REDUCING PACKET OVERHEAD IN MOBILE IPV6
|
|
|
- Michael Parsons
- 10 years ago
- Views:
Transcription
1 REDUCING PACKET OVERHEAD IN MOBILE IPV6 ABSTRACT Hooshiar Zolfagharnasab 1 1 Department of Computer Engineering, University of Isfahan, Isfahan, Iran [email protected] [email protected] Common Mobile IPv6 mechanisms, Bidirectional tunneling and Route optimization, show inefficient packet overhead when both nodes are mobile. Researchers have proposed methods to reduce packet overhead regarding to maintain compatible with standard mechanisms. In this paper, three mechanisms in Mobile IPv6 are discussed to show their efficiency and performance. Following discussion, a new mechanism called Improved Tunneling-based Route Optimization is proposed and due to performance analysis, it is shown that proposed mechanism has less overhead comparing to common mechanisms. Analytical results indicate that Improved Tunneling-based Route Optimization transmits more payloads due to send packets with less overhead. KEYWORDS Mobile IPv6, Route Optimization, Bi-directional Tunneling, Overhead Reduction 1. INTRODUCTION Mobile IP is a technique enables nodes to maintain stay connected while they are moving through networks [1]. Due to Mobile IP protocol, a communication can be established between a Mobile Node (MN) and a Corresponding Node (CN) regardless to their locations. The Mobile IP protocol supports transparency above the network layer including transport layer which consists of the maintenance of active TCP connections and UDP port bindings, and application layer. Mobile IP is most often found in wireless WAN environments where users need to carry their mobile devices across multiple LANs with different IP addresses [2]-[4]. Mobile IP is implemented in IPv6 via two mechanisms called Bidirectional tunneling and route optimization [1] [8]. In order to enable mobility over IP protocols, network layer of mobile devices should send messages to inform other devices about location and network they are wandering. Original packets from the network upper layers are embedded in packets containing mobile routing headers. Reducing mobility overhead causes more data to be sent with each packet. Therefore some mechanisms are used to reduce mobility overhead. In this paper, a new mechanism is proposed to reduce mobility overhead by reusing address field of IP address twice. 2. RELATED WORKS Some attempts have been performed to improve security and performance in Mobile IP. C. Perkins proposed a security mechanism in binding updates between CN and MN in [5]. C. Vogt et al. in [6] proposed a proactive address testing in route optimization. In other aspect, D. Le and J. Chang suggested reducing bandwidth usage due to use tunnel header instead of route optimization header when both MN and CN are mobile nodes [7]. It should be noted few papers focused on bandwidth reduction in Mobile IP while a lot of suggestions are proposed to solve issues in security and delay. In this paper, we are going to present a new technique to reduce bandwidth by diminishing overhead of packets when both MN and CN are mobile nodes. DOI : /ijdps
2 3. MOBILE IPV6 Discussing about Bidirectional and route optimization (standard mechanisms), we will talk about their advantages and disadvantages. Later a method in [7] is presented to cover some disadvantages in standard mechanisms. The evaluation of discussed method called Tunnelingbased Route Optimization is followed to show the improvement in bandwidth usage Bi-directional Tunneling Based on idea of easily implementation of indirect mode in Mobile IPv4 [8], Bidirectional tunneling is presented in Mobile IPv6. In Bidirectional Tunneling, MN and HA are connected to each other via a tunnel, so signaling is required to construct a tunnel between MN and CN. Packets sent from CN to MN passes through HA before deliverance to MN. Intercepting all packets destined to MN, HA detects by Proxy Neighbor Discovery [9]. Since MN is not present in home network and assuming noticed tunnel is constructed, HA encapsulates each detected packet in a new packet addressed to MN s new care-of address (CoA) and sends them through the tunnel [10]. At the end of the tunnel, the tunneled packet is de-capsulated by MN s network layer before being surrendered to MN s upper layers. Similar encapsulation is performed when MN sends packets. Encapsulated packets are tunneled to HA, that is called reverse tunneling, by adding 40 bytes as tunnel header, addressed from MN s CoA to HA. Being de-capsulated by HA, tunneling header is removed and modified packet is sent to CN through the Internet Route Optimization In Route Optimization mechanism, packets are transmitted between MN and CN directly [3]. Binding Update (BU) messages are sent not only to HA, but also to all connected CNs to bind MN s current address to its HoA. Each CN has a table called Binding Cache to keep track of all corresponding MNs CoA and their HoA. Similar table is kept in MN to determine whether a CN uses Bidirectional tunneling or route optimization. Also it is important to update CNs binding cache by sending BU messages frequently. Route Optimization mechanism uses Home Address Option header extension to carry MN s HoA when a packet is sent from MN to CN. Reversely when a packet is sent from CN to MN, another header extension called Type 2 Routing header is used. Route optimization reduces the delay mentioned in Bidirectional tunneling. Putting routing task on each node, HA can handle more mobile nodes compared to Bidirectional tunneling. In a scenario that both MN and CN are mobile nodes, route optimization can be implemented, too [1]. Since both MN and CN have HoA and CoA, packet routing requires both extension headers to carry enough information for the pair s network layer. Therefore, to transmit a packet from MN to CN, not only Home Address Option header, but also Type 2 Routing header should be filled with appropriate addresses. Since each extension header is 24 bytes, total overhead to transmit a packet between two mobile nodes is 48 bytes Tunneling-based Route Optimization As discussed before, in a scenario when both MN and CN are mobile nodes, total overhead to carry a packet between nodes is 48 bytes in route optimization. To reduce the overhead, D. le and J. Chang in [7] proposed a mechanism called Tunneling-based Route Optimization (TRO). Like standard route optimization, TRO construct a tunnel to transfer packets directly between MN and CN. But in their proposed method, a Tunnel Manager is controlling packets. Not only tunnel manager is in touch with binding cache, but also it manipulates packets importing and exporting from the network layer. 2
3 As long as MN s transport layer create a packet from MN s HoA destined to CN s HoA, the packet is surrendered to MN s tunnel manager before it is sent. Since tunnel manager is aware of CN s mobility, it encapsulates the packet in a new packet addressed from MN s CoA to CN s CoA. Later the packet is sent through the tunnel to CN. At the other side of tunnel, CN s tunnel manger de-capsulate the packet, extracting the original packet addressed from MN s HoA to CN s HoA. Then the packet is surrendered to transport layer which is still unaware of mobility. To maintain compatible with previous mechanisms, BU messages are changed. By using a flag called ROT, tunnel manager decides whether to use Tunneling-based Route Optimization or standard route optimization [7]. TRO mechanism benefits from using 40 bytes tunnel header instead of using 48 bytes extension header when standard route optimization is used. Result presented in [7] shows that TRO can increase performance in Mobile IP comparing to standard mechanisms. 4. IMPROVED TUNNELING-BASED ROUTE OPTIMIZATION More reduction can be accessed in order to spend less header overhead in communication between MN and CN, when they are both mobile nodes. Each node constructs a binding cache to keep the address of the other, so there is no necessity to send HoA of the other pair via header extension because it can be obtained from binding cache by the help of CoA included in packet. In other words, header overhead is reduced by using IPv6 address fields twice, both for the Internet addressing and mobile addressing. Instead, a tunnel manager should be embedded not only to control binding cache, but also change the packet header. The tunnel manager should control whether IPv6 address header is used for Internet addressing or mobile addressing. Later in this section, we discuss about Improved Tunneling-based Route Optimization method Protocol Model in End-Points Mobile IPv6 protocol should change a little to support overhead reduction. Both nodes should be devised with a tunnel manager which control and change all packets switched between MN and CN. Also the noticed tunnel manger should be allowed to access binding cache in order to find corresponding HoA of a node. Fig.1 depicts the protocol model in sender and receiver Improved Tunneling-based Route Optimization Routing Below, we discuss two scenarios to explain our proposed method. It should be mentioned that a tunnel between MN and CN should be initiated at first. Also BU messages have been sent to construct binding cache in both CoA and HoA of the other pair. In a situation when CN is unaware of MN s new location, same action done in route optimization, is performed. As long as MN wants to send a packet to CN, since mobility is transparent to upper layers in nodes, MN s network layer sets both source of the packet to MN HoA and destination to CN s HoA. In the next step, when tunnel manager gets the packet, it updates the packet by changing both packet s source and destination. Since MN is in a foreign network, it changes the source field from its HoA to its CoA. Later, searching binding cache (by the help of CN s HoA), it finds CN s corresponding CoA and then writes it in the destination address field. Altered packet is sent directly to CN through the tunnel. By reception of packet to the other side of the tunnel, CN s tunnel manager manipulates the packet to make it ready for upper layers. First manipulation is performed by changing the packet s destination from CN CoA to CN s HoA. Next step is followed by searching binding cache with MN s CoA to find corresponding HoA. Later, the CN s tunnel manger then change packet s source from MN s CoA to what has just been found, MN s HoA. As long as changes are finished, the updated packet is surrendered to upper layers. Due to Fig. 1, packets sent from MN to CN are addressed as shown in Fig. 2. 3
4 Figure 1. Protocol model for route optimization and packets passing between layers Figure 2. Improved tunneling-based route optimization packets due to Fig.1 Same action is performed when a packet is sent from CN to MN. Since CN s network upper layers are unaware of mobility, a packet is constructed which is addressed from CN s HoA to MN s HoA. As the packet is passed to CN s tunnel manger, due to binding cache, the destination of the packet is changed from MN s HoA to MN s CoA. Since CN knows its CoA, tunnel manger updates the packet s source from its HoA to CoA. Then the packet is tunneled to MN. Similarly, MN s tunnel manager changes the packet s destination from MN s CoA to MN s HoA. Later, searching binding cache, the packet s source is also changed from CN s CoA to CN s HoA Changing BU messages To maintain compatible with other MIPv6 mechanisms, binding messages should change. We propose to use two flags in order to distinguish three different mechanisms. Calling ROT0 and ROT1, these flags indicate whether route optimization or Tunneling-based Route Optimization or improved tunneling-based route optimization is used. Routing mechanisms due to ROT0 and ROT1 are listed in table 1. Table 1. Routing mechanism due to ROT flags. Mechanism ROT1 ROT0 Route Optimization 0 0 Tunneling-based Route Optimization 0 1 Improved Tunneling-based Route Optimization (proposed method) 1 1 or 0 5. EVALUATION Comparing to three other mechanisms, we evaluate our proposed method. Since Improved Tunneling-based Route Optimization mechanism intends to reduce header overhead, main 4
5 comparison metric is bytes consumed to establish mobile communication. We used relation 1 proposed in [7] to calculate mobility overhead. It should be noted that mobility overhead is bytes used to establish mobility communication, and is different from overhead used to route packets through network layer. Mobility _ Addition _ Size Mobility _ overhead _ ratio = (1) Original _ Packet _ Size Also as exception, comparing to Bidirectional tunneling mechanism, communicating time is also mentioned which is defined as total time for a packet to deliver from source to destination. Moreover, packets are assumed to be 1500 bytes that is maximum transmission unit size in Ethernet, containing IPv6 packets, extension header if needed and tunneling overhead Comparing to Bidirectional tunneling As mentioned before, in Bidirectional tunneling, packets from CN should be tunneled from HA to MN and are replied in the same tunnel from MN to HA, called reverse tunneling. For each time a packet is tunneled, 40 bytes are used to route the packet to the other side of tunnel. As a packet is tunneled twice to reach to destination, 80 bytes are consumed in two different communications. Total bandwidth which is used to carry a packet from source to destination is calculated as follows: Figure 3. Comparing delay time for Bidirectional tunneling mechanism and route optimization based mechanisms Tunnel _ Header _ SizeHA Mobility _ Overhead _ Ratio = Original _ Packet _ Size MN = + = 5.48% Tunnel _ Header _ SizeMN + Original _ Packet _ Size Also in Bidirectional tunneling, each routing elapses one Internet routing time [11] because each node can be anywhere in the Internet. Due to Fig.3, total delay consists of three Internet routing time that is calculated from: Total _ Time = TMN HA + THA HA + THA CN T MN MN CN CN 3 Internet (3) In improved tunneling-based route optimization, since nodes are connected to each other through a tunnel, there is no obligation to tunnel packets twice between MN and HA. Also HA (2) 5
6 address field of packet is used both for tunnel and IPv6 header. Therefore, reduction in both overhead and delay are sensible. Mobility Overhead Ratio is calculated as follows: 0 B IPv 6 _ tunnel _ header 0 Mobility _ Overhead _ Ratio = = = 0% (4) Also delay in proposed mechanism is computed from: Total _ Time T MN T (5) = CN Internet It means in Improved Tunneling-based Route Optimization mechanism s more efficient both in overhead and delay Comparing to Route Optimization Although both route optimization and proposed mechanisms construct a tunnel to reduce delay and overhead regarded to communicate two mobile nodes, different overheads are used to route a packet in the constructed tunnel. In the situation when both nodes are mobile, route optimization uses Home Address Option and Type 2 routing extension headers as it is shown in Fig. 4. Since each extension header is 24 bytes in size, total mobility header added to IPv6 packet is 48 bytes. So mobility overhead ratio is calculated as follows: Figure 4. Route optimization packets due to Fig.1 24 B Type B HoA _ Option 48 Mobility _ Overhead _ Ratio = = = 3.3% (6) Since packets are tunneled directly to each node, one Internet time is needed for this communication due to Eq. 7. Total _ Time T MN T (7) = CN Internet Because Improved Tunneling-based Route Optimization uses address field of packet both for tunneling and IPv6 routing, as it calculated before, it uses 0% of total packet size. Using same tunnel, total delay time is same for both route optimization and proposed method Comparing to Tunneling-based Route Optimization Tunneling-based Route Optimization is proposed not only to decrease communication delay, but also to reduce overhead. It benefits from both tunneling idea used in Bidirectional tunneling and connecting directly used in route optimization. Tunneling header which is 40 bytes is added to IPv6 packet duo to reduce 48 bytes of extension headers. Fig. 5 shows packets A and B due to Fig. 1 when Tunneling-based Route Optimization mechanism is used. Also, mobility overhead ratio is calculated as follows: Figure 5. Tunneling-based Route Optimization packets due to Fig.1 6
7 40 B IPv 6 _ tunnel _ header 40 Mobility _ Overhead _ Ratio = = = 2.74% (8) Same total delay is calculated in Tunneling-based Route Optimization, because same tunnel is used to carry packets. Comparing to Improved Tunneling-based Route Optimization mechanism, proposed method has no overhead in header used in mobile communication. And total delay is the same to route optimization mechanism. Listed in table 2, Mobile IPv6 mechanisms are compared to each other. All in all it is obvious that proposed method can reduce both delay and bandwidth used in mobile nodes communication. Table 2. Comparison between Mobile IPv6 mechanisms Mechanism Packet Overhead (%) Delay (Internet Time) Bidirectional Tunneling Route Optimization Tunneling-based Route Optimization Improved Tunneling-based Route Optimization (proposed method) Conclusion In this paper, performance of both standard Mobile IPv6 routing mechanisms and Tunnelingbased Route Optimization are analysed. To reduce packet overhead, we proposed improved Tunneling-based Route Optimization mechanism. In order to maintain compatible with standard mechanisms, not only the tunnel manager should be changed, but also Binding Update messages must be altered. Comparing to Bidirectional tunneling, route optimization and tunneling-based route optimization shows that the packet overhead of proposed mechanism is reduced significantly. Therefore regarding to less overhead for each packet, more data can be transmitted through network via a Mobile IP communication. REFERENCES [1] D. Johnson, C. Perkins and J. Arkko, "Mobility Support in IPv6,"Internet Draft (work in progress), IETF, [Online]. Available: 05.txt [2] R. Koodli, "Mobile IPv6 Fast Handovers,"RFC 5568, IETF, [Online]. Available: [3] A. Muhanna, M. Khalil, S. Gundavelli, K. Chowdhury and P. Yegani, "Binding Revocation for IPv6 Mobility, "Internet Draft (work in progress), IETF, [Online]. Available: [4] M. Liebsch, A. Muhanna, O. Blume, "Transient Binding for Proxy Mobile IPv6," Internet Draft (work in progress), IETF, [Online]. Available: [5] C. Perkins, "Securing Mobile IPv6 Route Optimization Using a Static Shared Key, "RFC 4449, IETF, June [Online]. Available: 7
8 [6] C. Vogt, R. Bless, M. Doll, and T. Kuefner, "Early Binding Updates for Mobile IPv6," in Proceedings of IEEE Wireless Communications and Networking Conference (WCNC'05), vol. 3, 2005, pp [7] D. Le, J. Chang, "Tunneling-based route optimization for mobile IPv6 " in Proceedings of IEEE Wireless Communications, Networking and Information Security (WCNIS), 2010, pp [8] C. Perkins, "IP Mobility Support for IPv4", RFC 3344, IETF, August [Online]. Available: [9] T. Narten, E. Nordmark and W. Simpson, "Neighbor Discovery for IP Version 6 (IPv6)", RFC 4861, IETF, September [Online]. Available: [10] A. Conta and S. Deering, "Generic Packet Tunneling in IPv6 Specification," RFC 2473, IETF, December [Online]. Available: [11] M. Kalman and B. Girod, "Modeling the delays of successivelytransmitted Internet packets," In Proceedings of the IEEE International Conference on Multimedia and Expo, ICME'04, Taipei, Taiwan, June 2004, pp Authors HooshiarZolfagharnasab was born in Mar. 10 th Graduated from high school in 2005, he entered to university in his beloved field, Computer Engineering. Four years later, he was graduated from B.Sc. in Computer Engineering, Hardware engineering and soon he was admitted in University of Isfahan to continue his career. In Nov. 15th, he was graduated from University of Isfahan as soon as he received his M.Sc. in Computer Engineering, Architecture of Digital Systems. Now he is trying to find a PhD position to continue his career. He does all his effort to make the world a better place for all human beings. 8
Boosting mobility performance with Multi-Path TCP
Boosting mobility performance with Multi-Path TCP Name SURNAME 1, Name SURNAME 2 1 Organisation, Address, City, Postcode, Country Tel: +countrycode localcode number, Fax: + countrycode localcode number,
Mobility on IPv6 Networks
Mobility on IPv6 Networks Pedro M. Ruiz Project Manager Agora Systems S.A. Global IPv6 Summit Madrid 13-15 March 2002 Pedro M. Ruiz (c) Agora Systems S.A, 2002 1 Outline Motivation MIPv6 architecture MIPv6
Introducing Reliability and Load Balancing in Mobile IPv6 based Networks
Introducing Reliability and Load Balancing in Mobile IPv6 based Networks Jahanzeb Faizan Southern Methodist University Dallas, TX, USA [email protected] Hesham El-Rewini Southern Methodist University
6 Mobility Management
Politecnico di Milano Facoltà di Ingegneria dell Informazione 6 Mobility Management Reti Mobili Distribuite Prof. Antonio Capone Introduction Mobility management allows a terminal to change its point of
Mobile Routing. When a host moves, its point of attachment in the network changes. This is called a handoff.
Mobile Routing Basic Notions of Mobility When a host moves, its point of attachment in the changes. This is called a handoff. The point of attachment is a base station (BS) for cellular, or an access point
Mobile IP. Bheemarjuna Reddy Tamma IIT Hyderabad. Source: Slides of Charlie Perkins and Geert Heijenk on Mobile IP
Mobile IP Bheemarjuna Reddy Tamma IIT Hyderabad Source: Slides of Charlie Perkins and Geert Heijenk on Mobile IP IP Refresher Mobile IP Basics 3 parts of Mobile IP: Outline Advertising Care-of Addresses
MPLS VPN in Cellular Mobile IPv6 Architectures(04##017)
MPLS VPN in Cellular Mobile IPv6 Architectures(04##017) Yao-Chung Chang, Han-Chieh Chao, K.M. Liu and T. G. Tsuei* Department of Electrical Engineering, National Dong Hwa University Hualien, Taiwan, Republic
Tomás P. de Miguel DIT-UPM. dit UPM
Tomás P. de Miguel DIT- 15 12 Internet Mobile Market Phone.com 15 12 in Millions 9 6 3 9 6 3 0 1996 1997 1998 1999 2000 2001 0 Wireless Internet E-mail subscribers 2 (January 2001) Mobility The ability
A Study on Mobile IPv6 Based Mobility Management Architecture
UDC 621.396.69:681.32 A Study on Mobile IPv6 Based Mobility Management Architecture VTsuguo Kato VRyuichi Takechi VHideaki Ono (Manuscript received January 19, 2001) Mobile IPv6 is considered to be one
Introduction to Mobile IPv6
1 Introduction to Mobile IPv6 III IPv6 Global Summit Moscow Dr. Dimitrios Kalogeras [email protected] GRNET Outline Introduction Relevant Features of IPv6 Major Differences between MIPv4 and MIPv6 Mobile
Load Balancing in Mobile IPv6 s Correspondent Networks with Mobility Agents
1 Load Balancing in Mobile IPv6 s Correspondent Networks with Mobility Agents Albert Cabellos-Aparicio, Jordi Domingo-Pascual Abstract A foreseeable scenario is where on the Internet Mobile IPv6 is deployed
Load Balancing in Mobile IPv6 s Correspondent Networks with Mobility Agents
Load Balancing in Mobile IPv6 s Correspondent Networks with Mobility Agents Albert Cabellos-Aparicio, Jordi Domingo Pascual Departament d Arquitectura de Computadors Universitat Politècnica de Catalunya
Mobility Management in DECT/IPv6 Networks
Mobility Management in DECT/IPv6 Networks Sarantis Paskalis 1, Georgios Lampropoulos 1, and Georgios Stefanou 1 Department of Informatics and Telecommunications University of Athens, Greece Abstract. The
SHISA: The IPv6 Mobility Framework for BSD Operating Systems
SHISA: The IPv6 Mobility Framework for BSD Operating Systems Keiichi Shima Internet Initiative Japan Inc. Ryuji Wakikawa, Koshiro Mitsuya, Keisuke Uehara Keio University Tsuyoshi Momose NEC Corporation
MOBILE VIDEO WITH MOBILE IPv6
MOBILE VIDEO WITH MOBILE IPv6 DANIEL MINOLI WILEY A JOHN WILEY & SONS, INC., PUBLICATION CONTENTS PREFACE ABOUT THE AUTHOR xi xiii 1 THE MOBILE USER ENVIRONMENT: SMART PHONES, PORTABLE MEDIA PLAYERS (PMPs),
IP and Mobility. Requirements to a Mobile IP. Terminology in Mobile IP
IP and Mobility Chapter 2 Technical Basics: Layer Methods for Medium Access: Layer 2 Chapter Wireless Networks: Bluetooth, WLAN, WirelessMAN, WirelessWAN Mobile Telecommunication Networks: GSM, GPRS, UMTS
Mobility Management Framework in Software Defined Networks
, pp. 1-10 http://dx.doi.org/10.14257/ijseia.2014.8.8,01 Mobility Management Framework in Software Defined Networks Kyoung-Hee Lee Department of Computer Engineering, Pai Chai University, Korea [email protected]
Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc
(International Journal of Computer Science & Management Studies) Vol. 17, Issue 01 Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc Dr. Khalid Hamid Bilal Khartoum, Sudan [email protected]
QoS Provisioning in Mobile Internet Environment
QoS Provisioning in Moile Internet Environment Salem Lepaja ([email protected]), Reinhard Fleck, Nguyen Nam Hoang Vienna University of Technology, Institute of Communication Networks, Favoritenstrasse
Cost Analysis of NEMO Protocol Entities
Cost Analysis of NEMO Protocol Entities Md. Shohrab Hossain Mohammed Atiquzzaman School of Computer Science, University of Oklahoma, Norman, OK 73019. Email: {shohrab, atiq}@ou.edu William Ivancic NASA
Mobile IP Part I: IPv4
Mobile IP Part I: IPv4 Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 [email protected] These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse574-06/ 12-1 q Mobile
IPv6 associated protocols. Piers O Hanlon
IPv6 associated protocols Piers O Hanlon Contributions Main authors Jean-Marc Barozet, Cisco, France Faycal Hadj, Cisco, France Patrick Grossetete, Cisco, France Gunter Van de Velde, Cisco, Belgium Bernard
Network Mobility Support Scheme on PMIPv6 Networks
Network Mobility Support Scheme on PMIPv6 Networks Hyo-Beom Lee 1, Youn-Hee Han 2 and Sung-Gi Min 1 1 Dept. of Computer Science and Engineering, Korea University, Seoul, South Korea. [email protected]
Mobile Internet Protocol v6 MIPv6
Mobile Internet Protocol v6 MIPv6 A brief introduction [email protected] 13-dec-2005 Holger Zuleger 1/15 > c Defined by MIPv6 RFC3775: Mobility Support in IPv6 (June 2004) RFC3776: Using IPsec to
A Mobile Ad-hoc Satellite and Wireless Mesh Networking Approach for Public Safety Communications
A Mobile Ad-hoc Satellite and Wireless Mesh Networking Approach for Public Safety Communications G. Iapichino, C. Bonnet Mobile Communications Department Eurecom Sophia Antipolis, France {Iapichin, Bonnet}@eurecom.fr
IPv6 mobility and ad hoc network mobility overview report
Institut Eurecom 1 Department of Mobile Communications 2229, route des Crêtes B.P. 193 06904 Sophia Antipolis FRANCE Research Report RR-08-217 IPv6 mobility and ad hoc network mobility overview report
Mobility Management 嚴 力 行 高 雄 大 學 資 工 系
Mobility Management 嚴 力 行 高 雄 大 學 資 工 系 Mobility Management in Cellular Systems Cellular System HLR PSTN MSC MSC VLR BSC BSC BSC cell BTS BTS BTS BTS MT BTS BTS BTS BTS HLR and VLR HLR (Home Location Register)
IP Flow Mobility: Smart Traffic Offload for Future Wireless Networks
1 IP Flow Mobility: Smart Traffic Offload for Future Wireless Networks Antonio de la Oliva, Carlos J. Bernardos, Maria Calderon, Telemaco Melia and Juan Carlos Zuniga Universidad Carlos III de Madrid,
Reliable Multicast Protocol with Packet Forwarding in Wireless Internet
Reliable Multicast Protocol with Packet Forwarding in Wireless Internet Taku NOGUCHI, Toru YOSHIKAWA and Miki YAMAMOTO College of Information Science and Engineering, Ritsumeikan University 1-1-1, Nojihigashi,
An Active Network Based Hierarchical Mobile Internet Protocol Version 6 Framework
An Active Network Based Hierarchical Mobile Internet Protocol Version 6 Framework Zutao Zhu Zhenjun Li YunYong Duan Department of Business Support Department of Computer Science Department of Business
Dissertation Title: SOCKS5-based Firewall Support For UDP-based Application. Author: Fung, King Pong
Dissertation Title: SOCKS5-based Firewall Support For UDP-based Application Author: Fung, King Pong MSc in Information Technology The Hong Kong Polytechnic University June 1999 i Abstract Abstract of dissertation
Proxy Mobile IPv6-Based Handovers for VoIP Services in Wireless Heterogeneous Networks
IACSIT International Journal of Engineering and Technology, Vol. 4, No. 5, October 12 Proxy Mobile IPv6-Based Handovers for VoIP Services in Wireless Heterogeneous Networks N. P. Singh and Brahmjit Singh
Wireless Networks: Network Protocols/Mobile IP
Wireless Networks: Network Protocols/Mobile IP Mo$va$on Data transfer Encapsula$on Security IPv6 Problems DHCP Adapted from J. Schiller, Mobile Communications 1 Mo$va$on for Mobile IP Rou$ng based on IP
Telecommunication Services Engineering (TSE) Lab. Chapter III 4G Long Term Evolution (LTE) and Evolved Packet Core (EPC)
Chapter III 4G Long Term Evolution (LTE) and Evolved Packet Core (EPC) http://users.encs.concordia.ca/~glitho/ Outline 1. LTE 2. EPC architectures (Basic and advanced) 3. Mobility management in EPC 4.
Influence of Load Balancing on Quality of Real Time Data Transmission*
SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol. 6, No. 3, December 2009, 515-524 UDK: 004.738.2 Influence of Load Balancing on Quality of Real Time Data Transmission* Nataša Maksić 1,a, Petar Knežević 2,
Ethernet. Ethernet. Network Devices
Ethernet Babak Kia Adjunct Professor Boston University College of Engineering ENG SC757 - Advanced Microprocessor Design Ethernet Ethernet is a term used to refer to a diverse set of frame based networking
Chapter 9. IP Secure
Chapter 9 IP Secure 1 Network architecture is usually explained as a stack of different layers. Figure 1 explains the OSI (Open System Interconnect) model stack and IP (Internet Protocol) model stack.
Guide to TCP/IP, Third Edition. Chapter 3: Data Link and Network Layer TCP/IP Protocols
Guide to TCP/IP, Third Edition Chapter 3: Data Link and Network Layer TCP/IP Protocols Objectives Understand the role that data link protocols, such as SLIP and PPP, play for TCP/IP Distinguish among various
Linux Based Implementation and Performance Measurements of Dual Stack Mobile IPv6
Linux Based Implementation and Performance Measurements of Dual Stack Mobile IPv6 CHAMAN SINGH 1 K.L.BANSAL 2 1 Assistant Professor 2 Associate Professor [email protected] [email protected]
Analysis of Mobile IP in Wireless LANs
ENSC 835: COMMUNICATION NETWORKS FINAL PROJECT PRESENTATIONS Spring 2011 Analysis of Mobile IP in Wireless LANs www.sfu.ca/~bshahabi Babak Shahabi ([email protected]( [email protected]) 301102998 Shaoyun Yang
Security Considerations for Intrinsic Monitoring within IPv6 Networks: Work in Progress
Security Considerations for Intrinsic Monitoring within IPv6 Networks: Work in Progress Alan Davy and Lei Shi Telecommunication Software&Systems Group, Waterford Institute of Technology, Ireland adavy,[email protected]
A Study of the Design of Wireless Medical Sensor Network based u- Healthcare System
, pp.91-96 http://dx.doi.org/10.14257/ijbsbt.2014.6.3.11 A Study of the Design of Wireless Medical Sensor Network based u- Healthcare System Ronnie D. Caytiles and Sungwon Park 1* 1 Hannam University 133
OPTIMUM EFFICIENT MOBILITY MANAGEMENT SCHEME FOR IPv6
OPTIMUM EFFICIENT MOBILITY MANAGEMENT SCHEME FOR IPv6 Virender Kumar Department of Electronics & Communication Engineering, HCTM Technical Campus, Kaithal, India [email protected] ABSTRACT Mobile
Network Security TCP/IP Refresher
Network Security TCP/IP Refresher What you (at least) need to know about networking! Dr. David Barrera Network Security HS 2014 Outline Network Reference Models Local Area Networks Internet Protocol (IP)
G.Vijaya kumar et al, Int. J. Comp. Tech. Appl., Vol 2 (5), 1413-1418
An Analytical Model to evaluate the Approaches of Mobility Management 1 G.Vijaya Kumar, *2 A.Lakshman Rao *1 M.Tech (CSE Student), Pragati Engineering College, Kakinada, India. [email protected]
EITF25 Internet Techniques and Applications L5: Wide Area Networks (WAN) Stefan Höst
EITF25 Internet Techniques and Applications L5: Wide Area Networks (WAN) Stefan Höst Data communication in reality In reality, the source and destination hosts are very seldom on the same network, for
A Novel Pathway for Portability of Networks and Handing-on between Networks
A Novel Pathway for Portability of Networks and Handing-on between Networks D. S. Dayana #1, S. R. Surya #2 Department of Computer Applications, SRM University, Chennai, India 1 [email protected]
This chapter covers the following topics: Characteristics of roaming Layer 2 roaming Layer 3 roaming and an introduction to Mobile IP
This chapter covers the following topics: Characteristics of roaming Layer 2 roaming Layer 3 roaming and an introduction to Mobile IP C H A P T E R 5 Mobility This book covers the major components of 802.11
Forced Low latency Handoff in Mobile Cellular Data Networks
Forced Low latency Handoff in Mobile Cellular Data Networks N. Moayedian, Faramarz Hendessi Department of Electrical and Computer Engineering Isfahan University of Technology, Isfahan, IRAN [email protected]
Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, [email protected]
Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, [email protected] 1. Introduction Ad hoc wireless networks pose a big challenge for transport layer protocol and transport layer protocols
Chapter 2 - The TCP/IP and OSI Networking Models
Chapter 2 - The TCP/IP and OSI Networking Models TCP/IP : Transmission Control Protocol/Internet Protocol OSI : Open System Interconnection RFC Request for Comments TCP/IP Architecture Layers Application
NAT and Firewall Traversal with STUN / TURN / ICE
NAT and Firewall Traversal with STUN / TURN / ICE Simon Perreault Viagénie {mailto sip}:[email protected] http://www.viagenie.ca Credentials Consultant in IP networking and VoIP at Viagénie.
Mobile IP Network Layer Lesson 02 TCP/IP Suite and IP Protocol
Mobile IP Network Layer Lesson 02 TCP/IP Suite and IP Protocol 1 TCP/IP protocol suite A suite of protocols for networking for the Internet Transmission control protocol (TCP) or User Datagram protocol
Optimizing SIP Application Layer Mobility over IPv6 Using Layer 2 Triggers
Optimizing SIP Application Layer Mobility over IPv6 Using Layer 2 Triggers Emil Ivov Network Research Team Louis Pasteur University / LSIIT Illkirch, Strasbourg [email protected] Thomas Noël
Early Binding Updates and Credit-Based Authorization A Status Update
Status update New drafts Implementation Experimentation results Early Binding Updates and Credit-Based Authorization A Status Update Why Do We Need Enhancement? Mobile IPv6 Route Optimization uses return-routability
Computer Network. Interconnected collection of autonomous computers that are able to exchange information
Introduction Computer Network. Interconnected collection of autonomous computers that are able to exchange information No master/slave relationship between the computers in the network Data Communications.
IPv6 Networks: Protocol Selection for Mobile Node
International Journal of Emerging Engineering Research and Technology Volume 2, Issue 4, July 2014, PP 16-24 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) IPv6 Networks: Protocol Selection for Mobile
Adding Multi-Homing and Dual-Stack Support to the Session Initiation Protocol
Adding Multi-Homing and Dual-Stack Support to the Session Initiation Protocol Mario Baldi, Fulvio Risso, Livio Torrero Dipartimento di Automatica e Informatica, Politecnico di Torino, Torino, Italy {mario.baldi,
Deploying IPv6 Service Across Local IPv4 Access Networks
Deploying IPv6 Service Across Local IPv4 Access Networks ALA HAMARSHEH 1, MARNIX GOOSSENS 1, RAFE ALASEM 2 1 Vrije Universiteit Brussel Department of Electronics and Informatics ETRO Building K, Office
Network Address Translation (NAT) Good Practice Guideline
Programme NPFIT Document Record ID Key Sub-Prog / Project Infrastructure Security NPFIT-FNT-TO-IG-GPG-0011.06 Prog. Director Chris Wilber Status Approved Owner James Wood Version 2.0 Author Mike Farrell
SURVEY ON MOBILITY MANAGEMENT PROTOCOLS FOR IPv6
SURVEY ON MOBILITY MANAGEMENT PROTOCOLS FOR IPv6 BASED NETWORK 1 Nitul Dutta, 2 Iti Saha Misra, 3 Kushal Pokhrel and 4 Md. Abu Safi 1 Department of Computer Science & Engineering, Sikkim Manipal Institute
Transport Layer Protocols
Transport Layer Protocols Version. Transport layer performs two main tasks for the application layer by using the network layer. It provides end to end communication between two applications, and implements
SERVICE DISCOVERY AND MOBILITY MANAGEMENT
Objectives: 1) Understanding some popular service discovery protocols 2) Understanding mobility management in WLAN and cellular networks Readings: 1. Fundamentals of Mobile and Pervasive Computing (chapt7)
Performance Analysis of IPv4 v/s IPv6 in Virtual Environment Using UBUNTU
Performance Analysis of IPv4 v/s IPv6 in Virtual Environment Using UBUNTU Savita Shiwani Computer Science,Gyan Vihar University, Rajasthan, India G.N. Purohit AIM & ACT, Banasthali University, Banasthali,
CS 457 Lecture 19 Global Internet - BGP. Fall 2011
CS 457 Lecture 19 Global Internet - BGP Fall 2011 Decision Process Calculate degree of preference for each route in Adj-RIB-In as follows (apply following steps until one route is left): select route with
Introduce Quality of Service in your IP_to_IP W@N unreliable infrastructure
Introduce Quality of Service in your IP_to_IP W@N unreliable infrastructure QV QoS Proxy server The QV-PROXY supplies two features : introduction of Error Correction mechanism improving the QoS and delivery
Review: Lecture 1 - Internet History
Review: Lecture 1 - Internet History late 60's ARPANET, NCP 1977 first internet 1980's The Internet collection of networks communicating using the TCP/IP protocols 1 Review: Lecture 1 - Administration
Charter Text Network Design and Configuration
MIF Charter update proposal MIF WG Charter update proposal summary http://www.ietf.org/mail-archive/web/mif/current/msg02125.html Specific deliverables listed MPVD architecture document Requirement for
On the Impacts of Distributed and Dynamic Mobility Management Strategy: A Simulation Study
On the Impacts of Distributed and Dynamic Mobility Management Strategy: A Simulation Study Seil Jeon Instituto de Telecomunicações Campus Universitário de Santiago Aveiro, Portugal [email protected] Sérgio
An Efficient QoS Routing Protocol for Mobile Ad-Hoc Networks *
An Efficient QoS Routing Protocol for Mobile Ad-Hoc Networks * Inwhee Joe College of Information and Communications Hanyang University Seoul, Korea iwj oeshanyang.ac.kr Abstract. To satisfy the user requirements
MOBILITY SUPPORT USING INTELLIGENT USER SHADOWS FOR NEXT-GENERATION WIRELESS NETWORKS
MOBILITY SUPPORT USING INTELLIGENT USER SADOWS FOR NEXT-GENERATION WIRELESS NETWORKS Gergely V. Záruba, Wei Wu, Mohan J. Kumar, Sajal K. Das enter for Research in Wireless Mobility and Networking Department
A Seamless Handover Mechanism for IEEE 802.16e Broadband Wireless Access
A Seamless Handover Mechanism for IEEE 802.16e Broadband Wireless Access Kyung-ah Kim 1, Chong-Kwon Kim 2, and Tongsok Kim 1 1 Marketing & Technology Lab., KT, Seoul, Republic of Korea, {kka1,tongsok}@kt.co.kr
NAT and Firewall Traversal with STUN / TURN / ICE
NAT and Firewall Traversal with STUN / TURN / ICE Simon Perreault Viagénie {mailto sip}:[email protected] http://www.viagenie.ca Credentials Consultant in IP networking and VoIP at Viagénie.
TECHNICAL CHALLENGES OF VoIP BYPASS
TECHNICAL CHALLENGES OF VoIP BYPASS Presented by Monica Cultrera VP Software Development Bitek International Inc 23 rd TELELCOMMUNICATION CONFERENCE Agenda 1. Defining VoIP What is VoIP? How to establish
