Bindings, mobility of bindings, and the -quantifier
|
|
|
- Timothy Rodgers
- 10 years ago
- Views:
Transcription
1 ICMS, 26 May /17 Bindings, mobility of bindings, and the -quantifier Dale Miller, INRIA-Saclay and LIX, École Polytechnique This talk is based on papers with Tiu in LICS2003 & ACM ToCL, and experience using λprolog and Bedwyr (systems developed with Baelde, Gacek, Nadathur, and Tiu).
2 ICMS, 26 May /17 Outline 1. Bindings or Names? 2. Binder mobility 3. -quantification 4. Example: π-calculus bisimulation
3 ICMS, 26 May /17 Some slogans (I) From Alan Perlis s Epigrams on Programming: As Will Rogers would have said, There is no such thing as a free variable. Thus: all variables will be bound somewhere. (II) We treat the names of binders as the same kind of fiction as we treat white space: they are artifacts of how we write expressions and have zero semantic content. Thus: we focus on bindings abstractly and not on how they are named (implemented). This conclusion that bindings are important and not names is targeted at meta-programming. Names as concrete objects clearly have importance in a number of other tasks: distributed computing, operating systems, the implementation of theorem provers, etc.
4 ICMS, 26 May /17 Concrete syntax vs. parse trees Church and Gödel did their meta-theory on strings. For example, Church wrote about well formed formulas and the head is the first non-bracket symbol on the left. Concrete syntax has too much concrete nonsense. Parsing allows us to move from strings to algebraic terms (parse trees). Parse tree vs. λ-tree syntax Parse tree still have too much concrete nonsense. In particular, the names of bound variables. λ-tree syntax is an approach to HOAS where bound variable names cannot be accessed.
5 ICMS, 26 May /17 Higher-Order Abstract Syntax If your object-level syntax (formulas, programs, types, etc) contain binders, then map these binders to binders in the meta-language. Functional Programming & Constructive type theories: the binder available is the one for function spaces. Proof Search (a modern update to logic programming): the binders available are λ-expressions with equality (and, hence, unification) modulo α, β, and η conversions. These approaches are different. Consider w i. λx.x λx.w ( ). Functional Prog: ( ) is not always a theorem, since the identity and the constant valued function coincide on singleton domains. Proof search: ( ) is a theorem since no instance of λx.w is λx.x. λ-tree syntax is HOAS in the proof search setting.
6 ICMS, 26 May /17 Some developments in Proof Theory Uniform (focused) proofs Used to justify the proof-search paradigm (eg, λprolog). Different development path than for proof-normalization (functional programming). A proof theory for fixed points Allow unfoldings only. Finite-failure is given a symmetric treatment to finite success. One can capture some must-behavior (eg, bisimulation) and not just may-behavior (eg, reachability). -quantification The difference between and does not appear without negation-as-failure. Rich mobility of binders are possible in the resulting logic. Bedwyr implements the features above A proof theory for induction/co-induction Tiu and Momigliano have approaches to induction, co-induction, and. Baelde has a proof-theory of fixed points to support automation.
7 ICMS, 26 May /17 Dynamics of binders during proof search During computation, binders can be instantiated or they can move. Σ :, typeof c (int int) C Σ :, α(typeof c (α α)) C L Σ, x :, typeof x α typeof B β Σ : x(typeof x α typeof B β) R Σ : typeof λx.b (α β) In this case, the binder named x moves from term-level (λx) to formula-level ( x) to proof-level (as an eigenvariable in Σ, x). Note: The variables in Σ within Σ : C are eigenvariables and are bound over the sequent. Σ is the sequent s signature.
8 ICMS, 26 May /17 The collapse of eigenvariables An attempt to build a cut-free proof of x y.p x y first introduces two new and different eigenvariables c and d and then attempts to prove P c d. Eigenvariables have been used to encode names in π-calculus [Miller93], nonces in security protocols [Cervesato, et.al. 99], reference locations in imperative programming [Chirimar95], etc. Since x y.p x y z.p z z is provable, it follows that the provability of x y.p x y implies the provability of z.p z z. That is, there is also a cut-free proof where the eigenvariables c and d are identified. Thus, eigenvariables are unlikely to capture the proper logic behind things like nonces, references, names, etc.
9 ICMS, 26 May /17 Quiz Consider a simple object-logic with a pairing constructor x, y. If the formula u v[q u, t 1 v, t 2 v, t 3 ] follows from the assumptions x y[q x x y] x y[q x y x] x y[q y x x] what can we say about the terms t 1, t 2, and t 3?
10 ICMS, 26 May /17 Quiz Consider a simple object-logic with a pairing constructor x, y. If the formula u v[q u, t 1 v, t 2 v, t 3 ] follows from the assumptions x y[q x x y] x y[q x y x] x y[q y x x] what can we say about the terms t 1, t 2, and t 3? Answer: The terms t 2 and t 3 are equal. We wish to prove t 1 t 2 t 3 [prv ( u v[q u, t 1 v, t 2 v, t 3 ]) t 2 = t 3 Does not matter the domain of the quantifiers u v. This conclusion holds for internal reasons instead of external reasons. Such an internal treatment does not seem possible if the binders named u and v move to the meta-level as eigenvariables.
11 ICMS, 26 May /17 Generic judgments and a new quantifier Gentzen s introduction rule for on the left is extensional: x mean a (possibly infinite) conjunction indexed by terms. The quantifier x.b x provides a more intensional, internal, or generic reading. It employs a new local context in sequents. Σ : B 1,..., B n B 0 Σ : σ 1 B 1,..., σ n B n σ 0 B 0 Σ is a list of distinct eigenvariables, scoped over the sequent and σ i is a list of distinct variables, locally scoped over the formula B i. The expression σ i B i is called a generic judgment. Equality between judgments is defined up to renaming of local variables.
12 ICMS, 26 May /17 The -quantifier The left and right introductions for (nabla) are the same. Σ : (σ, x : τ) B, Γ C Σ : σ τ x.b, Γ C Σ : Γ (σ, x : τ) B Σ : Γ σ τ x.b Standard proof theory design: Enrich context and add connectives dealing with these context. Quantification Logic: Add the eigenvariable context; add and. Linear Logic: Add multiset context; add multiplicative connectives. Also: hyper-sequents, calculus of structures, etc. Such a design, augmented with cut-elimination, provides modularity of the resulting logic.
13 ICMS, 26 May /17 Properties of The following are theorems: moves through all propositional connectives: x Bx xbx x. x. x(bx Cx) xbx xcx x(bx Cx) xbx xcx x(bx Cx) xbx xcx The moves through the quantifiers by raising them. x α y β.bxy h α β x.bx(hx) x α y β.bxy h α β x.bx(hx) Finally, with equality: x.t = s λx.t = λx.s. Thus: can be implemented for free in systems already solving equations involving λ-terms.
14 ICMS, 26 May /17 Non-theorems and not-yet-theorems Some non-theorems: x ybxy zbzz zbzz x ybxy y xbxy x ybxy xbx xbx xbx xbx xbx xbx Once we introduce inference rules for definitions and equality, the following can be proved. xbx xbx xb B x yb x y y xb x y This quantifier seems to be a weaker version of the Pitts-Gabbay fresh quantifier.
15 ICMS, 26 May /17 π-calculus: encoding (bi)simulation In the atomic formula P A P, the expressions P and P are processes and A is an action. In the atomic formulas P X P and P X P, the expression P is an name abstraction over processes and both X and X are name abstractions over actions (X is a name). sim P Q = A P [P A P Q.Q A Q sim P Q ] X P [P X P Q.Q X Q w.sim(p w)(q w)] X P [P X P Q.Q X Q w.sim(p w)(q w)] Bisimulation (bisim) is easy to write: it has 6 cases.
16 ICMS, 26 May /17 Learning something from our encoding Theorem: Assume the finite π-calculus and the bisimulation definition. I x.bisim (P x) (Q x) if and only if P x is open bisimilar to Q x. X I x.bisim (P x) (Q x) if and only if P x is late bisimilar to Q x. Here, X is a finite set of excluded middle assumptions of the form n 1... n k w y.(w = y w y) (k 0) A straightforward application of proof search principles (as provided by, for example, Bedwyr) provides symbolic open bisimulation
17 ICMS, 26 May /17 Future Work What is a good model theoretic semantics for? In classical and/or intuitionistic logic? What are some natural strengthening of? How exactly does it compare to Pitts-Gabbay? (See Tiu s talk.) How to do induction in the presence of? Develop an interactive theorem prover that incorporates induction and co-induction along with the model-checking behavior of Bedwyr. Generalize format rules for operational semantic (such as tyft/tyxt) to mobility in process calculi so that one gets guarantees that (open) bisimulation is a congruence (joint work with Palamidessi and Ziegler).
Relations: their uses in programming and computational specifications
PEPS Relations, 15 December 2008 1/27 Relations: their uses in programming and computational specifications Dale Miller INRIA - Saclay & LIX, Ecole Polytechnique 1. Logic and computation Outline 2. Comparing
Foundational Proof Certificates
An application of proof theory to computer science INRIA-Saclay & LIX, École Polytechnique CUSO Winter School, Proof and Computation 30 January 2013 Can we standardize, communicate, and trust formal proofs?
CHAPTER 7 GENERAL PROOF SYSTEMS
CHAPTER 7 GENERAL PROOF SYSTEMS 1 Introduction Proof systems are built to prove statements. They can be thought as an inference machine with special statements, called provable statements, or sometimes
Non-deterministic Semantics and the Undecidability of Boolean BI
1 Non-deterministic Semantics and the Undecidability of Boolean BI DOMINIQUE LARCHEY-WENDLING, LORIA CNRS, Nancy, France DIDIER GALMICHE, LORIA Université Henri Poincaré, Nancy, France We solve the open
System Description: Delphin A Functional Programming Language for Deductive Systems
System Description: Delphin A Functional Programming Language for Deductive Systems Adam Poswolsky 1 and Carsten Schürmann 2 1 Yale University [email protected] 2 IT University of Copenhagen [email protected]
Parametric Domain-theoretic models of Linear Abadi & Plotkin Logic
Parametric Domain-theoretic models of Linear Abadi & Plotkin Logic Lars Birkedal Rasmus Ejlers Møgelberg Rasmus Lerchedahl Petersen IT University Technical Report Series TR-00-7 ISSN 600 600 February 00
Summary Last Lecture. Automated Reasoning. Outline of the Lecture. Definition sequent calculus. Theorem (Normalisation and Strong Normalisation)
Summary Summary Last Lecture sequent calculus Automated Reasoning Georg Moser Institute of Computer Science @ UIBK Winter 013 (Normalisation and Strong Normalisation) let Π be a proof in minimal logic
Lecture 13 of 41. More Propositional and Predicate Logic
Lecture 13 of 41 More Propositional and Predicate Logic Monday, 20 September 2004 William H. Hsu, KSU http://www.kddresearch.org http://www.cis.ksu.edu/~bhsu Reading: Sections 8.1-8.3, Russell and Norvig
Fixed-Point Logics and Computation
1 Fixed-Point Logics and Computation Symposium on the Unusual Effectiveness of Logic in Computer Science University of Cambridge 2 Mathematical Logic Mathematical logic seeks to formalise the process of
Andrew Pitts chapter for D. Sangorgi and J. Rutten (eds), Advanced Topics in Bisimulation and Coinduction, Cambridge Tracts in Theoretical Computer
Andrew Pitts chapter for D. Sangorgi and J. Rutten (eds), Advanced Topics in Bisimulation and Coinduction, Cambridge Tracts in Theoretical Computer Science No. 52, chapter 5, pages 197 232 ( c 2011 CUP)
Type Theory & Functional Programming
Type Theory & Functional Programming Simon Thompson Computing Laboratory, University of Kent March 1999 c Simon Thompson, 1999 Not to be reproduced i ii To my parents Preface Constructive Type theory has
CMCS 312: Programming Languages Lecture 3: Lambda Calculus (Syntax, Substitution, Beta Reduction) Acar & Ahmed 17 January 2008
CMCS 312: Programming Languages Lecture 3: Lambda Calculus (Syntax, Substitution, Beta Reduction) Acar & Ahmed 17 January 2008 Contents 1 Announcements 1 2 Introduction 1 3 Abstract Syntax 1 4 Bound and
! " # The Logic of Descriptions. Logics for Data and Knowledge Representation. Terminology. Overview. Three Basic Features. Some History on DLs
,!0((,.+#$),%$(-&.& *,2(-$)%&2.'3&%!&, Logics for Data and Knowledge Representation Alessandro Agostini [email protected] University of Trento Fausto Giunchiglia [email protected] The Logic of Descriptions!$%&'()*$#)
ML for the Working Programmer
ML for the Working Programmer 2nd edition Lawrence C. Paulson University of Cambridge CAMBRIDGE UNIVERSITY PRESS CONTENTS Preface to the Second Edition Preface xiii xv 1 Standard ML 1 Functional Programming
Static Program Transformations for Efficient Software Model Checking
Static Program Transformations for Efficient Software Model Checking Shobha Vasudevan Jacob Abraham The University of Texas at Austin Dependable Systems Large and complex systems Software faults are major
A Propositional Dynamic Logic for CCS Programs
A Propositional Dynamic Logic for CCS Programs Mario R. F. Benevides and L. Menasché Schechter {mario,luis}@cos.ufrj.br Abstract This work presents a Propositional Dynamic Logic in which the programs are
Introducing Formal Methods. Software Engineering and Formal Methods
Introducing Formal Methods Formal Methods for Software Specification and Analysis: An Overview 1 Software Engineering and Formal Methods Every Software engineering methodology is based on a recommended
Jieh Hsiang Department of Computer Science State University of New York Stony brook, NY 11794
ASSOCIATIVE-COMMUTATIVE REWRITING* Nachum Dershowitz University of Illinois Urbana, IL 61801 N. Alan Josephson University of Illinois Urbana, IL 01801 Jieh Hsiang State University of New York Stony brook,
Verifying Specifications with Proof Scores in CafeOBJ
Verifying Specifications with Proof Scores in CafeOBJ FUTATSUGI, Kokichi 二 木 厚 吉 Chair of Language Design Graduate School of Information Science Japan Advanced Institute of Science and Technology (JAIST)
CS510 Software Engineering
CS510 Software Engineering Propositional Logic Asst. Prof. Mathias Payer Department of Computer Science Purdue University TA: Scott A. Carr Slides inspired by Xiangyu Zhang http://nebelwelt.net/teaching/15-cs510-se
System BV is NP-complete
System BV is NP-complete Ozan Kahramanoğulları 1,2 Computer Science Institute, University of Leipzig International Center for Computational Logic, TU Dresden Abstract System BV is an extension of multiplicative
Testing LTL Formula Translation into Büchi Automata
Testing LTL Formula Translation into Büchi Automata Heikki Tauriainen and Keijo Heljanko Helsinki University of Technology, Laboratory for Theoretical Computer Science, P. O. Box 5400, FIN-02015 HUT, Finland
Research Note. Bi-intuitionistic Boolean Bunched Logic
UCL DEPARTMENT OF COMPUTER SCIENCE Research Note RN/14/06 Bi-intuitionistic Boolean Bunched Logic June, 2014 James Brotherston Dept. of Computer Science University College London Jules Villard Dept. of
o-minimality and Uniformity in n 1 Graphs
o-minimality and Uniformity in n 1 Graphs Reid Dale July 10, 2013 Contents 1 Introduction 2 2 Languages and Structures 2 3 Definability and Tame Geometry 4 4 Applications to n 1 Graphs 6 5 Further Directions
= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that
Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without
Verifying security protocols using theorem provers
1562 2007 79-86 79 Verifying security protocols using theorem provers Miki Tanaka National Institute of Information and Communications Technology Koganei, Tokyo 184-8795, Japan Email: [email protected]
(LMCS, p. 317) V.1. First Order Logic. This is the most powerful, most expressive logic that we will examine.
(LMCS, p. 317) V.1 First Order Logic This is the most powerful, most expressive logic that we will examine. Our version of first-order logic will use the following symbols: variables connectives (,,,,
Path Querying on Graph Databases
Path Querying on Graph Databases Jelle Hellings Hasselt University and transnational University of Limburg 1/38 Overview Graph Databases Motivation Walk Logic Relations with FO and MSO Relations with CTL
Journal of Functional Programming, volume 3 number 4, 1993. Dynamics in ML
Journal of Functional Programming, volume 3 number 4, 1993. Dynamics in ML Xavier Leroy École Normale Supérieure Michel Mauny INRIA Rocquencourt Abstract Objects with dynamic types allow the integration
Formal Verification and Linear-time Model Checking
Formal Verification and Linear-time Model Checking Paul Jackson University of Edinburgh Automated Reasoning 21st and 24th October 2013 Why Automated Reasoning? Intellectually stimulating and challenging
Semantics and Verification of Software
Semantics and Verification of Software Lecture 21: Nondeterminism and Parallelism IV (Equivalence of CCS Processes & Wrap-Up) Thomas Noll Lehrstuhl für Informatik 2 (Software Modeling and Verification)
Chapter 7: Functional Programming Languages
Chapter 7: Functional Programming Languages Aarne Ranta Slides for the book Implementing Programming Languages. An Introduction to Compilers and Interpreters, College Publications, 2012. Fun: a language
NP-Completeness and Cook s Theorem
NP-Completeness and Cook s Theorem Lecture notes for COM3412 Logic and Computation 15th January 2002 1 NP decision problems The decision problem D L for a formal language L Σ is the computational task:
Model Checking: An Introduction
Announcements Model Checking: An Introduction Meeting 2 Office hours M 1:30pm-2:30pm W 5:30pm-6:30pm (after class) and by appointment ECOT 621 Moodle problems? Fundamentals of Programming Languages CSCI
A Distributed Calculus for Role-Based Access Control
A Distributed Calculus for Role-Based Access Control Chiara Braghin joint work with D. Gorla and V. Sassone MyThS Meeting, Venice, June, 14th, 2004 A Distributed Calculus for Role-Based Access Control
A Note on Context Logic
A Note on Context Logic Philippa Gardner Imperial College London This note describes joint work with Cristiano Calcagno and Uri Zarfaty. It introduces the general theory of Context Logic, and has been
PROOFS AND TYPES JEAN-YVES GIRARD PAUL TAYLOR YVES LAFONT. CAMBRIDGE UNIVERSITY PRESS Cambridge. Translated and with appendices by
PROOFS AND TYPES JEAN-YVES GIRARD Translated and with appendices by PAUL TAYLOR YVES LAFONT CAMBRIDGE UNIVERSITY PRESS Cambridge New York Melbourne New Rochelle Sydney ii Published by the Press Syndicate
Simulation-Based Security with Inexhaustible Interactive Turing Machines
Simulation-Based Security with Inexhaustible Interactive Turing Machines Ralf Küsters Institut für Informatik Christian-Albrechts-Universität zu Kiel 24098 Kiel, Germany [email protected]
InvGen: An Efficient Invariant Generator
InvGen: An Efficient Invariant Generator Ashutosh Gupta and Andrey Rybalchenko Max Planck Institute for Software Systems (MPI-SWS) Abstract. In this paper we present InvGen, an automatic linear arithmetic
Software Modeling and Verification
Software Modeling and Verification Alessandro Aldini DiSBeF - Sezione STI University of Urbino Carlo Bo Italy 3-4 February 2015 Algorithmic verification Correctness problem Is the software/hardware system
Neighborhood Data and Database Security
Neighborhood Data and Database Security Kioumars Yazdanian, FrkdCric Cuppens e-mail: yaz@ tls-cs.cert.fr - cuppens@ tls-cs.cert.fr CERT / ONERA, Dept. of Computer Science 2 avenue E. Belin, B.P. 4025,31055
University of Ostrava. Reasoning in Description Logic with Semantic Tableau Binary Trees
University of Ostrava Institute for Research and Applications of Fuzzy Modeling Reasoning in Description Logic with Semantic Tableau Binary Trees Alena Lukasová Research report No. 63 2005 Submitted/to
Linear Types for Continuations
1/28 Linear Types for Continuations Alex Simpson LFCS, School of Informatics University of Edinburgh, UK Joint work with: Jeff Egger (LFCS, Edinburgh) Rasmus Møgelberg (ITU, Copenhagen) Linear Types for
Modal Proofs as Distributed Programs (Extended Abstract)
Modal Proofs as Distributed Programs (Extended Abstract) Limin Jia and David Walker Princeton University 35 Olden St., Princeton, NJ 08544, USA {ljia,dpw}@cs.princeton.edu Abstract. We develop a new foundation
Types, Polymorphism, and Type Reconstruction
Types, Polymorphism, and Type Reconstruction Sources This material is based on the following sources: Pierce, B.C., Types and Programming Languages. MIT Press, 2002. Kanellakis, P.C., Mairson, H.G. and
Observational Program Calculi and the Correctness of Translations
Observational Program Calculi and the Correctness of Translations Manfred Schmidt-Schauss 1, David Sabel 1, Joachim Niehren 2, and Jan Schwinghammer 1 Goethe-University, Frankfurt, Germany 2 INRIA Lille,
The Lean Theorem Prover
The Lean Theorem Prover Jeremy Avigad Department of Philosophy and Department of Mathematical Sciences Carnegie Mellon University (Lean s principal developer is Leonardo de Moura, Microsoft Research, Redmond)
Computational Soundness of Symbolic Security and Implicit Complexity
Computational Soundness of Symbolic Security and Implicit Complexity Bruce Kapron Computer Science Department University of Victoria Victoria, British Columbia NII Shonan Meeting, November 3-7, 2013 Overview
Authenticity by Typing for Security Protocols
Authenticity by Typing for Security Protocols Andrew D. Gordon Microsoft Research Alan Jeffrey DePaul University June 2002 Technical Report To appear in the Journal of Computer Security Microsoft Research
Functional Programming. Functional Programming Languages. Chapter 14. Introduction
Functional Programming Languages Chapter 14 Introduction Functional programming paradigm History Features and concepts Examples: Lisp ML 1 2 Functional Programming Functional Programming Languages The
CODING TRUE ARITHMETIC IN THE MEDVEDEV AND MUCHNIK DEGREES
CODING TRUE ARITHMETIC IN THE MEDVEDEV AND MUCHNIK DEGREES PAUL SHAFER Abstract. We prove that the first-order theory of the Medvedev degrees, the first-order theory of the Muchnik degrees, and the third-order
Predicate Logic Review
Predicate Logic Review UC Berkeley, Philosophy 142, Spring 2016 John MacFarlane 1 Grammar A term is an individual constant or a variable. An individual constant is a lowercase letter from the beginning
Algorithmic Software Verification
Algorithmic Software Verification (LTL Model Checking) Azadeh Farzan What is Verification Anyway? Proving (in a formal way) that program satisfies a specification written in a logical language. Formal
Introduction to type systems
Introduction to type systems p. 1/5 Introductory Course on Logic and Automata Theory Introduction to type systems [email protected] Based on slides by Jeff Foster, UMD Introduction to type systems
A Beginner s Guide to Modern Set Theory
A Beginner s Guide to Modern Set Theory Martin Dowd Product of Hyperon Software PO Box 4161 Costa Mesa, CA 92628 www.hyperonsoft.com Copyright c 2010 by Martin Dowd 1. Introduction..... 1 2. Formal logic......
Computational Logic and Cognitive Science: An Overview
Computational Logic and Cognitive Science: An Overview Session 1: Logical Foundations Technical University of Dresden 25th of August, 2008 University of Osnabrück Who we are Helmar Gust Interests: Analogical
Deterministic Discrete Modeling
Deterministic Discrete Modeling Formal Semantics of Firewalls in Isabelle/HOL Cornelius Diekmann, M.Sc. Dr. Heiko Niedermayer Prof. Dr.-Ing. Georg Carle Lehrstuhl für Netzarchitekturen und Netzdienste
Indiana State Core Curriculum Standards updated 2009 Algebra I
Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and
Verification of Imperative Programs in Theorema
Verification of Imperative Programs in Theorema Laura Ildikó Kovács, Nikolaj Popov, Tudor Jebelean 1 Research Institute for Symbolic Computation, Johannes Kepler University, A-4040 Linz, Austria Institute
Kolmogorov Complexity and the Incompressibility Method
Kolmogorov Complexity and the Incompressibility Method Holger Arnold 1. Introduction. What makes one object more complex than another? Kolmogorov complexity, or program-size complexity, provides one of
Degrees that are not degrees of categoricity
Degrees that are not degrees of categoricity Bernard A. Anderson Department of Mathematics and Physical Sciences Gordon State College [email protected] www.gordonstate.edu/faculty/banderson Barbara
Which Semantics for Neighbourhood Semantics?
Which Semantics for Neighbourhood Semantics? Carlos Areces INRIA Nancy, Grand Est, France Diego Figueira INRIA, LSV, ENS Cachan, France Abstract In this article we discuss two alternative proposals for
Mathematical Induction. Lecture 10-11
Mathematical Induction Lecture 10-11 Menu Mathematical Induction Strong Induction Recursive Definitions Structural Induction Climbing an Infinite Ladder Suppose we have an infinite ladder: 1. We can reach
Rigorous Software Development CSCI-GA 3033-009
Rigorous Software Development CSCI-GA 3033-009 Instructor: Thomas Wies Spring 2013 Lecture 11 Semantics of Programming Languages Denotational Semantics Meaning of a program is defined as the mathematical
CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs
CHAPTER 3 Methods of Proofs 1. Logical Arguments and Formal Proofs 1.1. Basic Terminology. An axiom is a statement that is given to be true. A rule of inference is a logical rule that is used to deduce
OPERATIONAL TYPE THEORY by Adam Petcher Prepared under the direction of Professor Aaron Stump A thesis presented to the School of Engineering of
WASHINGTON NIVERSITY SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF COMPTER SCIENCE AND ENGINEERING DECIDING JOINABILITY MODLO GROND EQATIONS IN OPERATIONAL TYPE THEORY by Adam Petcher Prepared
JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson
JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials
Automated Theorem Proving - summary of lecture 1
Automated Theorem Proving - summary of lecture 1 1 Introduction Automated Theorem Proving (ATP) deals with the development of computer programs that show that some statement is a logical consequence of
Theory of Automated Reasoning An Introduction. Antti-Juhani Kaijanaho
Theory of Automated Reasoning An Introduction Antti-Juhani Kaijanaho Intended as compulsory reading for the Spring 2004 course on Automated Reasononing at Department of Mathematical Information Technology,
Extending Semantic Resolution via Automated Model Building: applications
Extending Semantic Resolution via Automated Model Building: applications Ricardo Caferra Nicolas Peltier LIFIA-IMAG L1F1A-IMAG 46, Avenue Felix Viallet 46, Avenue Felix Viallei 38031 Grenoble Cedex FRANCE
Software Verification and Testing. Lecture Notes: Temporal Logics
Software Verification and Testing Lecture Notes: Temporal Logics Motivation traditional programs (whether terminating or non-terminating) can be modelled as relations are analysed wrt their input/output
Logic, Algebra and Truth Degrees 2008. Siena. A characterization of rst order rational Pavelka's logic
Logic, Algebra and Truth Degrees 2008 September 8-11, 2008 Siena A characterization of rst order rational Pavelka's logic Xavier Caicedo Universidad de los Andes, Bogota Under appropriate formulations,
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory
Chapter II. Controlling Cars on a Bridge
Chapter II. Controlling Cars on a Bridge 1 Introduction The intent of this chapter is to introduce a complete example of a small system development. During this development, you will be made aware of the
Low upper bound of ideals, coding into rich Π 0 1 classes
Low upper bound of ideals, coding into rich Π 0 1 classes Antonín Kučera the main part is a joint project with T. Slaman Charles University, Prague September 2007, Chicago The main result There is a low
How To Prove The Dirichlet Unit Theorem
Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if
Section 13.5 Equations of Lines and Planes
Section 13.5 Equations of Lines and Planes Generalizing Linear Equations One of the main aspects of single variable calculus was approximating graphs of functions by lines - specifically, tangent lines.
Dedekind s forgotten axiom and why we should teach it (and why we shouldn t teach mathematical induction in our calculus classes)
Dedekind s forgotten axiom and why we should teach it (and why we shouldn t teach mathematical induction in our calculus classes) by Jim Propp (UMass Lowell) March 14, 2010 1 / 29 Completeness Three common
Set-theoretic Foundation of Parametric Polymorphism and Subtyping
Set-theoretic Foundation of Parametric Polymorphism and Subtyping Giuseppe Castagna 1 Zhiwu Xu 1,2 1 CNRS, Laboratoire Preuves, Programmes et Systèmes, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France.
INTRODUCTORY SET THEORY
M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H-1088 Budapest, Múzeum krt. 6-8. CONTENTS 1. SETS Set, equal sets, subset,
Novel Data Extraction Language for Structured Log Analysis
Novel Data Extraction Language for Structured Log Analysis P.W.D.C. Jayathilake 99X Technology, Sri Lanka. ABSTRACT This paper presents the implementation of a new log data extraction language. Theoretical
A first step towards modeling semistructured data in hybrid multimodal logic
A first step towards modeling semistructured data in hybrid multimodal logic Nicole Bidoit * Serenella Cerrito ** Virginie Thion * * LRI UMR CNRS 8623, Université Paris 11, Centre d Orsay. ** LaMI UMR
