Predicate Logic Review
|
|
|
- Marian Webb
- 9 years ago
- Views:
Transcription
1 Predicate Logic Review UC Berkeley, Philosophy 142, Spring 2016 John MacFarlane 1 Grammar A term is an individual constant or a variable. An individual constant is a lowercase letter from the beginning of the alphabet, possibly with a numerical subscript. A variable is a lowercase w, x, y, or z, possibly with a numerical subscript. A predicate is a capital letter, possibly with a numerical subscript. Predicates can be classified as one-place, two-place, and in general n-place, depending on how many argument places they have. A logically perspicuous language would mark this, say, with a numerical superscript, but we will normally just leave it implicit. A formula is any of the following: term individual constant variable predicate formula An atomic formula an n-place predicate followed by n terms. (For example: atomic formula F xy, Ga.) 3. αφ or αφ, where α is a variable and φ is a formula. 4. φ, where φ is a formula. 5. (φ ψ), (φ ψ), (φ ψ), or (φ ψ), where φ and ψ are formulas. Nothing else is a formula. Note that in some texts (x) is used instead of x. Also, some texts put parentheses around x and x. We won t do that. 1.1 Scope The scope of a quantifier is the formula directly following the quantifier: scope In x(f x Gx), the scope of the quantifier is the formula (F x Gx). In xf x Gx, the scope of the quantifier is the formula F x. In x F x Ga, the scope of the quantifier is the formula F x. February 2,
2 2. Semantics A quantifier α or α will bind all occurrences of α within their scopes, except those that are already bound by other quantifiers. A variable that is not bound by a quantifier is called free. A formula containing free variables is called an open formula. A formula without free variables is called a closed formula or sentence. Exercises: bind free open formula closed formula sentence 1. Translate the following into logical notation. Provide a dictionary that associates individual constants and predicate letters with English names and predicates, and be sure to specify a domain. (a) A man who has not bathed repels every woman he meets. (b) Every philosopher trusts some lawyer who has sued one of his (the philosopher s) students. (c) Not all lawyers and philosophers are rich. 2. Translate the following into English (provide a dictionary you may make it up): (a) x(lx y(p y S xy)) (b) x((f x y(gy H xy)) z(c z Lx z)) 3. In each of the following sentences, circle the free variables and draw arrows from each of the bound variables to the quantifier that binds it. (a) x(f y Gxy) Gy x (b) x y(gxy xgy x) 2 Semantics In the Propositional Logic Review, we described a model as something that provides enough information to determine truth values for all of the formulas in a language. (In propositional logic, this is just an assignment of truth values to the propositional constants.) Now we must qualify that slightly: a model must determine truth values for all of the closed formulas (sentences) in a language. Open formulas do not have truth values. A model for our language of predicate logic consists in a nonempty set of objects the domain, and model domain an interpretation function, which assigns an interpretation to each individual constant and predicate letter. More specifically, it maps February 2,
3 2. Semantics each individual constant to an object in the domain each one-place predicate letter to a set of objects in the domain each two-place predicate letter to a set of ordered pairs of objects in the domain each n-place predicate letter to a set of ordered n-tuples of objects in the domain In specifying a model, we ll generally only write down the interpretations of individual constants and predicate letters that are relevant for our purposes, omitting the don t cares. Here are some examples of models (where F is a one-place predicate, G is a two-place predicate, and a is an individual constant): D = {1,2,3,8,Moses Hall} I ( F ) = {1,3} I ( G ) = { 1,2, 3,3 } (1) I ( a ) = Moses Hall D = the set of integers I ( F ) = {x : x > 0} I ( G ) = { x, y : x > y} (2) I ( a ) = 1 D = {x : x is a basketball player} I ( F ) = {x : x is Chinese} I ( G ) = { x, y : x is taller than y} (3) I ( a ) = Michael Jordan (You may not be familiar with the set-theoretic notation we use here. It s fairly simple. set-theoretic notation {1,2} denotes the set containing 1 and 2. {x : x is F } denotes the set containing every {} x such that x is F, that is, the set of F s. Angle brackets indicate ordered sequences. So, 1,2 is the sequence consisting of 1 and 2 in that order. 2,1 is a different sequence, because the order is different. By contrast, {1,2} and {2,1} are the same set, because sets are unordered.) We can also specify models informally using pictures (Fig. 1). We say that a sentence (that is, a closed formula) is true in a model just in case it is true in a model true when the quantifiers are interpreted as ranging over objects in the domain (and no others) and the individual constants and predicate letters are interpreted as having just the extensions assigned to them by the interpretation function. To state this condition more precisely, we need the notion of an assignment of values to the variables. An assignment is a function that maps each variable to an object in the assignment February 2,
4 2. Semantics Fido Rover Fluffy Tiger Figure 1: A model of x(d x yc xy) domain. We can now specify what it is for an arbitrary formula φ (open or closed) to be true in a model D, I on an assignment a. (Notation: a D,I φ, negated: a D,I φ.): a D,I φ, a D,I φ If φ is an atomic formula F α 1...α n, where F is an n-place predicate and α 1...α n are terms, a D,I φ iff α 1 a D,I,..., α n a I (F ), where D,I α a D,I = a(α) if α is a variable I (α) if α is an individual constant. If φ is, then a D,I φ. If φ is ψ, for some formula ψ, then a D,I φ iff a D,I ψ. If φ is (ψ χ ), for some formulas ψ and χ, then a D,I φ iff a D,I ψ and a D,I χ. If φ is (ψ χ ), for some formulas ψ and χ, then a D,I φ iff a D,I ψ or a D,I χ. If φ is (ψ χ ), for some formulas ψ and χ, then a D,I φ iff a D,I ψ or a D,I χ. If φ is (ψ χ ), for some formulas ψ and χ, then a D,I φ iff either a D,I ψ and a D,I χ or a D,I ψ and a D,I χ. If φ is αψ, for some variable α and formula ψ, then a φ iff for every assignment D,I a that agrees with a on the values of every variable except possibly α, a D,I ψ. If φ is αψ, for some variable α and formula ψ, then a φ iff for some assignment D,I a that agrees with a on the values of every variable except possibly α, a D,I ψ. Having defined the condition for any open or closed formula φ to be true in a model D, I on an assignment a, we can define truth in a model (not relativized to an assignment) for closed formulas as follows: A closed formula φ is true in a model D, I iff for every assignment a, a D,I φ. true in a model February 2,
5 3. Proofs (Note: we could have said some assignment instead of every assignment ; it doesn t matter, because if φ is a closed sentence, its truth won t vary from one assignment to the next.) The strategy for defining truth in a model that we have just outlined is due in its essentials to Alfred Tarski. It was one of his great achievements, because it showed logicians how to use semantic notions rigorously. Once we ve defined truth in a model, of course, we can define logical consequence, logical truth, logical equivalence, logical independence, and so on in the usual way. The definitions are just the same as in propositional logic, only we are now using more complicated models. Exercises: 1. For each of the three sample models on page 3, above, say which of the following sentences are true in that model: (a) x(f x Gxa) (b) x y(gxy Gy x) (c) x y Gy x 2. Complete the definitions, using the first line as a paradigm: (a) A sentence is logically true iff it is true in all models. (b) A sentence is logically false iff... (c) Two sentences are logically equivalent iff... (d) One sentence logically implies another iff... (e) A sentence (S) is a logical consequence of a set of sentences (Γ ) iff... (f) An argument is logically valid iff Use models to show the following: (a) x y F x y and y x F x y are not logically equivalent. (b) (F a xf x) F b is not a logical truth. (c) F a Gb does not logically imply x(f x Gx). 3 Proofs 3.1 Substitution instances A substitution instance of a quantified formula is the result of deleting the quantifier and its associated variable, then replacing every variable bound by the quantifier with the same substitution instance February 2,
6 3.2 Universal instantiation ( Elim) individual constant. Thus, for example, F aab is a substitution instance of xf x x b and also of yf yab, but not of xf xax. Note: An individual constant must be substituted for the bound variable. You may not substitute another kind of term, such as a variable or a definite description. (More liberal systems are possible, but the strict rule will simplify things when we get to definite descriptions.) 3.2 Universal instantiation ( Elim) You may write down any substitution instance of any universally quantified formula that is available at your current position in your proof, with the justification Elim (citing the line containing the quantified formula). Example: Elim 1 x y F xay hyp. 2 yf aay Elim 1 a/x (4) 3 yf bay Elim 1 b/x Notes: 1. It is a very good habit to indicate which constant is being substituted for which variable, as in the example. 2. There are no restrictions on which individual constant you use. Just be sure you replace every occurrence of the bound variable with the same constant. You can t use Elim to go from xf xax to F bax, because not every occurrence of the bound variable x was replaced by b. 3. A universally quantified formula is a formula whose main connective is. You can t use Elim to go from xf x xgx to F a Ga, because the former is not a universally quantified formula (the main connective is ). 3.3 Existential generalization ( Intro) If a substitution instance of an existentially quantified formula is available at your current position in the proof, you may write down the existentially quantified formula of which it is an instance, with the justification Intro (citing the line containing the instance). Example: Intro 1 y F aya hyp. 2 x yf xya Intro 1 a/x (5) 3 x yf xy x Intro 1 a/x February 2,
7 3.4 Universal generalization ( Intro) Notes: 1. An existentially quantified formula is a formula whose main connective is. xf x Ga is not an existentially quantified formula, and it can t be obtained by Intro from F b Ga. 2. Whereas in Elim you move from a quantified formula to an instance, in Intro you move from an instance to a quantified formula. 3. Note that line 1 above is an instance of both 2 and Universal generalization ( Intro) You can derive a universally quantified formula αφ from a subproof whose last step is a substitution instance, with an individual constant in place of α, and whose first step is a flagging step containing that individual constant in a box. The justification is Intro (citing the lines of the subproof). A flagging step is like a hypothesis, but instead of a formula, it consists of an individual constant in a box: 1 a Intro flagging step 2 There is one important restriction: the flagged constant may not occur outside of the subproof where it is introduced. So pick a constant that does not occur in the premises or conclusion or in any previous flagging step. The flagging step is a formal representation of Take an arbitrary individual call it Joe. We then argue that Joe has such and such a property, and since Joe was arbitrary, the same could be shown about any object. The flagging restrictions are there to make sure the individual is really arbitrary, not one that you have already said something about elsewhere in the proof. February 2,
8 3.5 Existential instantiation ( Elim) Example: 1 x(gx H x) 2 x(h x F x) 3 a 4 Ga H a Elim 1 a/x 5 H a F a Elim 2 a/x 6 Ga hyp (6) 7 H a Elim 4, 6 8 F a Elim 5, 7 9 Ga F a Intro x(gx F x) Intro 3 9 a/x 3.5 Existential instantiation ( Elim) If an existentially quantified formula is available at your current position in the proof, you may start a new subproof with an instance as a hypothesis and the instantial constant flagged in a box. You can close the subproof at any point where you have a formula not containing the flagged constant, and reiterate the final formula of the subproof outside of the subproof with justification Elim, citing the line containing the existentially quantified formula and the whole subproof. As before, the flagged constant may not occur outside of the subproof where it is introduced. This is easier to see with an example: Elim 1 x(gx H a) 2 Gb H a b b/x 3 Gb Elim 2 (7) 4 xgx Intro 3 5 xgx Elim 1, 2 4 Notes: 1. We could not have closed off the subproof after line 3, since the flagged constant cannot occur in the last line of the main proof. 2. We could not have used a as our flagged term in line 2, since it occurs in line 1. February 2,
9 3.6 Quantifier equivalences (QE) The Intro and Elim rules for and and the propositional connectives give us all we need for a complete proof system. But to make quantificational proofs less tedious, we will also allow the use of two more rules. 3.6 Quantifier equivalences (QE) You may use the following substitution rules at any point in a proof, citing QE and the line number as justification. Since they are substitution rules, they can operate on subformulas, not just on the main formula. They are also reversible. (See the examples to follow.) QE Quantifier equivalences xφ x φ (8) xφ x φ (9) Examples: 1 x(gx H a) 2 x (Gx H a) QE 1 (10) 1 H a x Gx 2 H a xgx QE 1 (11) Note that QE is applied to a subformula in example (11). The main connective in (1) is, not a quantifier. That s okay, because the QE rules are substitution rules, not rules of inference. 3.7 Tautological Equivalence (Taut Equiv) What if you wanted to derive x(gx H x) from x(gx H x)? Given the rules we have so far, you d have to take a circuitous path: Taut Equiv February 2,
10 3.7 Tautological Equivalence (Taut Equiv) 1 x(gx H x) 2 x (Gx H x) QE 1 3 b 4 (Gb H b) Elim, 2, b/x 5 Gb hyp 6 H b hyp (12) 7 Gb H b Intro, 5, 6 8 Intro, 4, 7 9 H b Intro, Gb H b Intro, x(g x H x) Intro, 3 10, b/x To simplify this kind of proof, we introduce a new substitution rule, Taut Equiv, that allows you to substitute truth-functionally equivalent formulas for each other, even when they occur embedded inside quantifiers or other operators. Then we can do: 1 x(gx H x) 2 x (Gx H x) QE 1 (13) 3 x(g x H x) Taut Equiv 2 We ll allow Taut Equiv only in proofs involving quantifiers. Note that Taut Equiv, like the QE rules and unlike the Intro and Elim rules, can operate on subformulas and is reversible. Exercises: 1. Use Fitch-style natural deductions to prove the following theorems: (a) x(f x Gx) ( xf x xgx) (b) x y zf xy z y z xf xy z 2. Use Fitch-style natural deductions to prove x(p x yly x) from hypotheses x(p x yf y x) and x y(f y x Ly x). February 2,
Predicate Logic. For example, consider the following argument:
Predicate Logic The analysis of compound statements covers key aspects of human reasoning but does not capture many important, and common, instances of reasoning that are also logically valid. For example,
Invalidity in Predicate Logic
Invalidity in Predicate Logic So far we ve got a method for establishing that a predicate logic argument is valid: do a derivation. But we ve got no method for establishing invalidity. In propositional
Handout #1: Mathematical Reasoning
Math 101 Rumbos Spring 2010 1 Handout #1: Mathematical Reasoning 1 Propositional Logic A proposition is a mathematical statement that it is either true or false; that is, a statement whose certainty or
Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson
Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement
(LMCS, p. 317) V.1. First Order Logic. This is the most powerful, most expressive logic that we will examine.
(LMCS, p. 317) V.1 First Order Logic This is the most powerful, most expressive logic that we will examine. Our version of first-order logic will use the following symbols: variables connectives (,,,,
Predicate Logic. Example: All men are mortal. Socrates is a man. Socrates is mortal.
Predicate Logic Example: All men are mortal. Socrates is a man. Socrates is mortal. Note: We need logic laws that work for statements involving quantities like some and all. In English, the predicate is
Remarks on Non-Fregean Logic
STUDIES IN LOGIC, GRAMMAR AND RHETORIC 10 (23) 2007 Remarks on Non-Fregean Logic Mieczys law Omy la Institute of Philosophy University of Warsaw Poland [email protected] 1 Introduction In 1966 famous Polish
CS510 Software Engineering
CS510 Software Engineering Propositional Logic Asst. Prof. Mathias Payer Department of Computer Science Purdue University TA: Scott A. Carr Slides inspired by Xiangyu Zhang http://nebelwelt.net/teaching/15-cs510-se
CHAPTER 7 GENERAL PROOF SYSTEMS
CHAPTER 7 GENERAL PROOF SYSTEMS 1 Introduction Proof systems are built to prove statements. They can be thought as an inference machine with special statements, called provable statements, or sometimes
CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs
CHAPTER 3 Methods of Proofs 1. Logical Arguments and Formal Proofs 1.1. Basic Terminology. An axiom is a statement that is given to be true. A rule of inference is a logical rule that is used to deduce
Mathematical Induction
Mathematical Induction In logic, we often want to prove that every member of an infinite set has some feature. E.g., we would like to show: N 1 : is a number 1 : has the feature Φ ( x)(n 1 x! 1 x) How
Things That Might Not Have Been Michael Nelson University of California at Riverside [email protected]
Things That Might Not Have Been Michael Nelson University of California at Riverside [email protected] Quantified Modal Logic (QML), to echo Arthur Prior, is haunted by the myth of necessary existence. Features
INTRODUCTORY SET THEORY
M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H-1088 Budapest, Múzeum krt. 6-8. CONTENTS 1. SETS Set, equal sets, subset,
3. Mathematical Induction
3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)
2. The Language of First-order Logic
2. The Language of First-order Logic KR & R Brachman & Levesque 2005 17 Declarative language Before building system before there can be learning, reasoning, planning, explanation... need to be able to
Dedekind s forgotten axiom and why we should teach it (and why we shouldn t teach mathematical induction in our calculus classes)
Dedekind s forgotten axiom and why we should teach it (and why we shouldn t teach mathematical induction in our calculus classes) by Jim Propp (UMass Lowell) March 14, 2010 1 / 29 Completeness Three common
This asserts two sets are equal iff they have the same elements, that is, a set is determined by its elements.
3. Axioms of Set theory Before presenting the axioms of set theory, we first make a few basic comments about the relevant first order logic. We will give a somewhat more detailed discussion later, but
Likewise, we have contradictions: formulas that can only be false, e.g. (p p).
CHAPTER 4. STATEMENT LOGIC 59 The rightmost column of this truth table contains instances of T and instances of F. Notice that there are no degrees of contingency. If both values are possible, the formula
WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?
WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly
Basic Set Theory. 1. Motivation. Fido Sue. Fred Aristotle Bob. LX 502 - Semantics I September 11, 2008
Basic Set Theory LX 502 - Semantics I September 11, 2008 1. Motivation When you start reading these notes, the first thing you should be asking yourselves is What is Set Theory and why is it relevant?
Propositional Logic. A proposition is a declarative sentence (a sentence that declares a fact) that is either true or false, but not both.
irst Order Logic Propositional Logic A proposition is a declarative sentence (a sentence that declares a fact) that is either true or false, but not both. Are the following sentences propositions? oronto
! " # The Logic of Descriptions. Logics for Data and Knowledge Representation. Terminology. Overview. Three Basic Features. Some History on DLs
,!0((,.+#$),%$(-&.& *,2(-$)%&2.'3&%!&, Logics for Data and Knowledge Representation Alessandro Agostini [email protected] University of Trento Fausto Giunchiglia [email protected] The Logic of Descriptions!$%&'()*$#)
Chapter 7. Functions and onto. 7.1 Functions
Chapter 7 Functions and onto This chapter covers functions, including function composition and what it means for a function to be onto. In the process, we ll see what happens when two dissimilar quantifiers
A Beginner s Guide to Modern Set Theory
A Beginner s Guide to Modern Set Theory Martin Dowd Product of Hyperon Software PO Box 4161 Costa Mesa, CA 92628 www.hyperonsoft.com Copyright c 2010 by Martin Dowd 1. Introduction..... 1 2. Formal logic......
Monitoring Metric First-order Temporal Properties
Monitoring Metric First-order Temporal Properties DAVID BASIN, FELIX KLAEDTKE, SAMUEL MÜLLER, and EUGEN ZĂLINESCU, ETH Zurich Runtime monitoring is a general approach to verifying system properties at
Quotient Rings and Field Extensions
Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.
A Few Basics of Probability
A Few Basics of Probability Philosophy 57 Spring, 2004 1 Introduction This handout distinguishes between inductive and deductive logic, and then introduces probability, a concept essential to the study
Vieta s Formulas and the Identity Theorem
Vieta s Formulas and the Identity Theorem This worksheet will work through the material from our class on 3/21/2013 with some examples that should help you with the homework The topic of our discussion
Rigorous Software Development CSCI-GA 3033-009
Rigorous Software Development CSCI-GA 3033-009 Instructor: Thomas Wies Spring 2013 Lecture 11 Semantics of Programming Languages Denotational Semantics Meaning of a program is defined as the mathematical
The Syntax of Predicate Logic
The Syntax of Predicate Logic LX 502 Semantics I October 11, 2008 1. Below the Sentence-Level In Propositional Logic, atomic propositions correspond to simple sentences in the object language. Since atomic
Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2)
Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2) Kevin Broughan University of Waikato, Hamilton, New Zealand May 13, 2010 Remainder and Factor Theorem 15 Definition of factor If f (x)
Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products
Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing
Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 Proofs Intuitively, the concept of proof should already be familiar We all like to assert things, and few of us
Gödel s Ontological Proof of the Existence of God
Prof. Dr. Elke Brendel Institut für Philosophie Lehrstuhl für Logik und Grundlagenforschung g Rheinische Friedrich-Wilhelms-Universität Bonn [email protected] Gödel s Ontological Proof of the Existence
[Refer Slide Time: 05:10]
Principles of Programming Languages Prof: S. Arun Kumar Department of Computer Science and Engineering Indian Institute of Technology Delhi Lecture no 7 Lecture Title: Syntactic Classes Welcome to lecture
Cartesian Products and Relations
Cartesian Products and Relations Definition (Cartesian product) If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) :(a A) and (b B)}. The following points are worth special
Logic and Reasoning Practice Final Exam Spring 2015. Section Number
Logic and Reasoning Practice Final Exam Spring 2015 Name Section Number The final examination is worth 100 points. 1. (5 points) What is an argument? Explain what is meant when one says that logic is the
Temporal Logics. Computation Tree Logic
Temporal Logics CTL: definition, relationship between operators, adequate sets, specifying properties, safety/liveness/fairness Modeling: sequential, concurrent systems; maximum parallelism/interleaving
Lecture 16 : Relations and Functions DRAFT
CS/Math 240: Introduction to Discrete Mathematics 3/29/2011 Lecture 16 : Relations and Functions Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT In Lecture 3, we described a correspondence
WOLLONGONG COLLEGE AUSTRALIA. Diploma in Information Technology
First Name: Family Name: Student Number: Class/Tutorial: WOLLONGONG COLLEGE AUSTRALIA A College of the University of Wollongong Diploma in Information Technology Final Examination Spring Session 2008 WUCT121
Introduction to Automata Theory. Reading: Chapter 1
Introduction to Automata Theory Reading: Chapter 1 1 What is Automata Theory? Study of abstract computing devices, or machines Automaton = an abstract computing device Note: A device need not even be a
P NP for the Reals with various Analytic Functions
P NP for the Reals with various Analytic Functions Mihai Prunescu Abstract We show that non-deterministic machines in the sense of [BSS] defined over wide classes of real analytic structures are more powerful
Relations: their uses in programming and computational specifications
PEPS Relations, 15 December 2008 1/27 Relations: their uses in programming and computational specifications Dale Miller INRIA - Saclay & LIX, Ecole Polytechnique 1. Logic and computation Outline 2. Comparing
FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22
FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22 RAVI VAKIL CONTENTS 1. Discrete valuation rings: Dimension 1 Noetherian regular local rings 1 Last day, we discussed the Zariski tangent space, and saw that it
Validated Templates for Specification of Complex LTL Formulas
Validated Templates for Specification of Complex LTL Formulas Salamah Salamah Department of Electrical, computer, Software, and Systems Engineering Embry Riddle Aeronautical University 600 S. Clyde Morris
6.080/6.089 GITCS Feb 12, 2008. Lecture 3
6.8/6.89 GITCS Feb 2, 28 Lecturer: Scott Aaronson Lecture 3 Scribe: Adam Rogal Administrivia. Scribe notes The purpose of scribe notes is to transcribe our lectures. Although I have formal notes of my
FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z
FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization
def: An axiom is a statement that is assumed to be true, or in the case of a mathematical system, is used to specify the system.
Section 1.5 Methods of Proof 1.5.1 1.5 METHODS OF PROOF Some forms of argument ( valid ) never lead from correct statements to an incorrect. Some other forms of argument ( fallacies ) can lead from true
Basic Concepts of Set Theory, Functions and Relations
March 1, 2006 p. 1 Basic Concepts of Set Theory, Functions and Relations 1. Basic Concepts of Set Theory...1 1.1. Sets and elements...1 1.2. Specification of sets...2 1.3. Identity and cardinality...3
LINEAR INEQUALITIES. Mathematics is the art of saying many things in many different ways. MAXWELL
Chapter 6 LINEAR INEQUALITIES 6.1 Introduction Mathematics is the art of saying many things in many different ways. MAXWELL In earlier classes, we have studied equations in one variable and two variables
Neighborhood Data and Database Security
Neighborhood Data and Database Security Kioumars Yazdanian, FrkdCric Cuppens e-mail: yaz@ tls-cs.cert.fr - cuppens@ tls-cs.cert.fr CERT / ONERA, Dept. of Computer Science 2 avenue E. Belin, B.P. 4025,31055
Philosophical argument
Michael Lacewing Philosophical argument At the heart of philosophy is philosophical argument. Arguments are different from assertions. Assertions are simply stated; arguments always involve giving reasons.
Predicate logic. Logic in computer science. Logic in Computer Science (lecture) PART II. first order logic
PART II. Predicate logic first order logic Logic in computer science Seminar: INGK401-K5; INHK401; INJK401-K4 University of Debrecen, Faculty of Informatics [email protected] 1 / 19 Alphabets Logical
Lecture 13 of 41. More Propositional and Predicate Logic
Lecture 13 of 41 More Propositional and Predicate Logic Monday, 20 September 2004 William H. Hsu, KSU http://www.kddresearch.org http://www.cis.ksu.edu/~bhsu Reading: Sections 8.1-8.3, Russell and Norvig
Introduction to formal semantics -
Introduction to formal semantics - Introduction to formal semantics 1 / 25 structure Motivation - Philosophy paradox antinomy division in object und Meta language Semiotics syntax semantics Pragmatics
Math 223 Abstract Algebra Lecture Notes
Math 223 Abstract Algebra Lecture Notes Steven Tschantz Spring 2001 (Apr. 23 version) Preamble These notes are intended to supplement the lectures and make up for the lack of a textbook for the course
1 if 1 x 0 1 if 0 x 1
Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or
No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics
No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results
Solutions to In-Class Problems Week 4, Mon.
Massachusetts Institute of Technology 6.042J/18.062J, Fall 05: Mathematics for Computer Science September 26 Prof. Albert R. Meyer and Prof. Ronitt Rubinfeld revised September 26, 2005, 1050 minutes Solutions
Summary Last Lecture. Automated Reasoning. Outline of the Lecture. Definition sequent calculus. Theorem (Normalisation and Strong Normalisation)
Summary Summary Last Lecture sequent calculus Automated Reasoning Georg Moser Institute of Computer Science @ UIBK Winter 013 (Normalisation and Strong Normalisation) let Π be a proof in minimal logic
Translation Guide. Not both P and Q ~(P Q) Not either P or Q (neither/nor)
Translation Guide If P, then Q (P Q) P, if Q (Q P) What follows if is the antecedent of a conditional. P, provided that Q (Q P) Provided that means if. Assuming that, given that, etc., work the same way.
Lecture 17 : Equivalence and Order Relations DRAFT
CS/Math 240: Introduction to Discrete Mathematics 3/31/2011 Lecture 17 : Equivalence and Order Relations Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Last lecture we introduced the notion
OPERATIONAL TYPE THEORY by Adam Petcher Prepared under the direction of Professor Aaron Stump A thesis presented to the School of Engineering of
WASHINGTON NIVERSITY SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF COMPTER SCIENCE AND ENGINEERING DECIDING JOINABILITY MODLO GROND EQATIONS IN OPERATIONAL TYPE THEORY by Adam Petcher Prepared
MATHEMATICAL INDUCTION. Mathematical Induction. This is a powerful method to prove properties of positive integers.
MATHEMATICAL INDUCTION MIGUEL A LERMA (Last updated: February 8, 003) Mathematical Induction This is a powerful method to prove properties of positive integers Principle of Mathematical Induction Let P
Type Theory & Functional Programming
Type Theory & Functional Programming Simon Thompson Computing Laboratory, University of Kent March 1999 c Simon Thompson, 1999 Not to be reproduced i ii To my parents Preface Constructive Type theory has
A Short Course in Logic Example 8
A Short ourse in Logic xample 8 I) Recognizing Arguments III) valuating Arguments II) Analyzing Arguments valuating Arguments with More than one Line of Reasoning valuating If then Premises Independent
Lecture Notes in Discrete Mathematics. Marcel B. Finan Arkansas Tech University c All Rights Reserved
Lecture Notes in Discrete Mathematics Marcel B. Finan Arkansas Tech University c All Rights Reserved 2 Preface This book is designed for a one semester course in discrete mathematics for sophomore or junior
How many numbers there are?
How many numbers there are? RADEK HONZIK Radek Honzik: Charles University, Department of Logic, Celetná 20, Praha 1, 116 42, Czech Republic [email protected] Contents 1 What are numbers 2 1.1 Natural
Math 3000 Section 003 Intro to Abstract Math Homework 2
Math 3000 Section 003 Intro to Abstract Math Homework 2 Department of Mathematical and Statistical Sciences University of Colorado Denver, Spring 2012 Solutions (February 13, 2012) Please note that these
it is easy to see that α = a
21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore
10.4 Traditional Subject Predicate Propositions
M10_COPI1396_13_SE_C10.QXD 10/22/07 8:42 AM Page 445 10.4 Traditional Subject Predicate Propositions 445 Continuing to assume the existence of at least one individual, we can say, referring to this square,
Which Semantics for Neighbourhood Semantics?
Which Semantics for Neighbourhood Semantics? Carlos Areces INRIA Nancy, Grand Est, France Diego Figueira INRIA, LSV, ENS Cachan, France Abstract In this article we discuss two alternative proposals for
Beyond Propositional Logic Lukasiewicz s System
Beyond Propositional Logic Lukasiewicz s System Consider the following set of truth tables: 1 0 0 1 # # 1 0 # 1 1 0 # 0 0 0 0 # # 0 # 1 0 # 1 1 1 1 0 1 0 # # 1 # # 1 0 # 1 1 0 # 0 1 1 1 # 1 # 1 Brandon
Indiana State Core Curriculum Standards updated 2009 Algebra I
Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and
Logic in general. Inference rules and theorem proving
Logical Agents Knowledge-based agents Logic in general Propositional logic Inference rules and theorem proving First order logic Knowledge-based agents Inference engine Knowledge base Domain-independent
Boolean Algebra Part 1
Boolean Algebra Part 1 Page 1 Boolean Algebra Objectives Understand Basic Boolean Algebra Relate Boolean Algebra to Logic Networks Prove Laws using Truth Tables Understand and Use First Basic Theorems
ON FUNCTIONAL SYMBOL-FREE LOGIC PROGRAMS
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical and Mathematical Sciences 2012 1 p. 43 48 ON FUNCTIONAL SYMBOL-FREE LOGIC PROGRAMS I nf or m at i cs L. A. HAYKAZYAN * Chair of Programming and Information
Formal Languages and Automata Theory - Regular Expressions and Finite Automata -
Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Samarjit Chakraborty Computer Engineering and Networks Laboratory Swiss Federal Institute of Technology (ETH) Zürich March
To define function and introduce operations on the set of functions. To investigate which of the field properties hold in the set of functions
Chapter 7 Functions This unit defines and investigates functions as algebraic objects. First, we define functions and discuss various means of representing them. Then we introduce operations on functions
Parametric Domain-theoretic models of Linear Abadi & Plotkin Logic
Parametric Domain-theoretic models of Linear Abadi & Plotkin Logic Lars Birkedal Rasmus Ejlers Møgelberg Rasmus Lerchedahl Petersen IT University Technical Report Series TR-00-7 ISSN 600 600 February 00
Functional Programming. Functional Programming Languages. Chapter 14. Introduction
Functional Programming Languages Chapter 14 Introduction Functional programming paradigm History Features and concepts Examples: Lisp ML 1 2 Functional Programming Functional Programming Languages The
The Basics of Graphical Models
The Basics of Graphical Models David M. Blei Columbia University October 3, 2015 Introduction These notes follow Chapter 2 of An Introduction to Probabilistic Graphical Models by Michael Jordan. Many figures
Midterm Practice Problems
6.042/8.062J Mathematics for Computer Science October 2, 200 Tom Leighton, Marten van Dijk, and Brooke Cowan Midterm Practice Problems Problem. [0 points] In problem set you showed that the nand operator
Regular Expressions with Nested Levels of Back Referencing Form a Hierarchy
Regular Expressions with Nested Levels of Back Referencing Form a Hierarchy Kim S. Larsen Odense University Abstract For many years, regular expressions with back referencing have been used in a variety
How To Solve The Stable Roommates Problem
THE ROOMMATES PROBLEM DISCUSSED NATHAN SCHULZ Abstract. The stable roommates problem as originally posed by Gale and Shapley [1] in 1962 involves a single set of even cardinality 2n, each member of which
On strong fairness in UNITY
On strong fairness in UNITY H.P.Gumm, D.Zhukov Fachbereich Mathematik und Informatik Philipps Universität Marburg {gumm,shukov}@mathematik.uni-marburg.de Abstract. In [6] Tsay and Bagrodia present a correct
Mathematics Georgia Performance Standards
Mathematics Georgia Performance Standards K-12 Mathematics Introduction The Georgia Mathematics Curriculum focuses on actively engaging the students in the development of mathematical understanding by
Iterated Dynamic Belief Revision. Sonja Smets, University of Groningen. website: http://www.vub.ac.be/clwf/ss
LSE-Groningen Workshop I 1 Iterated Dynamic Belief Revision Sonja Smets, University of Groningen website: http://www.vub.ac.be/clwf/ss Joint work with Alexandru Baltag, COMLAB, Oxford University LSE-Groningen
Linear Codes. Chapter 3. 3.1 Basics
Chapter 3 Linear Codes In order to define codes that we can encode and decode efficiently, we add more structure to the codespace. We shall be mainly interested in linear codes. A linear code of length
Algorithmic Software Verification
Algorithmic Software Verification (LTL Model Checking) Azadeh Farzan What is Verification Anyway? Proving (in a formal way) that program satisfies a specification written in a logical language. Formal
Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011
Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely
α = u v. In other words, Orthogonal Projection
Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v
