL-MAP U L-MAP ea s u re S / R MS S H O -R E Q P o s s i b l e T a rg et B S L i s t H O -p r e -n o t i. ( T a r g e t B S 1 ) H O -p r e -n o t i. -r e s p. ( T a r g e t B S 1, N AC K ) HO prereg i s t ra t i o n H O -R S P ( H O t o T a r g e t B S 2 ) H O -I N D S erv i n g B S R el ea s e H O -p r e -n o t i. ( T a r g e t B S 2 ) H O -p r e -n o t i. -r e s p. ( T a r g e t B S 2, AC K ) DL/ U L_ MAP ( T a r g e t B S 2 ) R N G _ R E Q / R S P ( T a r g e t B S 2 ) R ea l HO Fig. 1. Example of MAC layer HO call flow initiated by 2.2 Micro Mobility Protocols At present, there are many efforts underway to provide Internet services on integrated wireless and wired networks. Supporting an efficient IP mobility is one of the major issues in constructing IP-based wireless access networks. Mobile users will expect the same level of service quality as wired network users. Even though the serving BS of the mobile user changes, IP connections should be continuously maintained transparently. The Mobile Internet Protocol [4] is the current standard for supporting global IP mobility in a simple and scalable manner. However, Mobile IP is targeted for static mobility support where a service continuation is not guaranteed. A number of solutions like Cellular IP, HAWAII, Hierarchical Mobile IP that support dynamic mobility or cellular networking have been proposed. These approaches aimed to extend Mobile IP rather than to replace it. In order to handle the local movement of mobile hosts without interaction with the Mobile- IP-enabled Internet, they have adopted a domain-based approach. These intradomain protocols are used for establishing and exchanging the state information
4 4 Kyung-ah Kim et al. inside the wireless access networks, so as to get fast and efficient intra-domain mobility or micro-mobility control. 3 A Seamless Handover Mechanism - LPM 3.1 Wireless Access Network Model The broadband wireless access network model that we propose uses a routingbased scheme for micro-mobility. The domain is formed by s (Packet Access Routers) and BSs (Fig. 2) in a tree structure and is connected to the Internet through the domain root. The BSs use IEEE e for its wireless interface. For global mobility, the is registered with the address of the gateway on the HA (Home Agent). In the local domain, the is identified by the IP address it uses in its home network. Each maintains the routing cache in a soft-state manner through the periodic routing update information and upward data packets sent by s. Public IP network CN AAA Service Provider s IP Network HA... Wireless Access Network BS BS BS BS Fig. 2. Wireless Access Network Model 3.2 Proposed Seamless Hanover Protocol In order to provide seamless mobility, the MAC layer (L2) HO and network layer (L3) HO should be integrated to minimize the impact on service performance. If the L3 HO is started after the L2 HO has been done, the IP connectivity should be broken for the time being until it is re-established. As a result, packet loss is inevitable. In our scheme, the L3 HO and L2 HO procedure progress concurrently so as to minimize HO time. Each BS has BS-ID to BS-IP address mapping table of neighbor BSs in network initiation time. The proposed HO procedure is described in Fig. 3, in which the added procedures to the IEEE TGe document are shown in
5 Title Suppressed Due to Excessive Length 5 bold and italic. Either the BS or the can initiate HO. Then, the serving BS sends an HO-pre-notification (1) to the candidate target BS. The destination IP address of the packet is on the BS-ID to BS-IP address mapping table in the serving BS. The IP address should be added to the original message. Crossover 4. Bi-cast data packets 1. HO-pre-notification 5. HO-pre-notification-resp.(ACK) 2. HO-pre-notification-resp.(ACK) / pre-routing update Target BS 3. Buffer packets for Serving BS 6. HO-RSP 7. HO-IND 9. DL/UL-MAP, RNG-REQ/RSP 10. Routing Update 11. Forward Buffered packets 8. Handover Fig. 3. LPM Handover procedure When the target BS receives an HO-pre-notification message, it decides whether or not to accept this for HO. Then, it sends an HO-pre-notificationresponse with ACK or NACK to the serving BS. When ACK is the response, the pre-routing update message is sent towards the gateway (2). The sender address of the pre-routing update is the IP address of the impending HO. By prerouting update message, a routing entry in the routing cache of s is added in the path through the target BS to cross-over, which is the branching ancestor of the serving BS and the target BS. Then, the target BS prepares the buffer for the (3), which assures the removal of packet loss during L2 HOs. When the crossover receives the pre-routing update message, it bi-casts the data packets toward the in the direction of both the serving and target BSs (4). The that receives the pre-routing update can know whether it is a crossover or not by looking up the routing cache. If another different routing entry for the is in the cache, then it is a crossover. After the serving BS receives the HO-pre-notification-response (5), it exchanges HO-RSP (6) / HO-IND (7) with the, including the target BS information. Then, the starts the real HO. After the real HO, including ranging and association with the target BS (9), the first sends the routing update message (10) towards the gateway to stop bi-casting of the crossover. Then, the target BS forwards the buffered data for the (11). After that, the can continue its normal packet communication. In the proposed mechanism, the data packets received from the serving BS after the HO-pre-notification-response can also be received through the target BS. This is because the crossover bi-casts the data pack-
6 6 Kyung-ah Kim et al. ets just after receiving the HO-pre-notification-response and pre-routing update. Thus, the HO-pre-notification-response signals the time point, after which the data packets for the are prepared on the target BS buffer. We termed our proposal as LPM (Last Packet Marking), since the HO-pre-notification-response indicates that last packet before bi-casting has been received through the serving BS. In cases where several target BSs send the HO-pre-notification-response with ACK, many crossover s bi-cast the data packets. At every bi-casting, just one mapping to the new leaf BS (just one downward link) is attached to the routing cache in the crossover. The final routing tree is a subset tree of the full tree of wireless access networks. That is, in the worst case, where the serving BS sends the HO-pre-notification to all BSs in the access network, all BSs can receive data packets for the after HOs. But after the routing update timeout, only the routing entry on the path that the is attached to remains. When the postpones the real HO after receiving the HO-pre-notificationresponse, then the bi-casted packets should be received through the serving BS and also through the target BS, which results for the to receive duplicated packets. Thus, the target BS should filter out the duplicated packets. However, the IP layer doesn t know the TCP sequence number. So, when the sends the routing update just after the real HO, the information on the last packet received from the serving BS before the real HO can be sent to the target BS. The information is the resulting value of the hash function of (IP Header + Fixed Size IP Payload). When the target BS receives this hash value, it then finds the matched packet in the buffer and only forwards the following packets to the to filter out the duplicated packets. 4 Simulation 4.1 Simulation Details We used the micro-mobility extension for the ns-2 network simulator based on version 2.1b6. Since IEEE e is not yet implemented in ns2, we emulated it using an IEEE wireless LAN. When no other are contending for wireless resources, the can stably communicate with the BS like in IEEE e. HO-pre-notification and response were exchanged between the serving and target BSs. The simulation topology is shown in Fig. 4. The wireless access network is formed with 0-5 and the BSs. The TCP source is CN (Correspondent Node) and the receiver is the. All wired links in the access network are 10 Mb/s duplex links with a 5-ms delay. The CN and gateway (0) link is set to 10 Mb/s duplex link with a 50-ms delay. connects to BS using the ns-2 CSMA/CA 2Mb/s wireless link model. The link layer HO delay is set to 15 ms. An starts the TCP connection with CN at time 3 and oscillates between BS1 and BS5 at a constant speed from time 5. The MH stays for about 10 seconds before moving to the next BS. The TCP Tahoe is used for TCP mechanism. The TCP window size is set to 20 and the packet size is 1024 Bytes.
7 Title Suppressed Due to Excessive Length 7 CN 50ms BS1 BS2 BS3 BS4 BS5 Fig. 4. Simulation Topology 4.2 Simulation Results Figure 5 shows the TCP connection throughput as a function of time. The TCP throughput is measured every 1 second. We call the basic HO scheme as hard HO, in which L3 HO is started after the real HO. All hard HOs have abrupt glitches caused by lost packets. It is well known that a packet loss decreases the TCP performance significantly due to the TCP congestion control. On the other hand, LPM shows no throughput drops on any HO Throughput (Kbps) Throughput (Kbps) Simulation Time (a) Hard Simulation Time (b) LPM Fig. 5. TCP throughput The sender and receiver packet traces of the TCP connection from BS1 to BS2 HO is shown in Fig. 6. All other HO traces showed similar results. In hard HO, the real HO started at time and finished at Then, the L3 HO (routing update) is done from to The network layer HO time is proportional to the round-trip time from BS2 to crossover (3). TCP packet 1714 through 1718 was lost during this period. TCP restarts with slowstart from packet number But in LPM, no packet loss was observed. The HO-pre-notification message was sent at and the response was received at Real HO starts at and ends at During to
8 8 Kyung-ah Kim et al. the receives bi-casted packets (1714 and 1718) from the serving BS. After the real HO, the packet from 1714 to 1722 was buffered in the target BS. The target BS filtered out packets below 1719 to remove duplicate packets by hash value, included in the routing update from the. Then, the BS forwarded the packets from 1719 to the. TCP Packet Sequence no Data sent by CN Data received by MN ACK sent by MN TCP Packet Sequence no Data sent by CN Data received by MN ACK sent by MN Simulation Time (a) Hard Simulation Time (b) LPM Fig. 6. Sender and receiver traces of TCP connection. 5 Conclusions We have proposed a new handover scheme called LPM (Last Packet Marking) for micro-mobility in IEEE e-based broadband wireless packet networks. Through LPM, MAC and network layer handover procedures were done simultaneously to minimize the handover time. We studied the performance of LPM using computer simulation. Our simulation study showed that LPM is free from packet loss and duplication. References 1. IEEE Standard , IEEE Standard for Local and metropolitan area networks, Part 16: Air Interface for Fixed Broadband Wireless Access Systems (2001) 2. IEEE Standard a, Amendment 2: Medium Access Control Modifications and Additional Physical Layer Specifications for 2-11 GHz (2003) 3. IEEE TGe Working Document, (Draft Standard) - Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands, e/D4, August (2004) 4. C. Perkins (ed.): IP Mobility Support for IPv4, Internet RFC 3344, Aug. (2002)
A Proxy Mobile IP based Layer-3 Handover Scheme for Mobile WiMAX based Wireless Mesh Networks
A Proxy Mobile IP based Layer-3 Handover Scheme for Mobile WiMAX based Wireless Mesh Networks Min-Kim, Jong-min Kim, Hwa-sung Kim Dept. of Electronics and Communications Engineering Kwangwoon University
Forced Low latency Handoff in Mobile Cellular Data Networks
Forced Low latency Handoff in Mobile Cellular Data Networks N. Moayedian, Faramarz Hendessi Department of Electrical and Computer Engineering Isfahan University of Technology, Isfahan, IRAN [email protected]
TCP for Wireless Networks
TCP for Wireless Networks Outline Motivation TCP mechanisms Indirect TCP Snooping TCP Mobile TCP Fast retransmit/recovery Transmission freezing Selective retransmission Transaction oriented TCP Adapted
Chapter 6: Conclusion
Chapter 6: Conclusion In this research we have designed the bandwidth optimization control protocol to manage the proposed Dual-bandwidth data path for the CDMA2000-WLAN integrated network. The user s
Micro Mobility and Internet Access Performance for TCP Connections in Ad hoc Networks
Micro Mobility and Internet Access Performance for TCP Connections in Ad hoc Networks Anders Nilsson, Ali Hamidian, Ulf Körner Department of Communication Systems Lund University, Sweden Box118,221Lund
TCP and Wireless Networks Classical Approaches Optimizations TCP for 2.5G/3G Systems. Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme
Chapter 2 Technical Basics: Layer 1 Methods for Medium Access: Layer 2 Chapter 3 Wireless Networks: Bluetooth, WLAN, WirelessMAN, WirelessWAN Mobile Networks: GSM, GPRS, UMTS Chapter 4 Mobility on the
Attenuation (amplitude of the wave loses strength thereby the signal power) Refraction Reflection Shadowing Scattering Diffraction
Wireless Physical Layer Q1. Is it possible to transmit a digital signal, e.g., coded as square wave as used inside a computer, using radio transmission without any loss? Why? It is not possible to transmit
TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) Internet Protocol (IP)
TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) *Slides adapted from a talk given by Nitin Vaidya. Wireless Computing and Network Systems Page
Performance Evaluation for Mobility Management Protocols in Cellular IP and Hawaii Mobile Networks
Performance Evaluation for Mobility Management Protocols in Cellular IP and Hawaii Mobile Networks M.Mansour, A.Ghneimat,J. E. Mellor Department of Computing University of Bradford Bradford BD7 1DP, UK.
Mobile Computing/ Mobile Networks
Mobile Computing/ Mobile Networks TCP in Mobile Networks Prof. Chansu Yu Contents Physical layer issues Communication frequency Signal propagation Modulation and Demodulation Channel access issues Multiple
Mobile Communications Chapter 9: Mobile Transport Layer
Mobile Communications Chapter 9: Mobile Transport Layer Motivation TCP-mechanisms Classical approaches Indirect TCP Snooping TCP Mobile TCP PEPs in general Additional optimizations Fast retransmit/recovery
AN IMPROVED SNOOP FOR TCP RENO AND TCP SACK IN WIRED-CUM- WIRELESS NETWORKS
AN IMPROVED SNOOP FOR TCP RENO AND TCP SACK IN WIRED-CUM- WIRELESS NETWORKS Srikanth Tiyyagura Department of Computer Science and Engineering JNTUA College of Engg., pulivendula, Andhra Pradesh, India.
Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc
(International Journal of Computer Science & Management Studies) Vol. 17, Issue 01 Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc Dr. Khalid Hamid Bilal Khartoum, Sudan [email protected]
Network Mobility Support Scheme on PMIPv6 Networks
Network Mobility Support Scheme on PMIPv6 Networks Hyo-Beom Lee 1, Youn-Hee Han 2 and Sung-Gi Min 1 1 Dept. of Computer Science and Engineering, Korea University, Seoul, South Korea. [email protected]
TCP in Wireless Networks
Outline Lecture 10 TCP Performance and QoS in Wireless s TCP Performance in wireless networks TCP performance in asymmetric networks WAP Kurose-Ross: Chapter 3, 6.8 On-line: TCP over Wireless Systems Problems
IP and Mobility. Requirements to a Mobile IP. Terminology in Mobile IP
IP and Mobility Chapter 2 Technical Basics: Layer Methods for Medium Access: Layer 2 Chapter Wireless Networks: Bluetooth, WLAN, WirelessMAN, WirelessWAN Mobile Telecommunication Networks: GSM, GPRS, UMTS
communication over wireless link handling mobile user who changes point of attachment to network
Wireless Networks Background: # wireless (mobile) phone subscribers now exceeds # wired phone subscribers! computer nets: laptops, palmtops, PDAs, Internet-enabled phone promise anytime untethered Internet
CS6956: Wireless and Mobile Networks Lecture Notes: 2/11/2015. IEEE 802.11 Wireless Local Area Networks (WLANs)
CS6956: Wireless and Mobile Networks Lecture Notes: //05 IEEE 80. Wireless Local Area Networks (WLANs) CSMA/CD Carrier Sense Multi Access/Collision Detection detects collision and retransmits, no acknowledgement,
CSE331: Introduction to Networks and Security. Lecture 6 Fall 2006
CSE331: Introduction to Networks and Security Lecture 6 Fall 2006 Open Systems Interconnection (OSI) End Host Application Reference model not actual implementation. Transmits messages (e.g. FTP or HTTP)
Reliable Multicast Protocol with Packet Forwarding in Wireless Internet
Reliable Multicast Protocol with Packet Forwarding in Wireless Internet Taku NOGUCHI, Toru YOSHIKAWA and Miki YAMAMOTO College of Information Science and Engineering, Ritsumeikan University 1-1-1, Nojihigashi,
Analysis of QoS parameters of VOIP calls over Wireless Local Area Networks
Analysis of QoS parameters of VOIP calls over Wireless Local Area Networks Ayman Wazwaz, Computer Engineering Department, Palestine Polytechnic University, Hebron, Palestine, [email protected] Duaa sweity
Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, [email protected]
Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, [email protected] 1. Introduction Ad hoc wireless networks pose a big challenge for transport layer protocol and transport layer protocols
ENSC 427: Communication Networks. Analysis of Voice over IP performance on Wi-Fi networks
ENSC 427: Communication Networks Spring 2010 OPNET Final Project Analysis of Voice over IP performance on Wi-Fi networks Group 14 members: Farzad Abasi ([email protected]) Ehsan Arman ([email protected]) http://www.sfu.ca/~faa6
Adaptive DCF of MAC for VoIP services using IEEE 802.11 networks
Adaptive DCF of MAC for VoIP services using IEEE 802.11 networks 1 Mr. Praveen S Patil, 2 Mr. Rabinarayan Panda, 3 Mr. Sunil Kumar R D 1,2,3 Asst. Professor, Department of MCA, The Oxford College of Engineering,
International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015 1169 ISSN 2229-5518
International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015 1169 Comparison of TCP I-Vegas with TCP Vegas in Wired-cum-Wireless Network Nitin Jain & Dr. Neelam Srivastava Abstract
An Active Network Based Hierarchical Mobile Internet Protocol Version 6 Framework
An Active Network Based Hierarchical Mobile Internet Protocol Version 6 Framework Zutao Zhu Zhenjun Li YunYong Duan Department of Business Support Department of Computer Science Department of Business
Simulation-Based Comparisons of Solutions for TCP Packet Reordering in Wireless Network
Simulation-Based Comparisons of Solutions for TCP Packet Reordering in Wireless Network 作 者 :Daiqin Yang, Ka-Cheong Leung, and Victor O. K. Li 出 處 :Wireless Communications and Networking Conference, 2007.WCNC
LAN Switching. 15-441 Computer Networking. Switched Network Advantages. Hubs (more) Hubs. Bridges/Switches, 802.11, PPP. Interconnecting LANs
LAN Switching 15-441 Computer Networking Bridges/Switches, 802.11, PPP Extend reach of a single shared medium Connect two or more segments by copying data frames between them Switches only copy data when
CHAPTER 1 1 INTRODUCTION
CHAPTER 1 1 INTRODUCTION 1.1 Wireless Networks Background 1.1.1 Evolution of Wireless Networks Figure 1.1 shows a general view of the evolution of wireless networks. It is well known that the first successful
Lecture Objectives. Lecture 07 Mobile Networks: TCP in Wireless Networks. Agenda. TCP Flow Control. Flow Control Can Limit Throughput (1)
Lecture Objectives Wireless and Mobile Systems Design Lecture 07 Mobile Networks: TCP in Wireless Networks Describe TCP s flow control mechanism Describe operation of TCP Reno and TCP Vegas, including
Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation
Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation R.Navaneethakrishnan Assistant Professor (SG) Bharathiyar College of Engineering and Technology, Karaikal, India.
other. A B AP wired network
1 Routing and Channel Assignment in Multi-Channel Multi-Hop Wireless Networks with Single-NIC Devices Jungmin So + Nitin H. Vaidya Department of Computer Science +, Department of Electrical and Computer
CCNA R&S: Introduction to Networks. Chapter 5: Ethernet
CCNA R&S: Introduction to Networks Chapter 5: Ethernet 5.0.1.1 Introduction The OSI physical layer provides the means to transport the bits that make up a data link layer frame across the network media.
ANALYSIS OF VOICE OVER IP DURING VERTICAL HANDOVERS IN HETEROGENEOUS WIRELESS AND MOBILE NETWORKS
ANALYSIS OF VOICE OVER IP DURING VERTICAL HANDOVERS IN HETEROGENEOUS WIRELESS AND MOBILE NETWORKS Kire Jakimoski Ss. Cyril and Methodius University, Faculty of Electrical Engineering and Information Technologies
Lecture 17: 802.11 Wireless Networking"
Lecture 17: 802.11 Wireless Networking" CSE 222A: Computer Communication Networks Alex C. Snoeren Thanks: Lili Qiu, Nitin Vaidya Lecture 17 Overview" Project discussion Intro to 802.11 WiFi Jigsaw discussion
Network Friendliness of Mobility Management Protocols
Network Friendliness of Mobility Management Protocols Md Sazzadur Rahman, Mohammed Atiquzzaman Telecommunications and Networks Research Lab School of Computer Science, University of Oklahoma, Norman, OK
Unlicensed Mobile Access (UMA) Handover and Packet Data Performance Analysis
Unlicensed Mobile Access (UMA) Handover and Packet Data Performance Analysis Andres Arjona Nokia Siemens Networks [email protected] Hannu Verkasalo Helsinki University of Technology [email protected]
CSE 473 Introduction to Computer Networks. Exam 2 Solutions. Your name: 10/31/2013
CSE 473 Introduction to Computer Networks Jon Turner Exam Solutions Your name: 0/3/03. (0 points). Consider a circular DHT with 7 nodes numbered 0,,...,6, where the nodes cache key-values pairs for 60
TCP in Wireless Mobile Networks
TCP in Wireless Mobile Networks 1 Outline Introduction to transport layer Introduction to TCP (Internet) congestion control Congestion control in wireless networks 2 Transport Layer v.s. Network Layer
Mobile Routing. When a host moves, its point of attachment in the network changes. This is called a handoff.
Mobile Routing Basic Notions of Mobility When a host moves, its point of attachment in the changes. This is called a handoff. The point of attachment is a base station (BS) for cellular, or an access point
CROSS LAYER BASED MULTIPATH ROUTING FOR LOAD BALANCING
CHAPTER 6 CROSS LAYER BASED MULTIPATH ROUTING FOR LOAD BALANCING 6.1 INTRODUCTION The technical challenges in WMNs are load balancing, optimal routing, fairness, network auto-configuration and mobility
Introduction VOIP in an 802.11 Network VOIP 3
Solutions to Performance Problems in VOIP over 802.11 Wireless LAN Wei Wang, Soung C. Liew Presented By Syed Zaidi 1 Outline Introduction VOIP background Problems faced in 802.11 Low VOIP capacity in 802.11
An Efficient QoS Routing Protocol for Mobile Ad-Hoc Networks *
An Efficient QoS Routing Protocol for Mobile Ad-Hoc Networks * Inwhee Joe College of Information and Communications Hanyang University Seoul, Korea iwj oeshanyang.ac.kr Abstract. To satisfy the user requirements
Behavior Analysis of TCP Traffic in Mobile Ad Hoc Network using Reactive Routing Protocols
Behavior Analysis of TCP Traffic in Mobile Ad Hoc Network using Reactive Routing Protocols Purvi N. Ramanuj Department of Computer Engineering L.D. College of Engineering Ahmedabad Hiteishi M. Diwanji
Bluetooth voice and data performance in 802.11 DS WLAN environment
1 (1) Bluetooth voice and data performance in 802.11 DS WLAN environment Abstract In this document, the impact of a 20dBm 802.11 Direct-Sequence WLAN system on a 0dBm Bluetooth link is studied. A typical
Introduction Chapter 1. Uses of Computer Networks
Introduction Chapter 1 Uses of Computer Networks Network Hardware Network Software Reference Models Example Networks Network Standardization Metric Units Revised: August 2011 Uses of Computer Networks
MISSING NEIGHBOR ANALYSIS
MISSING NEIGHBOR ANALYSIS For WiMAX networks? WIMAX HANDOVER TYPES MISSING NEIGHBORS HOW TO IDENTIFY MISSING NEIGHBORS 1. WiMAX Handovers All mobile wireless technologies require handovers to allow the
An enhanced TCP mechanism Fast-TCP in IP networks with wireless links
Wireless Networks 6 (2000) 375 379 375 An enhanced TCP mechanism Fast-TCP in IP networks with wireless links Jian Ma a, Jussi Ruutu b and Jing Wu c a Nokia China R&D Center, No. 10, He Ping Li Dong Jie,
Long-Term Evolution. Mobile Telecommunications Networks WMNet Lab
Long-Term Evolution Mobile Telecommunications Networks WMNet Lab Background Long-Term Evolution Define a new packet-only wideband radio with flat architecture as part of 3GPP radio technology family 2004:
White Paper. D-Link International Tel: (65) 6774 6233, Fax: (65) 6774 6322. E-mail: [email protected]; Web: http://www.dlink-intl.
Introduction to Voice over Wireless LAN (VoWLAN) White Paper D-Link International Tel: (65) 6774 6233, Fax: (65) 6774 6322. Introduction Voice over Wireless LAN (VoWLAN) is a technology involving the use
Route Discovery Protocols
Route Discovery Protocols Columbus, OH 43210 [email protected] http://www.cse.ohio-state.edu/~jain/ 1 Overview Building Routing Tables Routing Information Protocol Version 1 (RIP V1) RIP V2 OSPF
ESSENTIALS. Understanding Ethernet Switches and Routers. April 2011 VOLUME 3 ISSUE 1 A TECHNICAL SUPPLEMENT TO CONTROL NETWORK
VOLUME 3 ISSUE 1 A TECHNICAL SUPPLEMENT TO CONTROL NETWORK Contemporary Control Systems, Inc. Understanding Ethernet Switches and Routers This extended article was based on a two-part article that was
Final for ECE374 05/06/13 Solution!!
1 Final for ECE374 05/06/13 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam taker -
How To Determine The Capacity Of An 802.11B Network
Capacity of an IEEE 802.11b Wireless LAN supporting VoIP To appear in Proc. IEEE Int. Conference on Communications (ICC) 2004 David P. Hole and Fouad A. Tobagi Dept. of Electrical Engineering, Stanford
SELECTIVE ACTIVE SCANNING FOR FAST HANDOFF IN WLAN USING SENSOR NETWORKS
SELECTIVE ACTIVE SCANNING FOR FAST HANDOFF IN WLAN USING SENSOR NETWORKS Sonia Waharte, Kevin Ritzenthaler and Raouf Boutaba University of Waterloo, School of Computer Science 00, University Avenue West,
A Survey: High Speed TCP Variants in Wireless Networks
ISSN: 2321-7782 (Online) Volume 1, Issue 7, December 2013 International Journal of Advance Research in Computer Science and Management Studies Research Paper Available online at: www.ijarcsms.com A Survey:
Lecture Computer Networks
Prof. Dr. H. P. Großmann mit M. Rabel sowie H. Hutschenreiter und T. Nau Sommersemester 2012 Institut für Organisation und Management von Informationssystemen Thomas Nau, kiz Lecture Computer Networks
A Network-Controlled Architecture for SCTP Hard Handover
A Network-Controlled Architecture for SCTP Hard Handover Khadija Daoud, Karine Guillouard, Philippe Herbelin Orange Labs, Issy Les Moulineaux, France {first name.last name}@orange-ftgroup.com Abstract
Names & Addresses. Names & Addresses. Hop-by-Hop Packet Forwarding. Longest-Prefix-Match Forwarding. Longest-Prefix-Match Forwarding
Names & Addresses EE 122: IP Forwarding and Transport Protocols Scott Shenker http://inst.eecs.berkeley.edu/~ee122/ (Materials with thanks to Vern Paxson, Jennifer Rexford, and colleagues at UC Berkeley)
Tomás P. de Miguel DIT-UPM. dit UPM
Tomás P. de Miguel DIT- 15 12 Internet Mobile Market Phone.com 15 12 in Millions 9 6 3 9 6 3 0 1996 1997 1998 1999 2000 2001 0 Wireless Internet E-mail subscribers 2 (January 2001) Mobility The ability
LTE Performance and Analysis using Atoll Simulation
IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 6 Ver. III (Nov Dec. 2014), PP 68-72 LTE Performance and Analysis using Atoll Simulation
Mobility Management for IP-based Mobile Networks
Mobility Management for IP-based Mobile Networks H. Becker, N. Gerlich, M. Schopp Siemens Information & Communication Mobile Munich, Germany 1 Overview Introduction to IP-based Radio Access Networks Definition
REDUCING PACKET OVERHEAD IN MOBILE IPV6
REDUCING PACKET OVERHEAD IN MOBILE IPV6 ABSTRACT Hooshiar Zolfagharnasab 1 1 Department of Computer Engineering, University of Isfahan, Isfahan, Iran [email protected] [email protected] Common Mobile
Mobility on IPv6 Networks
Mobility on IPv6 Networks Pedro M. Ruiz Project Manager Agora Systems S.A. Global IPv6 Summit Madrid 13-15 March 2002 Pedro M. Ruiz (c) Agora Systems S.A, 2002 1 Outline Motivation MIPv6 architecture MIPv6
Per-Flow Queuing Allot's Approach to Bandwidth Management
White Paper Per-Flow Queuing Allot's Approach to Bandwidth Management Allot Communications, July 2006. All Rights Reserved. Table of Contents Executive Overview... 3 Understanding TCP/IP... 4 What is Bandwidth
Wave Relay System and General Project Details
Wave Relay System and General Project Details Wave Relay System Provides seamless multi-hop connectivity Operates at layer 2 of networking stack Seamless bridging Emulates a wired switch over the wireless
APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM
152 APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM A1.1 INTRODUCTION PPATPAN is implemented in a test bed with five Linux system arranged in a multihop topology. The system is implemented
Frequency Hopping Spread Spectrum (FHSS) vs. Direct Sequence Spread Spectrum (DSSS) in Broadband Wireless Access (BWA) and Wireless LAN (WLAN)
FHSS vs. DSSS page 1 of 16 Frequency Hopping Spread Spectrum (FHSS) vs. Direct Sequence Spread Spectrum (DSSS) in Broadband Wireless Access (BWA) and Wireless LAN (WLAN) by Sorin M. SCHWARTZ Scope In 1997
Early Binding Updates and Credit-Based Authorization A Status Update
Status update New drafts Implementation Experimentation results Early Binding Updates and Credit-Based Authorization A Status Update Why Do We Need Enhancement? Mobile IPv6 Route Optimization uses return-routability
Voice Calls Over Wi-Fi
Voice Calls Over Wi-Fi Venkatraman.S, Siddharth Natarajan and T.V. Padmavathi, Member, IAENG Abstract The use of Wi-Fi enabled cell phones to access internet away from the PC is increasing day-by-day.
How To Write A Transport Layer Protocol For Wireless Networks
Chapter 9: Transport Layer and Security Protocols for Ad Hoc Wireless Networks Introduction Issues Design Goals Classifications TCP Over Ad Hoc Wireless Networks Other Transport Layer Protocols Security
High Performance VPN Solutions Over Satellite Networks
High Performance VPN Solutions Over Satellite Networks Enhanced Packet Handling Both Accelerates And Encrypts High-Delay Satellite Circuits Characteristics of Satellite Networks? Satellite Networks have
Wireless Networks. Reading: Sec5on 2.8. COS 461: Computer Networks Spring 2011. Mike Freedman
1 Wireless Networks Reading: Sec5on 2.8 COS 461: Computer Networks Spring 2011 Mike Freedman hep://www.cs.princeton.edu/courses/archive/spring11/cos461/ 2 Widespread Deployment Worldwide cellular subscribers
ECE/CS 372 introduction to computer networks. Lecture 13
ECE/CS 372 introduction to computer networks Lecture 13 Announcements: HW #4 hard copy due today Lab #5 posted is due Tuesday June 4 th HW #5 posted is due Thursday June 6 th Pickup midterms Acknowledgement:
TCP over Wireless Networks
TCP over Wireless Networks Raj Jain Professor of Computer Science and Engineering Washington University in Saint Louis Saint Louis, MO 63130 Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse574-10/
EPL 657 Wireless Networks
EPL 657 Wireless Networks Some fundamentals: Multiplexing / Multiple Access / Duplex Infrastructure vs Infrastructureless Panayiotis Kolios Recall: The big picture... Modulations: some basics 2 Multiplexing
Abstract. 2 Overview of mobility in WLAN. 1 Introduction
A study of mobility in WLAN Fengping Li Helsinki University of Technology Telecommunication Software and Multimedia Laboratory [email protected] Abstract This paper studies mobility in wireless LAN (WLAN,
Supporting VoIP in IEEE802.11 Distributed WLANs
Supporting VoIP in IEEE802.11 Distributed WLANs Zuo Liu Supervisor: Dr. Nick Filer July 2012 1 Voice VoIP Applications Constant Streaming Traffic Packetize interval usually 10-30 ms 8 160 bytes each packet
CS263: Wireless Communications and Sensor Networks
CS263: Wireless Communications and Sensor Networks Matt Welsh Lecture 4: Medium Access Control October 5, 2004 2004 Matt Welsh Harvard University 1 Today's Lecture Medium Access Control Schemes: FDMA TDMA
Computer Networking Networks
Page 1 of 8 Computer Networking Networks 9.1 Local area network A local area network (LAN) is a network that connects computers and devices in a limited geographical area such as a home, school, office
SJBIT, Bangalore, KARNATAKA
A Comparison of the TCP Variants Performance over different Routing Protocols on Mobile Ad Hoc Networks S. R. Biradar 1, Subir Kumar Sarkar 2, Puttamadappa C 3 1 Sikkim Manipal Institute of Technology,
Figure 1: Bandwidth and coverage of wireless technologies [2].
Simulation and Performance Evaluation of WiFi and WiMAX using OPNET Ravinder Paul, Sukhchandan Lally, and Ljiljana Trajković Simon Fraser University Vancouver, British Columbia Canada E-mail: {rpa28, lally,
Lab Exercise 802.11. Objective. Requirements. Step 1: Fetch a Trace
Lab Exercise 802.11 Objective To explore the physical layer, link layer, and management functions of 802.11. It is widely used to wireless connect mobile devices to the Internet, and covered in 4.4 of
Research of TCP ssthresh Dynamical Adjustment Algorithm Based on Available Bandwidth in Mixed Networks
Research of TCP ssthresh Dynamical Adjustment Algorithm Based on Available Bandwidth in Mixed Networks 1 Wang Zhanjie, 2 Zhang Yunyang 1, First Author Department of Computer Science,Dalian University of
EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science
EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science Examination Computer Networks (2IC15) on Monday, June 22 nd 2009, 9.00h-12.00h. First read the entire examination. There
Roaming, Handover, and Mobility
Chapter 6 Roaming, Handover, and Mobility This chapter talks about mobility and handover; in essence they mean the same thing with a slight difference: Mobility usually is used for wired systems, in particular
Introduction to LAN/WAN. Network Layer
Introduction to LAN/WAN Network Layer Topics Introduction (5-5.1) Routing (5.2) (The core) Internetworking (5.5) Congestion Control (5.3) Network Layer Design Isues Store-and-Forward Packet Switching Services
