The Ramsey Discounting Formula for a Hidden-State Stochastic Growth Process / 8
|
|
|
- Brendan Phelps
- 10 years ago
- Views:
Transcription
1 The Ramsey Discounting Formula for a Hidden-State Stochastic Growth Process Martin L. Weitzman May 2012 Bergen Conference Long-Term Social Discount Rates
2 What is Approach of This Paper? Increasing fuzziness of distant-future growth rates as key issue. No one knows how to model fuzzy distant-future growth rates. Worth trying di erent approaches. Here try simplest Muth-Kalman hidden-state approach. Model here is a hybrid o spring of two parents. Mother = Ramsey formula connecting growth rates to discount rates. Father = Muth-Kalman hidden-state model of stochastic growth rates. Purposely pick speci cations and functional forms to obtain simple analytical formulas. Hope that simple understandable formulas give useful general insights.
3 Basic Growth Model With a Visible State ln C t ln C t 1 = Y t (1) Y t = X t + z t, z t iidn (0, V y ) (2) X t = X t 1 + w t, w t iidn (0, V x ) (3)! ln C t ln C 0 = z τ + X 0 + w s (4) t τ=1 τ s=1 ln C t ln C 0 N (tx 0, tv y + t 3 V x /3) (5) In (5), where is the term t 3 V x /3 coming from? Why cubic in time? What does it mean? What happens if X 0 is a random variable that is not observed directly?
4 Hidden-State Growth Model (Quick Version) X t 1 N (µ t 1, V xy ) (6) X t 1! X t =) V xy! V xy + V x (7) Y t 1! Y t =) V xy + V x! V xy =) = 1 (8) V xy + V x V y V xy ( p 4Vx V y + Vx =) V xy = 2 2 µ 0 = (1 λ) s=0 λ s Y s, λ = V x σ x σ y (9) ) V y V xy + V x + V y (10) t X 0 N (t µ 0, t 2 V xy ). (11) ln C t ln C 0 N µ 0 t, V y t + V xy t 2 + V x 3 t3. (12)
5 Ramsey Hidden-State Discount Rates W = E " e ρt U(C t ) t=0 # (13) exp( r t t) = e ρt E [U 0 (C t )] U 0 (C 0 ) (14) CRRA =) U 0 (C ) = C η (15) Combine (12), (14), (15) and make use of formula for expectation of lognormal to obtain basic hidden-state formula η r t = ρ + 2 η µ 0 V y + V xy t + V x 2 3 t2. (16) Interpretation? Note linear and quadratic time decline in (16). Note that discount rate eventually becomes negative (meaning and signi cance?). Note e ect of V y >> V x =) V y >> V xy >> V x.
6 Interpreting Ramsey Hidden-State Discounting Formula by Building up Sub-Components V y > 0, V x > 0 : r t = ρ + η µ 0 η 2 2 V y + V xy t + V x 3 t2 (17) (V y = 0, V x = 0) =) r t = ρ + η µ 0 (18) η (V y > 0, V x = 0) =) r t = ρ + 2 η µ 0 2 V y (19) η (V y = 0, V x > 0) =) r t = ρ + 2 η µ 0 6 V x t 2 (20) Thought experiment: past is same but in future all uncertainty miraculously ceases (e ectively X t frozen at X 0 ). Then η r t = ρ + 2 η µ 0 2 V xy t (21) What is interpretation of equation (21)?
7 A Numerical Example Immense subjectivity. Set ρ = 0, η = 2. Set µ 0 = 2%, σ y = 3% (per year). Most brazen calibration is σ x. I calibrate σ x by requiring that the probability of a stagnant (no growth) century due to the random walk alone is one out of a million (10 6 ) =) σ x =.08%. With above parameter values, following table gives discount rate schedule t = 0 yrs 50 yrs 100 yrs 150 yrs 200 yrs 250 yrs r t = 3.8% 3.5% 2.9% 2.1% 1.2%.4% Table 1: Discount rates r t (% per year) as function of time t (years)
8 Concluding Questions and Comments What do we learn from all of this about long-term discounting? Three source types of lower discount rates under uncertainty. Two source types of time-declining discount rates. Seemingly insightful interaction between variances and time. Hint that forces causing declining discount rates may be powerful over long term. Even small amount of random walking can have eventual discounting impact over the long term. Sense that fuzziness about future growth rates is important ingredient in analysis. As yet unresolved how best to model fuzzy distant-future growth. What about caveats, limitations? More work is needed. Are alternative models better?
Partial Fractions Decomposition
Partial Fractions Decomposition Dr. Philippe B. Laval Kennesaw State University August 6, 008 Abstract This handout describes partial fractions decomposition and how it can be used when integrating rational
Lecture Notes: Basic Concepts in Option Pricing - The Black and Scholes Model
Brunel University Msc., EC5504, Financial Engineering Prof Menelaos Karanasos Lecture Notes: Basic Concepts in Option Pricing - The Black and Scholes Model Recall that the price of an option is equal to
Call Price as a Function of the Stock Price
Call Price as a Function of the Stock Price Intuitively, the call price should be an increasing function of the stock price. This relationship allows one to develop a theory of option pricing, derived
The Real Business Cycle Model
The Real Business Cycle Model Ester Faia Goethe University Frankfurt Nov 2015 Ester Faia (Goethe University Frankfurt) RBC Nov 2015 1 / 27 Introduction The RBC model explains the co-movements in the uctuations
Economics 326: Duality and the Slutsky Decomposition. Ethan Kaplan
Economics 326: Duality and the Slutsky Decomposition Ethan Kaplan September 19, 2011 Outline 1. Convexity and Declining MRS 2. Duality and Hicksian Demand 3. Slutsky Decomposition 4. Net and Gross Substitutes
BINOMIAL OPTIONS PRICING MODEL. Mark Ioffe. Abstract
BINOMIAL OPTIONS PRICING MODEL Mark Ioffe Abstract Binomial option pricing model is a widespread numerical method of calculating price of American options. In terms of applied mathematics this is simple
C(t) (1 + y) 4. t=1. For the 4 year bond considered above, assume that the price today is 900$. The yield to maturity will then be the y that solves
Economics 7344, Spring 2013 Bent E. Sørensen INTEREST RATE THEORY We will cover fixed income securities. The major categories of long-term fixed income securities are federal government bonds, corporate
Topic 5: Stochastic Growth and Real Business Cycles
Topic 5: Stochastic Growth and Real Business Cycles Yulei Luo SEF of HKU October 1, 2015 Luo, Y. (SEF of HKU) Macro Theory October 1, 2015 1 / 45 Lag Operators The lag operator (L) is de ned as Similar
Portfolio selection based on upper and lower exponential possibility distributions
European Journal of Operational Research 114 (1999) 115±126 Theory and Methodology Portfolio selection based on upper and lower exponential possibility distributions Hideo Tanaka *, Peijun Guo Department
1 The Black-Scholes Formula
1 The Black-Scholes Formula In 1973 Fischer Black and Myron Scholes published a formula - the Black-Scholes formula - for computing the theoretical price of a European call option on a stock. Their paper,
Lecture 12: The Black-Scholes Model Steven Skiena. http://www.cs.sunysb.edu/ skiena
Lecture 12: The Black-Scholes Model Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena The Black-Scholes-Merton Model
Unit 3: Day 2: Factoring Polynomial Expressions
Unit 3: Day : Factoring Polynomial Expressions Minds On: 0 Action: 45 Consolidate:10 Total =75 min Learning Goals: Extend knowledge of factoring to factor cubic and quartic expressions that can be factored
Oscillatory Reduction in Option Pricing Formula Using Shifted Poisson and Linear Approximation
EPJ Web of Conferences 68, 0 00 06 (2014) DOI: 10.1051/ epjconf/ 20146800006 C Owned by the authors, published by EDP Sciences, 2014 Oscillatory Reduction in Option Pricing Formula Using Shifted Poisson
Normalization and Mixed Degrees of Integration in Cointegrated Time Series Systems
Normalization and Mixed Degrees of Integration in Cointegrated Time Series Systems Robert J. Rossana Department of Economics, 04 F/AB, Wayne State University, Detroit MI 480 E-Mail: [email protected]
1 Pricing options using the Black Scholes formula
Lecture 9 Pricing options using the Black Scholes formula Exercise. Consider month options with exercise prices of K = 45. The variance of the underlying security is σ 2 = 0.20. The risk free interest
Bias in the Estimation of Mean Reversion in Continuous-Time Lévy Processes
Bias in the Estimation of Mean Reversion in Continuous-Time Lévy Processes Yong Bao a, Aman Ullah b, Yun Wang c, and Jun Yu d a Purdue University, IN, USA b University of California, Riverside, CA, USA
Hedging of Life Insurance Liabilities
Hedging of Life Insurance Liabilities Thorsten Rheinländer, with Francesca Biagini and Irene Schreiber Vienna University of Technology and LMU Munich September 6, 2015 horsten Rheinländer, with Francesca
A Comparison of Option Pricing Models
A Comparison of Option Pricing Models Ekrem Kilic 11.01.2005 Abstract Modeling a nonlinear pay o generating instrument is a challenging work. The models that are commonly used for pricing derivative might
Volatility at Karachi Stock Exchange
The Pakistan Development Review 34 : 4 Part II (Winter 1995) pp. 651 657 Volatility at Karachi Stock Exchange ASLAM FARID and JAVED ASHRAF INTRODUCTION Frequent crashes of the stock market reported during
Mathematics. Rosella Castellano. Rome, University of Tor Vergata
and Loans Mathematics Rome, University of Tor Vergata and Loans Future Value for Simple Interest Present Value for Simple Interest You deposit E. 1,000, called the principal or present value, into a savings
One-year reserve risk including a tail factor : closed formula and bootstrap approaches
One-year reserve risk including a tail factor : closed formula and bootstrap approaches Alexandre Boumezoued R&D Consultant Milliman Paris [email protected] Yoboua Angoua Non-Life Consultant
Manual for SOA Exam MLC.
Chapter 5. Life annuities. Section 5.7. Computing present values from a life table Extract from: Arcones Manual for the SOA Exam MLC. Spring 2010 Edition. available at http://www.actexmadriver.com/ 1/30
Multiple Optimization Using the JMP Statistical Software Kodak Research Conference May 9, 2005
Multiple Optimization Using the JMP Statistical Software Kodak Research Conference May 9, 2005 Philip J. Ramsey, Ph.D., Mia L. Stephens, MS, Marie Gaudard, Ph.D. North Haven Group, http://www.northhavengroup.com/
Chapter 2: Binomial Methods and the Black-Scholes Formula
Chapter 2: Binomial Methods and the Black-Scholes Formula 2.1 Binomial Trees We consider a financial market consisting of a bond B t = B(t), a stock S t = S(t), and a call-option C t = C(t), where the
Moreover, under the risk neutral measure, it must be the case that (5) r t = µ t.
LECTURE 7: BLACK SCHOLES THEORY 1. Introduction: The Black Scholes Model In 1973 Fisher Black and Myron Scholes ushered in the modern era of derivative securities with a seminal paper 1 on the pricing
How To Find Out If A Tax System Is More Efficient
Optimal Income Taxation: Mirrlees Meets Ramsey Jonathan Heathcote FRB Minneapolis Hitoshi Tsujiyama Goethe University Frankfurt Iowa State University, April 2014 The views expressed herein are those of
Real Business Cycle Models
Real Business Cycle Models Lecture 2 Nicola Viegi April 2015 Basic RBC Model Claim: Stochastic General Equlibrium Model Is Enough to Explain The Business cycle Behaviour of the Economy Money is of little
Minimum variance portfolio mathematics
Spring 6 Minimum variance portfolio mathematics Consider a portfolio of mutual funds: long term debt securities (D) and sotck fund in equity (E). Debt Equity E(r) 8% 3% % % Cov(r D ; r E ) 7 D;E.3 weights
( ) = ( ) = {,,, } β ( ), < 1 ( ) + ( ) = ( ) + ( )
{ } ( ) = ( ) = {,,, } ( ) β ( ), < 1 ( ) + ( ) = ( ) + ( ) max, ( ) [ ( )] + ( ) [ ( )], [ ( )] [ ( )] = =, ( ) = ( ) = 0 ( ) = ( ) ( ) ( ) =, ( ), ( ) =, ( ), ( ). ln ( ) = ln ( ). + 1 ( ) = ( ) Ω[ (
Maureen L. Cropper, Mark C. Freeman, Ben Groom and William A. Pizer Declining discount rates
Maureen L. Cropper, Mark C. Freeman, Ben Groom and William A. Pizer Declining discount rates Article (Accepted version) (Refereed) Original citation: Cropper, Maureen L., Freeman, Mark C., Groom, Ben and
PLEASE SCROLL DOWN FOR ARTICLE. Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article was downloaded by: On: 6 January 2010 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
Do option prices support the subjective probabilities of takeover completion derived from spot prices? Sergey Gelman March 2005
Do option prices support the subjective probabilities of takeover completion derived from spot prices? Sergey Gelman March 2005 University of Muenster Wirtschaftswissenschaftliche Fakultaet Am Stadtgraben
The Method of Partial Fractions Math 121 Calculus II Spring 2015
Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method
Black-Scholes Equation for Option Pricing
Black-Scholes Equation for Option Pricing By Ivan Karmazin, Jiacong Li 1. Introduction In early 1970s, Black, Scholes and Merton achieved a major breakthrough in pricing of European stock options and there
Chapter 3: The Multiple Linear Regression Model
Chapter 3: The Multiple Linear Regression Model Advanced Econometrics - HEC Lausanne Christophe Hurlin University of Orléans November 23, 2013 Christophe Hurlin (University of Orléans) Advanced Econometrics
Pricing Options with Discrete Dividends by High Order Finite Differences and Grid Stretching
Pricing Options with Discrete Dividends by High Order Finite Differences and Grid Stretching Kees Oosterlee Numerical analysis group, Delft University of Technology Joint work with Coen Leentvaar, Ariel
OR/MS Today - June 2007. Financial O.R. A Pointer on Points
OR/MS Today - June 2007 Financial O.R. A Pointer on Points Given the array of residential mortgage products, should a homebuyer pay upfront points in order to lower the annual percentage rate? Introducing
O MIA-009 (F2F) : GENERAL INSURANCE, LIFE AND
No. of Printed Pages : 11 MIA-009 (F2F) kr) ki) M.Sc. ACTUARIAL SCIENCE (MSCAS) N December, 2012 0 O MIA-009 (F2F) : GENERAL INSURANCE, LIFE AND HEALTH CONTINGENCIES Time : 3 hours Maximum Marks : 100
Application of sensitivity analysis in investment project evaluation under uncertainty and risk
International Journal of Project Management Vol. 17, No. 4, pp. 217±222, 1999 # 1999 Elsevier Science Ltd and IPMA. All rights reserved Printed in Great Britain 0263-7863/99 $ - see front matter PII: S0263-7863(98)00035-0
The Binomial Distribution
The Binomial Distribution James H. Steiger November 10, 00 1 Topics for this Module 1. The Binomial Process. The Binomial Random Variable. The Binomial Distribution (a) Computing the Binomial pdf (b) Computing
AP Physics 1 and 2 Lab Investigations
AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks
Mathematical Finance
Mathematical Finance Option Pricing under the Risk-Neutral Measure Cory Barnes Department of Mathematics University of Washington June 11, 2013 Outline 1 Probability Background 2 Black Scholes for European
Generating Random Numbers Variance Reduction Quasi-Monte Carlo. Simulation Methods. Leonid Kogan. MIT, Sloan. 15.450, Fall 2010
Simulation Methods Leonid Kogan MIT, Sloan 15.450, Fall 2010 c Leonid Kogan ( MIT, Sloan ) Simulation Methods 15.450, Fall 2010 1 / 35 Outline 1 Generating Random Numbers 2 Variance Reduction 3 Quasi-Monte
Merton-Black-Scholes model for option pricing. Peter Denteneer. 22 oktober 2009
Merton-Black-Scholes model for option pricing Instituut{Lorentz voor Theoretische Natuurkunde, LION, Universiteit Leiden 22 oktober 2009 With inspiration from: J. Tinbergen, T.C. Koopmans, E. Majorana,
Building and Using Spreadsheet Decision Models
Chapter 9 Building and Using Spreadsheet Decision Models Models A model is an abstraction or representation of a real system, idea, or object. Models could be pictures, spreadsheets, or mathematical relationships
Geometric Brownian Motion, Option Pricing, and Simulation: Some Spreadsheet-Based Exercises in Financial Modeling
Spreadsheets in Education (ejsie) Volume 5 Issue 3 Article 4 November 01 Geometric Brownian Motion, Option Pricing, and Simulation: Some Spreadsheet-Based Exercises in Financial Modeling Kevin D. Brewer
Lecture 1: Asset pricing and the equity premium puzzle
Lecture 1: Asset pricing and the equity premium puzzle Simon Gilchrist Boston Univerity and NBER EC 745 Fall, 2013 Overview Some basic facts. Study the asset pricing implications of household portfolio
Long-Term Debt Pricing and Monetary Policy Transmission under Imperfect Knowledge
Long-Term Debt Pricing and Monetary Policy Transmission under Imperfect Knowledge Stefano Eusepi, Marc Giannoni and Bruce Preston The views expressed are those of the authors and are not necessarily re
Current Accounts in Open Economies Obstfeld and Rogoff, Chapter 2
Current Accounts in Open Economies Obstfeld and Rogoff, Chapter 2 1 Consumption with many periods 1.1 Finite horizon of T Optimization problem maximize U t = u (c t ) + β (c t+1 ) + β 2 u (c t+2 ) +...
Determinants of Social Discount Rate, general case
Determinants of Social Discount Rate, general case The resulting equation r = ρ + θ g is known as the Ramsey equation after Frank Ramsey (928) The equation states tt that t in an optimal intertemporal
Shannon diversity. Site Description. Hill numbers. Simpson diversity H =
Vegetation Analysis ite Description lide 1 Vegetation Analysis ite Description lide 2 hannon diversity ite Description 1. Diversity indices 2. pecies abundance models 3. pecies area relationship H = p
FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA
FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA 1.1 Solve linear equations and equations that lead to linear equations. a) Solve the equation: 1 (x + 5) 4 = 1 (2x 1) 2 3 b) Solve the equation: 3x
Pure risk premiums under deductibles
Pure risk premiums under deductibles K. Burnecki J. Nowicka-Zagrajek A. Wy lomańska Hugo Steinhaus Center Wroc law University of Technology www.im.pwr.wroc.pl/ hugo/ Pure risk premiums under deductibles
Economics 1011a: Intermediate Microeconomics
Lecture 12: More Uncertainty Economics 1011a: Intermediate Microeconomics Lecture 12: More on Uncertainty Thursday, October 23, 2008 Last class we introduced choice under uncertainty. Today we will explore
Fixed and Variable Payout Annuities: How Optimal are Optimal Strategies?
Fixed and Variable Payout Annuities: How Optimal are Optimal Strategies? Anne MacKay joint work with Phelim Boyle, Mary Hardy and David Saunders 49th Actuarial Research Conference UC Santa Barbara July
Reaching Universal Health Coverage. through Tax-based Financing Schemes: Challenges of Informal Economy and. Population Ageing
Reaching Universal Health Coverage through Tax-based Financing Schemes: Challenges of Informal Economy and Population Ageing Xianguo Huang ADissertation Submitted to the Faculty of the National Graduate
GHG Targets as Insurance Against Catastrophic Climate Damages
GHG Targets as Insurance Against Catastrophic Climate Damages Martin L. Weitzman The climate system is an angry beast and we are poking it with sticks. y Abstract A critical issue in climate-change economics
Empirical Methods in Applied Economics
Empirical Methods in Applied Economics Jörn-Ste en Pischke LSE October 2005 1 Observational Studies and Regression 1.1 Conditional Randomization Again When we discussed experiments, we discussed already
Risk-Neutral Skewness: Evidence From Stock Options 1
Risk-Neutral Skewness: Evidence From Stock Options 1 Patrick Dennis Stewart Mayhew McIntire School of Commerce University of Virginia Charlottesville, VA 22903 (804) 924-4050 Department of Banking and
Methodology. Discounting. MVM Methods
Methodology In this section, we describe the approaches taken to calculate the fair value of the insurance loss reserves for the companies, lines, and valuation dates in our study. We also describe a variety
MBA Jump Start Program
MBA Jump Start Program Module 2: Mathematics Thomas Gilbert Mathematics Module Online Appendix: Basic Mathematical Concepts 2 1 The Number Spectrum Generally we depict numbers increasing from left to right
Prospective Life Tables
An introduction to time dependent mortality models by Julien Antunes Mendes and Christophe Pochet TRENDS OF MORTALITY Life expectancy at birth among early humans was likely to be about 20 to 30 years.
Linear and quadratic Taylor polynomials for functions of several variables.
ams/econ 11b supplementary notes ucsc Linear quadratic Taylor polynomials for functions of several variables. c 010, Yonatan Katznelson Finding the extreme (minimum or maximum) values of a function, is
6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives
6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise
The Valuation of Currency Options
The Valuation of Currency Options Nahum Biger and John Hull Both Nahum Biger and John Hull are Associate Professors of Finance in the Faculty of Administrative Studies, York University, Canada. Introduction
Using the SABR Model
Definitions Ameriprise Workshop 2012 Overview Definitions The Black-76 model has been the standard model for European options on currency, interest rates, and stock indices with it s main drawback being
Options, pre-black Scholes
Options, pre-black Scholes Modern finance seems to believe that the option pricing theory starts with the foundation articles of Black, Scholes (973) and Merton (973). This is far from being true. Numerous
Working Paper no. 37: An Empirical Analysis of Subprime Consumer Credit Demand
Centre for Financial Analysis & Policy Working Paper no. 37: An Empirical Analysis of Subprime Consumer Credit Demand Sule ALAN & Gyongyi LORANTH December 2010 The Working Paper is intended as a mean whereby
Separable First Order Differential Equations
Separable First Order Differential Equations Form of Separable Equations which take the form = gx hy or These are differential equations = gxĥy, where gx is a continuous function of x and hy is a continuously
JANUARY 2016 EXAMINATIONS. Life Insurance I
PAPER CODE NO. MATH 273 EXAMINER: Dr. C. Boado-Penas TEL.NO. 44026 DEPARTMENT: Mathematical Sciences JANUARY 2016 EXAMINATIONS Life Insurance I Time allowed: Two and a half hours INSTRUCTIONS TO CANDIDATES:
QUADRATIC, EXPONENTIAL AND LOGARITHMIC FUNCTIONS
QUADRATIC, EXPONENTIAL AND LOGARITHMIC FUNCTIONS Content 1. Parabolas... 1 1.1. Top of a parabola... 2 1.2. Orientation of a parabola... 2 1.3. Intercept of a parabola... 3 1.4. Roots (or zeros) of a parabola...
The Behavior of Bonds and Interest Rates. An Impossible Bond Pricing Model. 780 w Interest Rate Models
780 w Interest Rate Models The Behavior of Bonds and Interest Rates Before discussing how a bond market-maker would delta-hedge, we first need to specify how bonds behave. Suppose we try to model a zero-coupon
A Simulation-Based lntroduction Using Excel
Quantitative Finance A Simulation-Based lntroduction Using Excel Matt Davison University of Western Ontario London, Canada CRC Press Taylor & Francis Croup Boca Raton London New York CRC Press is an imprint
LECTURE 9: A MODEL FOR FOREIGN EXCHANGE
LECTURE 9: A MODEL FOR FOREIGN EXCHANGE 1. Foreign Exchange Contracts There was a time, not so long ago, when a U. S. dollar would buy you precisely.4 British pounds sterling 1, and a British pound sterling
How To Understand And Understand Finance
Ill. i,t.,. QUANTITATIVE FINANCIAL ECONOMICS STOCKS, BONDS AND FOREIGN EXCHANGE Second Edition KEITH CUTHBERTSON AND DIRK NITZSCHE HOCHSCHULE John Wiley 8k Sons, Ltd CONTENTS Preface Acknowledgements 2.1
MA Advanced Macroeconomics: 7. The Real Business Cycle Model
MA Advanced Macroeconomics: 7. The Real Business Cycle Model Karl Whelan School of Economics, UCD Spring 2015 Karl Whelan (UCD) Real Business Cycles Spring 2015 1 / 38 Working Through A DSGE Model We have
第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model
1 第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model Outline 有 关 股 价 的 假 设 The B-S Model 隐 性 波 动 性 Implied Volatility 红 利 与 期 权 定 价 Dividends and Option Pricing 美 式 期 权 定 价 American
Risk Aversion. Expected value as a criterion for making decisions makes sense provided that C H A P T E R 2. 2.1 Risk Attitude
C H A P T E R 2 Risk Aversion Expected value as a criterion for making decisions makes sense provided that the stakes at risk in the decision are small enough to \play the long run averages." The range
Exact Values of the Sine and Cosine Functions in Increments of 3 degrees
Exact Values of the Sine and Cosine Functions in Increments of 3 degrees The sine and cosine values for all angle measurements in multiples of 3 degrees can be determined exactly, represented in terms
Pricing Dual Spread Options by the Lie-Trotter Operator Splitting Method
Pricing Dual Spread Options by the Lie-Trotter Operator Splitting Method C.F. Lo Abstract In this paper, based upon the Lie- Trotter operator splitting method proposed by Lo 04, we present a simple closed-form
Factoring Polynomials and Solving Quadratic Equations
Factoring Polynomials and Solving Quadratic Equations Math Tutorial Lab Special Topic Factoring Factoring Binomials Remember that a binomial is just a polynomial with two terms. Some examples include 2x+3
The RBC methodology also comes down to two principles:
Chapter 5 Real business cycles 5.1 Real business cycles The most well known paper in the Real Business Cycles (RBC) literature is Kydland and Prescott (1982). That paper introduces both a specific theory
4. Simple regression. QBUS6840 Predictive Analytics. https://www.otexts.org/fpp/4
4. Simple regression QBUS6840 Predictive Analytics https://www.otexts.org/fpp/4 Outline The simple linear model Least squares estimation Forecasting with regression Non-linear functional forms Regression
