Early Binding Updates and Credit-Based Authorization A Status Update
|
|
|
- Hillary Stafford
- 10 years ago
- Views:
Transcription
1 Status update New drafts Implementation Experimentation results Early Binding Updates and Credit-Based Authorization A Status Update
2 Why Do We Need Enhancement? Mobile IPv6 Route Optimization uses return-routability procedure to authorize binding between Home address == Who I am C/o address == Where I am Idea: Verify MN's reachability at home address for authentication c/o address for binding authorization Handoff delays btw. 3 and 4 RTT depends on degree of parallelism that implementation use Reduce this! 1
3 Enhancement Approaches 2 Early Binding Updates Modification to Mobile IPv6 binding-update procedure Proactivity Concurrency Higher degree of parallelism Reduces handoff latency to 1 RTT for reactive handoffs to 0~1 RTT for proactive handoffs Credit-Based Authorization Strategy followed by CN Determines data that CN can securely send to MN before MN's reachability at new c/o address verified
4 Standard Mobile IPv6 include tokens authenticated w/both tokens 3
5 Standard Mobile IPv6 3 RTT in parallel optimistic approach 4 RTT 4 switch to new c/o address switch to new c/o address
6 Mobile IPv6 + Early Binding Updates Home Test (Init) exchange prior to handoff home and correspondent registration simultaneously Care-of Test (Init) exchange in parallel with data tentative registration of new c/o address without c/o test deferred full registration of new c/o address 5
7 Mobile IPv6 + Early Binding Updates switch to new c/o address switch to new c/o address 1 RTT 6
8 However CN sends packets to unverified location period of vulnerability requires additional protection 7
9 Why This Is An Issue 8 Attacker could establish a higher-layer connection (e.g., download) redirect packets to victim spoof TCP acknowledgments Amplification! CN generates large data packets Attacker sends small ACKs Without amplification Flooding no more effective than direct flooding Direct flooding always possible
10 and How It Can Be Solved Idea Limit packets sent to unverified c/o address so as to not cause amplification Solution Count the bytes received from MN/attacker Send no more bytes to unverified c/o address 9 Credit-Based Authorization Byte counter == "Credit account"
11 Credit-Based Authorization Mobile Node Correspondent Node Acquires credit by sending pkts. Consumes credit for being sent pkts. to unverified addr. Maintains credit account 10
12 Credit-Based Authorization Mobile Node Correspondent Node 11
13 Credit-Based Authorization Mobile Node Correspondent Node 12
14 Credit-Based Authorization Mobile Node Correspondent Node 13
15 Credit-Based Authorization Mobile Node Correspondent Node 14
16 Credit-Based Authorization Mobile Node Correspondent Node 15
17 Credit-Based Authorization Mobile Node Correspondent Node 16
18 Credit-Based Authorization Mobile Node Correspondent Node Detach Attach c/o address unverified 17
19 Credit-Based Authorization Mobile Node Correspondent Node c/o address unverified 18
20 Credit-Based Authorization Mobile Node Correspondent Node c/o address unverified 19
21 Credit-Based Authorization Mobile Node Correspondent Node c/o address unverified 20
22 Credit-Based Authorization Mobile Node Correspondent Node c/o address unverified 21
23 Credit-Based Authorization Mobile Node Correspondent Node 22 c/o address unverified
24 Credit-Based Authorization Mobile Node Correspondent Node c/o address unverified 23
25 Credit-Based Authorization Mobile Node Correspondent Node c/o address unverified 24
26 However Credit account allows an attacker to accumulate credit over a long time at a slow rate, and use this credit all at once Facilitates large burst of packets from attackers with low-bandwidth Internet access Credit aging prevents this 25
27 Credit Aging credit exponential aging CN learns new c/o address new c/o address unverified time new c/o address becomes verified 26
28 Experimental Evaluation global RTTs and bandwidths MAC filter 27 Handoff delays w/ip telephony Handoff delays w/tcp file transfers Throughput of TCP file transfers Analysis of TCP benefits
29 IP Telephony: Parameters 28 Application 64 kbps payload 10ms chunks 164B per packet (IPv6, extensions, UDP, RTP) bidirectional Network 200ms round-trip time Mobility protocols standard (conservative) Mobile IPv6 optimistic Mobile IPv6 w/early Binding Updates and Credit-Based Authorization Confidence 500 handoffs per mobility protocol
30 Handoff Delay w/ip Telephony RTT == 200 ms 1 RTT + ε 3 RTT + ε 4 RTT + ε 29
31 TCP File Downloads: Parameters 30 Application 60s download (chargen-generated data) 1024 kbps bandwidth unidirektional TCP Reno Network 40ms to 200ms round-trip time Mobility protocols standard (conservative) Mobile IPv6 optimistic Mobile IPv6 w/early Binding Updates and Credit-Based Authorization Confidence 20 experiments per mobility protocol per round-trip time 5 handoffs per experiment
32 Handoff Delay w/tcp File Transfers 31
33 Throughput w/tcp File Transfers Why does TCP benefit so much? 32
34 Why TCP Benefits So Much 1st timeout new c/o address 1st timeout old c/o address 2nd timeout new c/o address ebu/cba conserv 33
35 Why TCP Benefits So Much (2) TCP behavior after 1st timeout set cwnd = 1 set ssthresh = flightsize do Slow Start until cwnd > ssthresh TCP behavior after 2nd timeout set cwnd = 1 set ssthresh = 2 (minimum) effectively skip Slow Start 34
36 New Drafts draft-vogt-mobopts-simple-ebu-00.txt includes diff's to RFC 3775 specifies support for proactive handoffs no IANA requirements draft-vogt-mobopts-simple-cba-00.txt transparent to MN no signaling no IANA requirements 35
37 No IANA Requirements 36 Early BU == BU where Kbm == SHA1(home keygen token) Care-of Nonce Index == 0 Early BA accordingly CN w/ebu support checks Nonce Indices option Care-of Nonce Index == 0? early Binding Update Care-of Nonce Index!= 0? standard Binding Update CN w/o EBU support sends BA w/status 137, "Expired care-of nonce index" or sends no BA due to Authentication failure MN sets Acknowledge flag in early BU
38 Conclusion 37 Advantages of EBU/CBA Reduce handoff delays to 0~1 RTT (L3 only) Better accommodate TCP's retransmission algorithm No special network support required Applicable to inter-domain handovers Drawbacks of EBU Additional signaling, especially for proactive home-address tests if done periodically Still 1 RTT latency for reactive handoffs Still 0~1 RTT latency for proactive handoffs
39 Acknowledgment Many thanks to my students for their eager and reliable co-operation: Ralf Beck Daniel Jungbluth Max Laier 38
Efficient End-to-End Mobility Support in IPv6
Efficient End-to-End Mobility Support in IPv6, Mark Doll, [email protected], Communicating Anywhere, Anytime 1 Mobile IPv6 Basics mobile node @ home address Internet visited network home network correspondent
Lecture 15: Congestion Control. CSE 123: Computer Networks Stefan Savage
Lecture 15: Congestion Control CSE 123: Computer Networks Stefan Savage Overview Yesterday: TCP & UDP overview Connection setup Flow control: resource exhaustion at end node Today: Congestion control Resource
Lecture Objectives. Lecture 07 Mobile Networks: TCP in Wireless Networks. Agenda. TCP Flow Control. Flow Control Can Limit Throughput (1)
Lecture Objectives Wireless and Mobile Systems Design Lecture 07 Mobile Networks: TCP in Wireless Networks Describe TCP s flow control mechanism Describe operation of TCP Reno and TCP Vegas, including
First Midterm for ECE374 03/24/11 Solution!!
1 First Midterm for ECE374 03/24/11 Solution!! Note: In all written assignments, please show as much of your work as you can. Even if you get a wrong answer, you can get partial credit if you show your
Application Level Congestion Control Enhancements in High BDP Networks. Anupama Sundaresan
Application Level Congestion Control Enhancements in High BDP Networks Anupama Sundaresan Organization Introduction Motivation Implementation Experiments and Results Conclusions 2 Developing a Grid service
TCP over Wireless Networks
TCP over Wireless Networks Raj Jain Professor of Computer Science and Engineering Washington University in Saint Louis Saint Louis, MO 63130 Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse574-10/
Mobility on IPv6 Networks
Mobility on IPv6 Networks Pedro M. Ruiz Project Manager Agora Systems S.A. Global IPv6 Summit Madrid 13-15 March 2002 Pedro M. Ruiz (c) Agora Systems S.A, 2002 1 Outline Motivation MIPv6 architecture MIPv6
TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) Internet Protocol (IP)
TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) *Slides adapted from a talk given by Nitin Vaidya. Wireless Computing and Network Systems Page
SJBIT, Bangalore, KARNATAKA
A Comparison of the TCP Variants Performance over different Routing Protocols on Mobile Ad Hoc Networks S. R. Biradar 1, Subir Kumar Sarkar 2, Puttamadappa C 3 1 Sikkim Manipal Institute of Technology,
Data Networks Summer 2007 Homework #3
Data Networks Summer Homework # Assigned June 8, Due June in class Name: Email: Student ID: Problem Total Points Problem ( points) Host A is transferring a file of size L to host B using a TCP connection.
Boosting mobility performance with Multi-Path TCP
Boosting mobility performance with Multi-Path TCP Name SURNAME 1, Name SURNAME 2 1 Organisation, Address, City, Postcode, Country Tel: +countrycode localcode number, Fax: + countrycode localcode number,
REDUCING PACKET OVERHEAD IN MOBILE IPV6
REDUCING PACKET OVERHEAD IN MOBILE IPV6 ABSTRACT Hooshiar Zolfagharnasab 1 1 Department of Computer Engineering, University of Isfahan, Isfahan, Iran [email protected] [email protected] Common Mobile
High-Speed TCP Performance Characterization under Various Operating Systems
High-Speed TCP Performance Characterization under Various Operating Systems Y. Iwanaga, K. Kumazoe, D. Cavendish, M.Tsuru and Y. Oie Kyushu Institute of Technology 68-4, Kawazu, Iizuka-shi, Fukuoka, 82-852,
Tomás P. de Miguel DIT-UPM. dit UPM
Tomás P. de Miguel DIT- 15 12 Internet Mobile Market Phone.com 15 12 in Millions 9 6 3 9 6 3 0 1996 1997 1998 1999 2000 2001 0 Wireless Internet E-mail subscribers 2 (January 2001) Mobility The ability
First Midterm for ECE374 03/09/12 Solution!!
1 First Midterm for ECE374 03/09/12 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam
A Network-Controlled Architecture for SCTP Hard Handover
A Network-Controlled Architecture for SCTP Hard Handover Khadija Daoud, Karine Guillouard, Philippe Herbelin Orange Labs, Issy Les Moulineaux, France {first name.last name}@orange-ftgroup.com Abstract
Introducing Reliability and Load Balancing in Mobile IPv6 based Networks
Introducing Reliability and Load Balancing in Mobile IPv6 based Networks Jahanzeb Faizan Southern Methodist University Dallas, TX, USA [email protected] Hesham El-Rewini Southern Methodist University
CSE 473 Introduction to Computer Networks. Exam 2 Solutions. Your name: 10/31/2013
CSE 473 Introduction to Computer Networks Jon Turner Exam Solutions Your name: 0/3/03. (0 points). Consider a circular DHT with 7 nodes numbered 0,,...,6, where the nodes cache key-values pairs for 60
Network Friendliness of Mobility Management Protocols
Network Friendliness of Mobility Management Protocols Md Sazzadur Rahman, Mohammed Atiquzzaman Telecommunications and Networks Research Lab School of Computer Science, University of Oklahoma, Norman, OK
Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation
Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation R.Navaneethakrishnan Assistant Professor (SG) Bharathiyar College of Engineering and Technology, Karaikal, India.
TCP in Wireless Mobile Networks
TCP in Wireless Mobile Networks 1 Outline Introduction to transport layer Introduction to TCP (Internet) congestion control Congestion control in wireless networks 2 Transport Layer v.s. Network Layer
A Seamless Handover Mechanism for IEEE 802.16e Broadband Wireless Access
A Seamless Handover Mechanism for IEEE 802.16e Broadband Wireless Access Kyung-ah Kim 1, Chong-Kwon Kim 2, and Tongsok Kim 1 1 Marketing & Technology Lab., KT, Seoul, Republic of Korea, {kka1,tongsok}@kt.co.kr
Transport Layer Protocols
Transport Layer Protocols Version. Transport layer performs two main tasks for the application layer by using the network layer. It provides end to end communication between two applications, and implements
Load Balancing in Mobile IPv6 s Correspondent Networks with Mobility Agents
1 Load Balancing in Mobile IPv6 s Correspondent Networks with Mobility Agents Albert Cabellos-Aparicio, Jordi Domingo-Pascual Abstract A foreseeable scenario is where on the Internet Mobile IPv6 is deployed
An Active Network Based Hierarchical Mobile Internet Protocol Version 6 Framework
An Active Network Based Hierarchical Mobile Internet Protocol Version 6 Framework Zutao Zhu Zhenjun Li YunYong Duan Department of Business Support Department of Computer Science Department of Business
International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015 1169 ISSN 2229-5518
International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015 1169 Comparison of TCP I-Vegas with TCP Vegas in Wired-cum-Wireless Network Nitin Jain & Dr. Neelam Srivastava Abstract
Mobile IP Part I: IPv4
Mobile IP Part I: IPv4 Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 [email protected] These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse574-06/ 12-1 q Mobile
Ad Hoc Distributed Servers. Michal Szymaniak Guillaume Pierre Mariana Simons Nikolova Maarten van Steen
Ad Hoc Distributed Servers Michal Szymaniak Guillaume Pierre Mariana Simons Nikolova Maarten van Steen Problem Large scale distributed system E.g., CDN, Desktop Grid, P2P Node properties: Distributed over
2 TCP-like Design. Answer
Homework 3 1 DNS Suppose you have a Host C, a local name server L, and authoritative name servers A root, A com, and A google.com, where the naming convention A x means that the name server knows about
Mobile IP. Bheemarjuna Reddy Tamma IIT Hyderabad. Source: Slides of Charlie Perkins and Geert Heijenk on Mobile IP
Mobile IP Bheemarjuna Reddy Tamma IIT Hyderabad Source: Slides of Charlie Perkins and Geert Heijenk on Mobile IP IP Refresher Mobile IP Basics 3 parts of Mobile IP: Outline Advertising Care-of Addresses
Mobile Internet Protocol v6 MIPv6
Mobile Internet Protocol v6 MIPv6 A brief introduction [email protected] 13-dec-2005 Holger Zuleger 1/15 > c Defined by MIPv6 RFC3775: Mobility Support in IPv6 (June 2004) RFC3776: Using IPsec to
TCP PACKET CONTROL FOR WIRELESS NETWORKS
TCP PACKET CONTROL FOR WIRELESS NETWORKS by Wan Gang Zeng B. Sc. in Computer Science, University of Ottawa, 2000 THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE
Final for ECE374 05/06/13 Solution!!
1 Final for ECE374 05/06/13 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam taker -
Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc
(International Journal of Computer Science & Management Studies) Vol. 17, Issue 01 Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc Dr. Khalid Hamid Bilal Khartoum, Sudan [email protected]
IxLoad: Advanced VoIP
IxLoad: Advanced VoIP IxLoad in a typical configuration simulating SIP endpoints Aptixia IxLoad VoIP is the perfect tool for functional, performance, and stability testing of SIPbased voice over IP (VoIP)
Low-rate TCP-targeted Denial of Service Attack Defense
Low-rate TCP-targeted Denial of Service Attack Defense Johnny Tsao Petros Efstathopoulos University of California, Los Angeles, Computer Science Department Los Angeles, CA E-mail: {johnny5t, pefstath}@cs.ucla.edu
17: Queue Management. Queuing. Mark Handley
17: Queue Management Mark Handley Queuing The primary purpose of a queue in an IP router is to smooth out bursty arrivals, so that the network utilization can be high. But queues add delay and cause jitter.
TCP for Wireless Networks
TCP for Wireless Networks Outline Motivation TCP mechanisms Indirect TCP Snooping TCP Mobile TCP Fast retransmit/recovery Transmission freezing Selective retransmission Transaction oriented TCP Adapted
TCP and Wireless Networks Classical Approaches Optimizations TCP for 2.5G/3G Systems. Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme
Chapter 2 Technical Basics: Layer 1 Methods for Medium Access: Layer 2 Chapter 3 Wireless Networks: Bluetooth, WLAN, WirelessMAN, WirelessWAN Mobile Networks: GSM, GPRS, UMTS Chapter 4 Mobility on the
A Survey on Congestion Control Mechanisms for Performance Improvement of TCP
A Survey on Congestion Control Mechanisms for Performance Improvement of TCP Shital N. Karande Department of Computer Science Engineering, VIT, Pune, Maharashtra, India Sanjesh S. Pawale Department of
DDoS Vulnerability Analysis of Bittorrent Protocol
DDoS Vulnerability Analysis of Bittorrent Protocol Ka Cheung Sia [email protected] Abstract Bittorrent (BT) traffic had been reported to contribute to 3% of the Internet traffic nowadays and the number
Micro Mobility and Internet Access Performance for TCP Connections in Ad hoc Networks
Micro Mobility and Internet Access Performance for TCP Connections in Ad hoc Networks Anders Nilsson, Ali Hamidian, Ulf Körner Department of Communication Systems Lund University, Sweden Box118,221Lund
TCP Adaptation for MPI on Long-and-Fat Networks
TCP Adaptation for MPI on Long-and-Fat Networks Motohiko Matsuda, Tomohiro Kudoh Yuetsu Kodama, Ryousei Takano Grid Technology Research Center Yutaka Ishikawa The University of Tokyo Outline Background
Load Balancing in Mobile IPv6 s Correspondent Networks with Mobility Agents
Load Balancing in Mobile IPv6 s Correspondent Networks with Mobility Agents Albert Cabellos-Aparicio, Jordi Domingo Pascual Departament d Arquitectura de Computadors Universitat Politècnica de Catalunya
IPv6/IPv4 Automatic Dual Authentication Technique for Campus Network
IPv6/IPv4 Automatic Dual Authentication Technique for Campus Network S. CHITPINITYON, S. SANGUANPONG, K. KOHT-ARSA, W. PITTAYAPITAK, S. ERJONGMANEE AND P. WATANAPONGSE Agenda Introduction Design And Implementation
MINIMUM NETWORK REQUIREMENTS 1. REQUIREMENTS SUMMARY... 1
Table of Contents 1. REQUIREMENTS SUMMARY... 1 2. REQUIREMENTS DETAIL... 2 2.1 DHCP SERVER... 2 2.2 DNS SERVER... 2 2.3 FIREWALLS... 3 2.4 NETWORK ADDRESS TRANSLATION... 4 2.5 APPLICATION LAYER GATEWAY...
IPv6 mobility and ad hoc network mobility overview report
Institut Eurecom 1 Department of Mobile Communications 2229, route des Crêtes B.P. 193 06904 Sophia Antipolis FRANCE Research Report RR-08-217 IPv6 mobility and ad hoc network mobility overview report
Single Pass Load Balancing with Session Persistence in IPv6 Network. C. J. (Charlie) Liu Network Operations Charter Communications
Single Pass Load Balancing with Session Persistence in IPv6 Network C. J. (Charlie) Liu Network Operations Charter Communications Load Balancer Today o Load balancing is still in use today. It is now considered
TCP Westwood for Wireless
TCP Westwood for Wireless מבוא רקע טכני בקרת עומס ב- TCP TCP על קשר אלחוטי שיפור תפוקה עם פרוטוקול TCP Westwood סיכום.1.2.3.4.5 Seminar in Computer Networks and Distributed Systems Hadassah College Spring
Mobile Routing. When a host moves, its point of attachment in the network changes. This is called a handoff.
Mobile Routing Basic Notions of Mobility When a host moves, its point of attachment in the changes. This is called a handoff. The point of attachment is a base station (BS) for cellular, or an access point
TCP in Wireless Networks
Outline Lecture 10 TCP Performance and QoS in Wireless s TCP Performance in wireless networks TCP performance in asymmetric networks WAP Kurose-Ross: Chapter 3, 6.8 On-line: TCP over Wireless Systems Problems
Simulation-Based Comparisons of Solutions for TCP Packet Reordering in Wireless Network
Simulation-Based Comparisons of Solutions for TCP Packet Reordering in Wireless Network 作 者 :Daiqin Yang, Ka-Cheong Leung, and Victor O. K. Li 出 處 :Wireless Communications and Networking Conference, 2007.WCNC
Mobile Communications Chapter 9: Mobile Transport Layer
Mobile Communications Chapter 9: Mobile Transport Layer Motivation TCP-mechanisms Classical approaches Indirect TCP Snooping TCP Mobile TCP PEPs in general Additional optimizations Fast retransmit/recovery
NAT TCP SIP ALG Support
The feature allows embedded messages of the Session Initiation Protocol (SIP) passing through a device that is configured with Network Address Translation (NAT) to be translated and encoded back to the
TCP based Denial-of-Service Attacks to Edge Network: Analysis and Detection
TCP based Denial-of-Service Attacks to Edge Network: Analysis and Detection V. Anil Kumar 1 and Dorgham Sisalem 2 1 CSIR Centre for Mathematical Modelling and Computer Simulation, Bangalore, India 2 Fraunhofer
A Study on TCP Performance over Mobile Ad Hoc Networks
215 A Study on TCP Performance over Mobile Ad Hoc Networks Shweta Sharma 1, Anshika Garg 2 1 School of Computing Science and Engineering, Galgotias University, Greater Noida 2 School of Computing Science
TFTP TRIVIAL FILE TRANSFER PROTOCOL OVERVIEW OF TFTP, A VERY SIMPLE FILE TRANSFER PROTOCOL FOR SIMPLE AND CONSTRAINED DEVICES
TFTP - Trivial File TFTP Transfer Protocol TRIVIAL FILE TRANSFER PROTOCOL OVERVIEW OF TFTP, A VERY SIMPLE FILE TRANSFER PROTOCOL FOR SIMPLE AND CONSTRAINED DEVICES Peter R. Egli INDIGOO.COM 1/10 Contents
Denial of Service Attacks and Countermeasures. Extreme Networks, Inc. All rights reserved. ExtremeXOS Implementing Advanced Security (EIAS)
Denial of Service Attacks and Countermeasures Extreme Networks, Inc. All rights reserved. ExtremeXOS Implementing Advanced Security (EIAS) Student Objectives Upon successful completion of this module,
Wireless Networks: Network Protocols/Mobile IP
Wireless Networks: Network Protocols/Mobile IP Mo$va$on Data transfer Encapsula$on Security IPv6 Problems DHCP Adapted from J. Schiller, Mobile Communications 1 Mo$va$on for Mobile IP Rou$ng based on IP
The Fundamentals of Intrusion Prevention System Testing
The Fundamentals of Intrusion Prevention System Testing New network-based Intrusion Prevention Systems (IPS) complement traditional security products to provide enterprises with unparalleled protection
Network Mobility Support Scheme on PMIPv6 Networks
Network Mobility Support Scheme on PMIPv6 Networks Hyo-Beom Lee 1, Youn-Hee Han 2 and Sung-Gi Min 1 1 Dept. of Computer Science and Engineering, Korea University, Seoul, South Korea. [email protected]
Network management and QoS provisioning - QoS in the Internet
QoS in the Internet Inernet approach is based on datagram service (best effort), so provide QoS was not a purpose for developers. Mainly problems are:. recognizing flows;. manage the issue that packets
About Firewall Protection
1. This guide describes how to configure basic firewall rules in the UTM to protect your network. The firewall then can provide secure, encrypted communications between your local network and a remote
Performance Evaluation for Mobility Management Protocols in Cellular IP and Hawaii Mobile Networks
Performance Evaluation for Mobility Management Protocols in Cellular IP and Hawaii Mobile Networks M.Mansour, A.Ghneimat,J. E. Mellor Department of Computing University of Bradford Bradford BD7 1DP, UK.
A Study on Mobile IPv6 Based Mobility Management Architecture
UDC 621.396.69:681.32 A Study on Mobile IPv6 Based Mobility Management Architecture VTsuguo Kato VRyuichi Takechi VHideaki Ono (Manuscript received January 19, 2001) Mobile IPv6 is considered to be one
Active Queue Management (AQM) based Internet Congestion Control
Active Queue Management (AQM) based Internet Congestion Control October 1 2002 Seungwan Ryu ([email protected]) PhD Student of IE Department University at Buffalo Contents Internet Congestion Control
IAB CONCERNS ABOUT CONGESTION CONTROL. Iffat Hasnian 1832659
IAB CONCERNS ABOUT CONGESTION CONTROL Iffat Hasnian 1832659 IAB CONCERNS Outline 1- Introduction 2- Persistent High Drop rate Problem 3- Current Efforts in the IETF 3.1 RTP 3.2 TFRC 3.3 DCCP 3.4 Audio
Frequently Asked Questions
Frequently Asked Questions 1. Q: What is the Network Data Tunnel? A: Network Data Tunnel (NDT) is a software-based solution that accelerates data transfer in point-to-point or point-to-multipoint network
DDoS attacks on electronic payment systems. Sean Rijs and Joris Claassen Supervisor: Stefan Dusée
DDoS attacks on electronic payment systems Sean Rijs and Joris Claassen Supervisor: Stefan Dusée Scope High volume DDoS attacks Electronic payment systems Low bandwidth requirements: 5 from account X to
20-CS-6053-00X Network Security Spring, 2014. An Introduction To. Network Security. Week 1. January 7
20-CS-6053-00X Network Security Spring, 2014 An Introduction To Network Security Week 1 January 7 Attacks Criminal: fraud, scams, destruction; IP, ID, brand theft Privacy: surveillance, databases, traffic
Congestion Control Review. 15-441 Computer Networking. Resource Management Approaches. Traffic and Resource Management. What is congestion control?
Congestion Control Review What is congestion control? 15-441 Computer Networking What is the principle of TCP? Lecture 22 Queue Management and QoS 2 Traffic and Resource Management Resource Management
Congestions and Control Mechanisms n Wired and Wireless Networks
International OPEN ACCESS Journal ISSN: 2249-6645 Of Modern Engineering Research (IJMER) Congestions and Control Mechanisms n Wired and Wireless Networks MD Gulzar 1, B Mahender 2, Mr.B.Buchibabu 3 1 (Asst
Key Components of WAN Optimization Controller Functionality
Key Components of WAN Optimization Controller Functionality Introduction and Goals One of the key challenges facing IT organizations relative to application and service delivery is ensuring that the applications
SIP Trunking Manual 05.15. Technical Support Web Site: http://ws1.necii.com (registration is required)
SIP Trunking Manual 05.15 Technical Support Web Site: http://ws1.necii.com (registration is required) This manual has been developed by NEC Unified Solutions, Inc. It is intended for the use of its customers
Virtual Private Network Using Peer-to-Peer Techniques
Virtual Private Network Using Peer-to-Peer Techniques Peer-to-Peer VPN Daniel Kasza Massachusetts Academy of Math and Science Abstract The low performance of traditional, client-server model based, virtual
APNIC elearning: IPSec Basics. Contact: [email protected]. esec03_v1.0
APNIC elearning: IPSec Basics Contact: [email protected] esec03_v1.0 Overview Virtual Private Networks What is IPsec? Benefits of IPsec Tunnel and Transport Mode IPsec Architecture Security Associations
Monitoring and analyzing audio, video, and multimedia traffic on the network
Monitoring and analyzing audio, video, and multimedia traffic on the network Slavko Gajin [email protected] AMRES Academic Network of Serbia AMRES Academic Network of Serbia RCUB - Belgrade University
Denial-of-Service Shrew Attacks
Denial-of-Service Shrew Attacks Bhuvana Mahalingam [email protected] 1. Introduction A Denial of Service Attack is defined as An incident in which a user or organization is deprived of the services of
Performance Issues of TCP and MPEG-4 4 over UMTS
Performance Issues of TCP and MPEG-4 4 over UMTS Anthony Lo [email protected] 1 Wiskunde end Informatica Outline UMTS Overview TCP and MPEG-4 Performance Summary 2 1 Universal Mobile Telecommunications
Requirements of Voice in an IP Internetwork
Requirements of Voice in an IP Internetwork Real-Time Voice in a Best-Effort IP Internetwork This topic lists problems associated with implementation of real-time voice traffic in a best-effort IP internetwork.
An Improved TCP Congestion Control Algorithm for Wireless Networks
An Improved TCP Congestion Control Algorithm for Wireless Networks Ahmed Khurshid Department of Computer Science University of Illinois at Urbana-Champaign Illinois, USA [email protected] Md. Humayun
Supporting VoIP in IEEE802.11 Distributed WLANs
Supporting VoIP in IEEE802.11 Distributed WLANs Zuo Liu Supervisor: Dr. Nick Filer July 2012 1 Voice VoIP Applications Constant Streaming Traffic Packetize interval usually 10-30 ms 8 160 bytes each packet
RTT 60.5 msec receiver window size: 32 KB
Real-World ARQ Performance: TCP Ex.: Purdue UCSD Purdue (NSL): web server UCSD: web client traceroute to planetlab3.ucsd.edu (132.239.17.226), 30 hops max, 40 byte packets 1 switch-lwsn2133-z1r11 (128.10.27.250)
ETM System SIP Trunk Support Technical Discussion
ETM System SIP Trunk Support Technical Discussion Release 6.0 A product brief from SecureLogix Corporation Rev C SIP Trunk Support in the ETM System v6.0 Introduction Today s voice networks are rife with
