Minimum variance portfolio mathematics

Size: px
Start display at page:

Download "Minimum variance portfolio mathematics"

Transcription

1 Spring 6 Minimum variance portfolio mathematics Consider a portfolio of mutual funds: long term debt securities (D) and sotck fund in equity (E). Debt Equity E(r) 8% 3% % % Cov(r D ; r E ) 7 D;E.3 weights w D w E = w D We can compute the expected return on the portfolio P E(r P ) = w D E(r D ) + w E E(r E ); in our example we have given that w D = w E ; E(r P ) = :8w D + :3w E E(r P ) = :8( w E ) + :3w E = :8 + :5w E ; if we plot it we get E[r_P] The variance of the portfolio w_e P = wd D + we E + w D w E Cov(r D; r E ); in our example we have P = wd + we + w D w E 7 P = ( w E ) + we + ( w E )w E 7 P = 4wE 44w E + 44: This variance as a function of w E is

2 Spring 6 var(r_p) w_e Variance of a portfolio of two risky assets Assume a portfolio composed of two risky assets The expected return is then, the variance of this portfolio will be r P = w D r D + w E r E E(r P ) = w D E(r D ) + w E E(r E ); P = E [r P E[r P ]] = E rp ] [E[r P ] h = E (w D r D + w E r E ) i [w D E(r D ) + w E E(r E )] = = E n(w D r D ) + (w E r E ) + w D r D w E r E h io (w D E(r D )) + (w E E(r E )) + w D w E E(r D )E(r E ) = = w DE(r D) + w EE(r E) + w D w E E(r D r E ) w DE(r D ) w EE(r E ) w D w E E(r D )E(r E ) = rearranging we have = wde(r D) wde(r D ) + wee(r E) wee(r E ) + w D w E E(r D r E ) w D w E E(r D )E(r E ) = = wd E(r D ) E(r D ) + w E E(r {z } E ) E(r E ) + w D w E [E(r D r E ) E(r D )E(r E )] = {z } {z } D Cov(r D ;r E ) E Recall that the correlation coe cient is = w D D + w E E + w D w E Cov(r D ; r E ): D;E = Cov(r D; r E ) D E : then, we can express the portfolio variance as follows: P = w D D + w E E + w D w E Cov(r D ; r E ) = w D D + w E E + w D w E DE D E :

3 Spring 6 Relationship between correlation coe cients and portfolio variance Let s analyze the variance of the portfolio depending on the correlation coe cient of the assets. If D;E =! Cov(r D ; r E ) = D E ; then the portfolio variance becomes and P = w D D + w E E : P = w D D + w E E + w D w E Cov(r D; r E ) = = w D D + w E E + w D w E D E = = (w D D + w E E ) If D;E =! Cov(r D ; r E ) = ; then the portfolio variance becomes that is, P = wd D + w E E P = w D D + w E E + w D w E Cov(r D; r E ) = = w D D + w E E + = = w D D + w E E If D;E =! Cov(r D ; r E ) = D E ; then the portfolio variance becomes and P = abs(w D D by setting that is, we are left with and P = w D D + w E E + w D w E Cov(r D; r E ) = = w D D + w E E w D w E D E = = (w D D w E E ) w E E ): In this case, a perfectly hedging portfolio can be obtained P = abs(w D D w E E ); P = w D D w E E ; P = w E E w D D : In general, the variance of the portfolio expressed as P = w D D + w E E + w D w E Cov(r D; r E ); if we replace w D = w E ; can be rewritten as follows: P = D + w E D w E D + w E E + w E Cov(r D; r E ) w ECov(r D; r E ): If we plot the relationship between standard deviation of the portfolio ( P ) and the proportion of wealth allocated to equity for alternative correlation coe cients, D;E, we obtain 3

4 Spring 6 sigma_p Solid line: DE = Dots line: DE = Circle line: DE = w_e Notice that if all income is allocated to Debt (w E = ) the volatility of the portfolio is that of Debt, whereas if all income is allocated to Equity (w E = ); then the volatility of the portfolio is that of Equity. Then, depending on the correlation coe cient between these two assets we get di erent combinations between w E and P : When DE = (solid line), there is no room for reducing risk by diversi cation. When DE = (dotted line) some risk reduction is possible and this is shown in the shape of the curve. The highest risk reduction is achieved when DE = (circle line) in fact, portfolio volatility can be completely reduced. In our example, this would happen when w E is roughly around :4; and therefore w D is approximately :6: We will compute this optimal allocation later. Computing the minimum variance portfolio Taking the formula of the variance of the portfolio P = D + w E D w E D + w E E + w E Cov(r D; r E ) w ECov(r D; r E ): Which proportion of assets should we choose in order to minimize this variance? Derive P with respect to w E d P dw E = w E D D + w E E + Cov(r D; r E ) 4w E Cov(r D; r E ) = ; that is, w E = D Cov(r D; r E ) D + E Cov(r D; r E ) : 4

5 Spring 6 Notice that when D;E =! Cov(r D ; r E ) = D E ; this equation collapses to In general, w E = D + D E D + E + D E = D( D + E ) ( D + E ) = w E = D D;E D E D + E Cov(r D; r E ) : D D + E : If we apply this to the numbers in our example we obtain P = D + we D + E Cov(r D; r E ) D Cov(r D; r E ) w E ; the minimum variance is attained at that is, d P dw E = w E D + E D;E D E D D;E D E = ; we D D;E D E = D + = 44 4 D;E = 9 5 D;E ; E D;E D E D;E 34 3 D;E then depending on D;E we obtain di erent optimal allocations The risk-return tradeo D;E =! w E = :5! w E = D;E =! w E = 6:47% D;E =! w E = 37:5% D;E = :9! w E = 64:8! w E = D;E = :3! w E = 8%; then w D = 8% Now, we can put together all the relationships between risk and return, since and given the standard deviation in general E(r P ) = :8 + :5w E ; P = D + w E D + E Cov(r D; r E ) D Cov(r D; r E ) w E ; we could solve for the relationship between expected return and risk, the result is 5

6 Spring 6 E[r_P] sigma_p In the gure, the gross solid line refers to the case D;E = ; the circle line is for D;E = ; the dotted line is for the case D;E = ; and nally, the thin solid line refers to the numerical example D;E = :3: 6

Lesson 5. Risky assets

Lesson 5. Risky assets Lesson 5. Risky assets Prof. Beatriz de Blas May 2006 5. Risky assets 2 Introduction How stock markets serve to allocate risk. Plan of the lesson: 8 >< >: 1. Risk and risk aversion 2. Portfolio risk 3.

More information

1 Capital Allocation Between a Risky Portfolio and a Risk-Free Asset

1 Capital Allocation Between a Risky Portfolio and a Risk-Free Asset Department of Economics Financial Economics University of California, Berkeley Economics 136 November 9, 2003 Fall 2006 Economics 136: Financial Economics Section Notes for Week 11 1 Capital Allocation

More information

CAPM, Arbitrage, and Linear Factor Models

CAPM, Arbitrage, and Linear Factor Models CAPM, Arbitrage, and Linear Factor Models CAPM, Arbitrage, Linear Factor Models 1/ 41 Introduction We now assume all investors actually choose mean-variance e cient portfolios. By equating these investors

More information

Capital Allocation Between The Risky And The Risk- Free Asset. Chapter 7

Capital Allocation Between The Risky And The Risk- Free Asset. Chapter 7 Capital Allocation Between The Risky And The Risk- Free Asset Chapter 7 Investment Decisions capital allocation decision = choice of proportion to be invested in risk-free versus risky assets asset allocation

More information

CHAPTER 7: OPTIMAL RISKY PORTFOLIOS

CHAPTER 7: OPTIMAL RISKY PORTFOLIOS CHAPTER 7: OPTIMAL RIKY PORTFOLIO PROLEM ET 1. (a) and (e).. (a) and (c). After real estate is added to the portfolio, there are four asset classes in the portfolio: stocks, bonds, cash and real estate.

More information

Answers to Concepts in Review

Answers to Concepts in Review Answers to Concepts in Review 1. A portfolio is simply a collection of investments assembled to meet a common investment goal. An efficient portfolio is a portfolio offering the highest expected return

More information

Portfolio Performance Measures

Portfolio Performance Measures Portfolio Performance Measures Objective: Evaluation of active portfolio management. A performance measure is useful, for example, in ranking the performance of mutual funds. Active portfolio managers

More information

CHAPTER 6 RISK AND RISK AVERSION

CHAPTER 6 RISK AND RISK AVERSION CHAPTER 6 RISK AND RISK AVERSION RISK AND RISK AVERSION Risk with Simple Prospects Risk, Speculation, and Gambling Risk Aversion and Utility Values Risk with Simple Prospects The presence of risk means

More information

Four Derivations of the Black Scholes PDE by Fabrice Douglas Rouah www.frouah.com www.volopta.com

Four Derivations of the Black Scholes PDE by Fabrice Douglas Rouah www.frouah.com www.volopta.com Four Derivations of the Black Scholes PDE by Fabrice Douglas Rouah www.frouah.com www.volopta.com In this Note we derive the Black Scholes PDE for an option V, given by @t + 1 + rs @S2 @S We derive the

More information

Lecture 1: Asset Allocation

Lecture 1: Asset Allocation Lecture 1: Asset Allocation Investments FIN460-Papanikolaou Asset Allocation I 1/ 62 Overview 1. Introduction 2. Investor s Risk Tolerance 3. Allocating Capital Between a Risky and riskless asset 4. Allocating

More information

Final Exam MØA 155 Financial Economics Fall 2009 Permitted Material: Calculator

Final Exam MØA 155 Financial Economics Fall 2009 Permitted Material: Calculator University of Stavanger (UiS) Stavanger Masters Program Final Exam MØA 155 Financial Economics Fall 2009 Permitted Material: Calculator The number in brackets is the weight for each problem. The weights

More information

1. a. (iv) b. (ii) [6.75/(1.34) = 10.2] c. (i) Writing a call entails unlimited potential losses as the stock price rises.

1. a. (iv) b. (ii) [6.75/(1.34) = 10.2] c. (i) Writing a call entails unlimited potential losses as the stock price rises. 1. Solutions to PS 1: 1. a. (iv) b. (ii) [6.75/(1.34) = 10.2] c. (i) Writing a call entails unlimited potential losses as the stock price rises. 7. The bill has a maturity of one-half year, and an annualized

More information

Solution: The optimal position for an investor with a coefficient of risk aversion A = 5 in the risky asset is y*:

Solution: The optimal position for an investor with a coefficient of risk aversion A = 5 in the risky asset is y*: Problem 1. Consider a risky asset. Suppose the expected rate of return on the risky asset is 15%, the standard deviation of the asset return is 22%, and the risk-free rate is 6%. What is your optimal position

More information

CHAPTER 6: RISK AVERSION AND CAPITAL ALLOCATION TO RISKY ASSETS

CHAPTER 6: RISK AVERSION AND CAPITAL ALLOCATION TO RISKY ASSETS CHAPTER 6: RISK AVERSION AND CAPITAL ALLOCATION TO RISKY ASSETS PROBLEM SETS 1. (e). (b) A higher borrowing is a consequence of the risk of the borrowers default. In perfect markets with no additional

More information

Investment Analysis (FIN 670) Fall 2009. Homework 5

Investment Analysis (FIN 670) Fall 2009. Homework 5 Investment Analysis (FIN 670) Fall 009 Homework 5 Instructions: please read careully You should show your work how to get the answer or each calculation question to get ull credit The due date is Tuesday,

More information

Econ 422 Summer 2006 Final Exam Solutions

Econ 422 Summer 2006 Final Exam Solutions Econ 422 Summer 2006 Final Exam Solutions This is a closed book exam. However, you are allowed one page of notes (double-sided). Answer all questions. For the numerical problems, if you make a computational

More information

CHAPTER 10 RISK AND RETURN: THE CAPITAL ASSET PRICING MODEL (CAPM)

CHAPTER 10 RISK AND RETURN: THE CAPITAL ASSET PRICING MODEL (CAPM) CHAPTER 10 RISK AND RETURN: THE CAPITAL ASSET PRICING MODEL (CAPM) Answers to Concepts Review and Critical Thinking Questions 1. Some of the risk in holding any asset is unique to the asset in question.

More information

Distinction Between Interest Rates and Returns

Distinction Between Interest Rates and Returns Distinction Between Interest Rates and Returns Rate of Return RET = C + P t+1 P t =i c + g P t C where: i c = = current yield P t g = P t+1 P t P t = capital gain Key Facts about Relationship Between Interest

More information

1 Portfolio mean and variance

1 Portfolio mean and variance Copyright c 2005 by Karl Sigman Portfolio mean and variance Here we study the performance of a one-period investment X 0 > 0 (dollars) shared among several different assets. Our criterion for measuring

More information

Long-Term Debt Pricing and Monetary Policy Transmission under Imperfect Knowledge

Long-Term Debt Pricing and Monetary Policy Transmission under Imperfect Knowledge Long-Term Debt Pricing and Monetary Policy Transmission under Imperfect Knowledge Stefano Eusepi, Marc Giannoni and Bruce Preston The views expressed are those of the authors and are not necessarily re

More information

AFM 472. Midterm Examination. Monday Oct. 24, 2011. A. Huang

AFM 472. Midterm Examination. Monday Oct. 24, 2011. A. Huang AFM 472 Midterm Examination Monday Oct. 24, 2011 A. Huang Name: Answer Key Student Number: Section (circle one): 10:00am 1:00pm 2:30pm Instructions: 1. Answer all questions in the space provided. If space

More information

t = 1 2 3 1. Calculate the implied interest rates and graph the term structure of interest rates. t = 1 2 3 X t = 100 100 100 t = 1 2 3

t = 1 2 3 1. Calculate the implied interest rates and graph the term structure of interest rates. t = 1 2 3 X t = 100 100 100 t = 1 2 3 MØA 155 PROBLEM SET: Summarizing Exercise 1. Present Value [3] You are given the following prices P t today for receiving risk free payments t periods from now. t = 1 2 3 P t = 0.95 0.9 0.85 1. Calculate

More information

Enhancing the Teaching of Statistics: Portfolio Theory, an Application of Statistics in Finance

Enhancing the Teaching of Statistics: Portfolio Theory, an Application of Statistics in Finance Page 1 of 11 Enhancing the Teaching of Statistics: Portfolio Theory, an Application of Statistics in Finance Nicolas Christou University of California, Los Angeles Journal of Statistics Education Volume

More information

CFA Examination PORTFOLIO MANAGEMENT Page 1 of 6

CFA Examination PORTFOLIO MANAGEMENT Page 1 of 6 PORTFOLIO MANAGEMENT A. INTRODUCTION RETURN AS A RANDOM VARIABLE E(R) = the return around which the probability distribution is centered: the expected value or mean of the probability distribution of possible

More information

Midterm Exam:Answer Sheet

Midterm Exam:Answer Sheet Econ 497 Barry W. Ickes Spring 2007 Midterm Exam:Answer Sheet 1. (25%) Consider a portfolio, c, comprised of a risk-free and risky asset, with returns given by r f and E(r p ), respectively. Let y be the

More information

Wel Dlp Portfolio And Risk Management

Wel Dlp Portfolio And Risk Management 1. In case of perfect diversification, the systematic risk is nil. Wel Dlp Portfolio And Risk Management 2. The objectives of investors while putting money in various avenues are:- (a) Safety (b) Capital

More information

C C D E C C D E C C D E C C D E C C C Figure 1: Distribution of of s Density 0 1 2 2 4 3 6 4 5 8 4 2 0 0 2 4.5 Fraction of Applications Approved 0.2.4.6.8 1 Figure 2: The Credit-Score Regression

More information

GESTÃO FINANCEIRA II PROBLEM SET 3 - SOLUTIONS (FROM BERK AND DEMARZO S CORPORATE FINANCE ) LICENCIATURA UNDERGRADUATE COURSE

GESTÃO FINANCEIRA II PROBLEM SET 3 - SOLUTIONS (FROM BERK AND DEMARZO S CORPORATE FINANCE ) LICENCIATURA UNDERGRADUATE COURSE GESTÃO FINANCEIRA II PROBLEM SET 3 - SOLUTIONS (FROM BERK AND DEMARZO S CORPORATE FINANCE ) LICENCIATURA UNDERGRADUATE COURSE 1 ST SEMESTER 010-011 Chapter 10 Capital Markets and the Pricing of Risk 10-1.

More information

1 Pricing options using the Black Scholes formula

1 Pricing options using the Black Scholes formula Lecture 9 Pricing options using the Black Scholes formula Exercise. Consider month options with exercise prices of K = 45. The variance of the underlying security is σ 2 = 0.20. The risk free interest

More information

Mid-Term Spring 2003

Mid-Term Spring 2003 Mid-Term Spring 2003 1. (1 point) You want to purchase XYZ stock at $60 from your broker using as little of your own money as possible. If initial margin is 50% and you have $3000 to invest, how many shares

More information

RISKS IN MUTUAL FUND INVESTMENTS

RISKS IN MUTUAL FUND INVESTMENTS RISKS IN MUTUAL FUND INVESTMENTS Classification of Investors Investors can be classified based on their Risk Tolerance Levels : Low Risk Tolerance Moderate Risk Tolerance High Risk Tolerance Fund Classification

More information

BS2551 Money Banking and Finance. Institutional Investors

BS2551 Money Banking and Finance. Institutional Investors BS2551 Money Banking and Finance Institutional Investors Institutional investors pension funds, mutual funds and life insurance companies are the main players in securities markets in both the USA and

More information

Chapter 2 Portfolio Management and the Capital Asset Pricing Model

Chapter 2 Portfolio Management and the Capital Asset Pricing Model Chapter 2 Portfolio Management and the Capital Asset Pricing Model In this chapter, we explore the issue of risk management in a portfolio of assets. The main issue is how to balance a portfolio, that

More information

1 Capital Asset Pricing Model (CAPM)

1 Capital Asset Pricing Model (CAPM) Copyright c 2005 by Karl Sigman 1 Capital Asset Pricing Model (CAPM) We now assume an idealized framework for an open market place, where all the risky assets refer to (say) all the tradeable stocks available

More information

Holding Period Return. Return, Risk, and Risk Aversion. Percentage Return or Dollar Return? An Example. Percentage Return or Dollar Return? 10% or 10?

Holding Period Return. Return, Risk, and Risk Aversion. Percentage Return or Dollar Return? An Example. Percentage Return or Dollar Return? 10% or 10? Return, Risk, and Risk Aversion Holding Period Return Ending Price - Beginning Price + Intermediate Income Return = Beginning Price R P t+ t+ = Pt + Dt P t An Example You bought IBM stock at $40 last month.

More information

Chapter 9 Interest Rates

Chapter 9 Interest Rates Chapter 9 Interest Rates Concept Questions 1. Short-term rates have ranged between zero and 14 percent. Long-term rates have fluctuated between about two and 13 percent. Long-term rates, which are less

More information

Optimal Risky Portfolios Chapter 7 Investments Bodie, Kane and Marcus

Optimal Risky Portfolios Chapter 7 Investments Bodie, Kane and Marcus Optimal Risky ortfolios Section escription 7.0 Introduction 7.1 iversification and ortfolio Risk 7. ortfolios of Two Risky Assets 7.3 Asset Allocation with Stocks, Bonds and Bills 7.4 The Markowitz ortfolio

More information

Review for Exam 2. Instructions: Please read carefully

Review for Exam 2. Instructions: Please read carefully Review for Exam 2 Instructions: Please read carefully The exam will have 25 multiple choice questions and 5 work problems You are not responsible for any topics that are not covered in the lecture note

More information

Financial-Institutions Management

Financial-Institutions Management Solutions 3 Chapter 11: Credit Risk Loan Pricing and Terms 9. County Bank offers one-year loans with a stated rate of 9 percent but requires a compensating balance of 10 percent. What is the true cost

More information

Use the table for the questions 18 and 19 below.

Use the table for the questions 18 and 19 below. Use the table for the questions 18 and 19 below. The following table summarizes prices of various default-free zero-coupon bonds (expressed as a percentage of face value): Maturity (years) 1 3 4 5 Price

More information

M.I.T. Spring 1999 Sloan School of Management 15.415. First Half Summary

M.I.T. Spring 1999 Sloan School of Management 15.415. First Half Summary M.I.T. Spring 1999 Sloan School of Management 15.415 First Half Summary Present Values Basic Idea: We should discount future cash flows. The appropriate discount rate is the opportunity cost of capital.

More information

The CAPM (Capital Asset Pricing Model) NPV Dependent on Discount Rate Schedule

The CAPM (Capital Asset Pricing Model) NPV Dependent on Discount Rate Schedule The CAPM (Capital Asset Pricing Model) Massachusetts Institute of Technology CAPM Slide 1 of NPV Dependent on Discount Rate Schedule Discussed NPV and time value of money Choice of discount rate influences

More information

Chapter 7 Risk, Return, and the Capital Asset Pricing Model

Chapter 7 Risk, Return, and the Capital Asset Pricing Model Chapter 7 Risk, Return, and the Capital Asset Pricing Model MULTIPLE CHOICE 1. Suppose Sarah can borrow and lend at the risk free-rate of 3%. Which of the following four risky portfolios should she hold

More information

Valuing Stock Options: The Black-Scholes-Merton Model. Chapter 13

Valuing Stock Options: The Black-Scholes-Merton Model. Chapter 13 Valuing Stock Options: The Black-Scholes-Merton Model Chapter 13 Fundamentals of Futures and Options Markets, 8th Ed, Ch 13, Copyright John C. Hull 2013 1 The Black-Scholes-Merton Random Walk Assumption

More information

CHAPTER 11: ARBITRAGE PRICING THEORY

CHAPTER 11: ARBITRAGE PRICING THEORY CHAPTER 11: ARBITRAGE PRICING THEORY 1. The revised estimate of the expected rate of return on the stock would be the old estimate plus the sum of the products of the unexpected change in each factor times

More information

Life Cycle Asset Allocation A Suitable Approach for Defined Contribution Pension Plans

Life Cycle Asset Allocation A Suitable Approach for Defined Contribution Pension Plans Life Cycle Asset Allocation A Suitable Approach for Defined Contribution Pension Plans Challenges for defined contribution plans While Eastern Europe is a prominent example of the importance of defined

More information

The Behavior of Bonds and Interest Rates. An Impossible Bond Pricing Model. 780 w Interest Rate Models

The Behavior of Bonds and Interest Rates. An Impossible Bond Pricing Model. 780 w Interest Rate Models 780 w Interest Rate Models The Behavior of Bonds and Interest Rates Before discussing how a bond market-maker would delta-hedge, we first need to specify how bonds behave. Suppose we try to model a zero-coupon

More information

The Cost of Equity in Latin America

The Cost of Equity in Latin America Working Paper Nº 12 The Cost of Equity in Latin America Martin Grandes, Demian Panigo and Ricardo Pasquini December 2005 The Cost of Equity in Latin America Martin Grandes The American University of Paris

More information

This paper is not to be removed from the Examination Halls

This paper is not to be removed from the Examination Halls ~~FN3023 ZB d0 This paper is not to be removed from the Examination Halls UNIVERSITY OF LONDON FN3023 ZB BSc degrees and Diplomas for Graduates in Economics, Management, Finance and the Social Sciences,

More information

Characteristics of Binomial Distributions

Characteristics of Binomial Distributions Lesson2 Characteristics of Binomial Distributions In the last lesson, you constructed several binomial distributions, observed their shapes, and estimated their means and standard deviations. In Investigation

More information

Practice Set #4 and Solutions.

Practice Set #4 and Solutions. FIN-469 Investments Analysis Professor Michel A. Robe Practice Set #4 and Solutions. What to do with this practice set? To help students prepare for the assignment and the exams, practice sets with solutions

More information

Makeup Exam MØA 155 Financial Economics February 2010 Permitted Material: Calculator, Norwegian/English Dictionary

Makeup Exam MØA 155 Financial Economics February 2010 Permitted Material: Calculator, Norwegian/English Dictionary University of Stavanger (UiS) Stavanger Masters Program Makeup Exam MØA 155 Financial Economics February 2010 Permitted Material: Calculator, Norwegian/English Dictionary The number in brackets is the

More information

Executive Summary of Finance 430 Professor Vissing-Jørgensen Finance 430-62/63/64, Winter 2011

Executive Summary of Finance 430 Professor Vissing-Jørgensen Finance 430-62/63/64, Winter 2011 Executive Summary of Finance 430 Professor Vissing-Jørgensen Finance 430-62/63/64, Winter 2011 Weekly Topics: 1. Present and Future Values, Annuities and Perpetuities 2. More on NPV 3. Capital Budgeting

More information

VIX, the CBOE Volatility Index

VIX, the CBOE Volatility Index VIX, the CBOE Volatility Index Ser-Huang Poon September 5, 008 The volatility index compiled by the CBOE (Chicago Board of Option Exchange) has been shown to capture nancial turmoil and produce good volatility

More information

INTERNATIONAL COMPARISON OF INTEREST RATE GUARANTEES IN LIFE INSURANCE

INTERNATIONAL COMPARISON OF INTEREST RATE GUARANTEES IN LIFE INSURANCE INTERNATIONAL COMPARISON OF INTEREST RATE GUARANTEES IN LIFE INSURANCE J. DAVID CUMMINS, KRISTIAN R. MILTERSEN, AND SVEIN-ARNE PERSSON Abstract. Interest rate guarantees seem to be included in life insurance

More information

A. GDP, Economic Growth, and Business Cycles

A. GDP, Economic Growth, and Business Cycles ECON 3023 Hany Fahmy FAll, 2009 Lecture Note: Introduction and Basic Concepts A. GDP, Economic Growth, and Business Cycles A.1. Gross Domestic Product (GDP) de nition and measurement The Gross Domestic

More information

How to Win the Stock Market Game

How to Win the Stock Market Game How to Win the Stock Market Game 1 Developing Short-Term Stock Trading Strategies by Vladimir Daragan PART 1 Table of Contents 1. Introduction 2. Comparison of trading strategies 3. Return per trade 4.

More information

7.4A/7.4B STUDENT ACTIVITY #1

7.4A/7.4B STUDENT ACTIVITY #1 7.4A/7.4B STUDENT ACTIVITY #1 Write a formula that could be used to find the radius of a circle, r, given the circumference of the circle, C. The formula in the Grade 7 Mathematics Chart that relates the

More information

How Many Days Equal A Year? Non-trivial on the Mean-Variance Model

How Many Days Equal A Year? Non-trivial on the Mean-Variance Model How Many Days Equal A Year? Non-trivial on the Mean-Variance Model George L. Ye, Dr. Sobey School of Business Saint Mary s University Halifax, Nova Scotia, Canada Christine Panasian, Dr. Sobey School of

More information

TPPE17 Corporate Finance 1(5) SOLUTIONS RE-EXAMS 2014 II + III

TPPE17 Corporate Finance 1(5) SOLUTIONS RE-EXAMS 2014 II + III TPPE17 Corporate Finance 1(5) SOLUTIONS RE-EXAMS 2014 II III Instructions 1. Only one problem should be treated on each sheet of paper and only one side of the sheet should be used. 2. The solutions folder

More information

z-scores AND THE NORMAL CURVE MODEL

z-scores AND THE NORMAL CURVE MODEL z-scores AND THE NORMAL CURVE MODEL 1 Understanding z-scores 2 z-scores A z-score is a location on the distribution. A z- score also automatically communicates the raw score s distance from the mean A

More information

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS Masters in Business Administration (MBA) Offered by the Departments of: Business Administration & Marketing and Communication PORTFOLIO ANALYSIS AND MANAGEMENT

More information

Finance 400 A. Penati - G. Pennacchi Market Micro-Structure: Notes on the Kyle Model

Finance 400 A. Penati - G. Pennacchi Market Micro-Structure: Notes on the Kyle Model Finance 400 A. Penati - G. Pennacchi Market Micro-Structure: Notes on the Kyle Model These notes consider the single-period model in Kyle (1985) Continuous Auctions and Insider Trading, Econometrica 15,

More information

The Tangent or Efficient Portfolio

The Tangent or Efficient Portfolio The Tangent or Efficient Portfolio 1 2 Identifying the Tangent Portfolio Sharpe Ratio: Measures the ratio of reward-to-volatility provided by a portfolio Sharpe Ratio Portfolio Excess Return E[ RP ] r

More information

University of Saskatchewan Department of Economics Economics 414.3 Homework #1

University of Saskatchewan Department of Economics Economics 414.3 Homework #1 Homework #1 1. In 1900 GDP per capita in Japan (measured in 2000 dollars) was $1,433. In 2000 it was $26,375. (a) Calculate the growth rate of income per capita in Japan over this century. (b) Now suppose

More information

Multi Asset Portfolio: Back-testing Report

Multi Asset Portfolio: Back-testing Report Multi Asset Portfolio: Back-testing Report Report Prepared for the Hamilton Investment Fund This analysis has been undertaken by Dr Paul Docherty to verify the performance and risk of the Multi Asset Portfolio

More information

Sample Problems. Practice Problems

Sample Problems. Practice Problems Lecture Notes Partial Fractions page Sample Problems Compute each of the following integrals.. x dx. x + x (x + ) (x ) (x ) dx 8. x x dx... x (x + ) (x + ) dx x + x x dx x + x x + 6x x dx + x 6. 7. x (x

More information

1. Portfolio Returns and Portfolio Risk

1. Portfolio Returns and Portfolio Risk Chapter 8 Risk and Return: Capital Market Theory Chapter 8 Contents Learning Objectives 1. Portfolio Returns and Portfolio Risk 1. Calculate the expected rate of return and volatility for a portfolio of

More information

Partial Fractions Decomposition

Partial Fractions Decomposition Partial Fractions Decomposition Dr. Philippe B. Laval Kennesaw State University August 6, 008 Abstract This handout describes partial fractions decomposition and how it can be used when integrating rational

More information

Models of Risk and Return

Models of Risk and Return Models of Risk and Return Aswath Damodaran Aswath Damodaran 1 First Principles Invest in projects that yield a return greater than the minimum acceptable hurdle rate. The hurdle rate should be higher for

More information

Chapter 13 Composition of the Market Portfolio 1. Capital markets in Flatland exhibit trade in four securities, the stocks X, Y and Z,

Chapter 13 Composition of the Market Portfolio 1. Capital markets in Flatland exhibit trade in four securities, the stocks X, Y and Z, Chapter 13 Composition of the arket Portfolio 1. Capital markets in Flatland exhibit trade in four securities, the stocks X, Y and Z, and a riskless government security. Evaluated at current prices in

More information

Number of bond futures. Number of bond futures =

Number of bond futures. Number of bond futures = 1 Number of bond futures x Change in the value of 1 futures contract = - Change in the value of the bond portfolio Number of bond futures = - Change in the value of the bond portfolio.. Change in the value

More information

Concepts in Investments Risks and Returns (Relevant to PBE Paper II Management Accounting and Finance)

Concepts in Investments Risks and Returns (Relevant to PBE Paper II Management Accounting and Finance) Concepts in Investments Risks and Returns (Relevant to PBE Paper II Management Accounting and Finance) Mr. Eric Y.W. Leung, CUHK Business School, The Chinese University of Hong Kong In PBE Paper II, students

More information

FTS Real Time System Project: Portfolio Diversification Note: this project requires use of Excel s Solver

FTS Real Time System Project: Portfolio Diversification Note: this project requires use of Excel s Solver FTS Real Time System Project: Portfolio Diversification Note: this project requires use of Excel s Solver Question: How do you create a diversified stock portfolio? Advice given by most financial advisors

More information

15.433 Investments. Assignment 1: Securities, Markets & Capital Market Theory. Each question is worth 0.2 points, the max points is 3 points

15.433 Investments. Assignment 1: Securities, Markets & Capital Market Theory. Each question is worth 0.2 points, the max points is 3 points Assignment 1: Securities, Markets & Capital Market Theory Each question is worth 0.2 points, the max points is 3 points 1. The interest rate charged by banks with excess reserves at a Federal Reserve Bank

More information

a) The Dividend Growth Model Approach: Recall the constant dividend growth model for the price of a rm s stock:

a) The Dividend Growth Model Approach: Recall the constant dividend growth model for the price of a rm s stock: Cost of Capital Chapter 14 A) The Cost of Capital: Some Preliminaries: The Security market line (SML) and capital asset pricing model (CAPM) describe the relationship between systematic risk and expected

More information

How To Factor By Grouping

How To Factor By Grouping Lecture Notes Factoring by the AC-method page 1 Sample Problems 1. Completely factor each of the following. a) 4a 2 mn 15abm 2 6abmn + 10a 2 m 2 c) 162a + 162b 2ax 4 2bx 4 e) 3a 2 5a 2 b) a 2 x 3 b 2 x

More information

The Time Value of Money

The Time Value of Money The Time Value of Money This handout is an overview of the basic tools and concepts needed for this corporate nance course. Proofs and explanations are given in order to facilitate your understanding and

More information

Instructor s Manual Chapter 12 Page 144

Instructor s Manual Chapter 12 Page 144 Chapter 12 1. Suppose that your 58-year-old father works for the Ruffy Stuffed Toy Company and has contributed regularly to his company-matched savings plan for the past 15 years. Ruffy contributes $0.50

More information

What s Wrong with Multiplying by the Square Root of Twelve

What s Wrong with Multiplying by the Square Root of Twelve What s Wrong with Multiplying by the Square Root of Twelve Paul D. Kaplan, Ph.D., CFA Director of Research Morningstar Canada January 2013 2013 Morningstar, Inc. All rights reserved. The information in

More information

A New Perspective on The New Rule of the Current Account

A New Perspective on The New Rule of the Current Account A New Perspective on The New Rule of the Current Account Cedric Tille Graduate Institute of International and Development Studies, Geneva CEPR 1 Eric van Wincoop University of Virginia NBER 2 1 Corresponding

More information

CML is the tangent line drawn from the risk free point to the feasible region for risky assets. This line shows the relation between r P and

CML is the tangent line drawn from the risk free point to the feasible region for risky assets. This line shows the relation between r P and 5. Capital Asset Pricing Model and Factor Models Capital market line (CML) CML is the tangent line drawn from the risk free point to the feasible region for risky assets. This line shows the relation between

More information

Recommending Alternative Investments

Recommending Alternative Investments Recommending Alternative Investments Content Introduction 3 The Power of Alternative Investments 4 Types of Alternative Investments 5 Alternative Investments Benefits 7 The Risk Spectrum & Determining

More information

CHAPTER 15 INTERNATIONAL PORTFOLIO INVESTMENT SUGGESTED ANSWERS AND SOLUTIONS TO END-OF-CHAPTER QUESTIONS AND PROBLEMS

CHAPTER 15 INTERNATIONAL PORTFOLIO INVESTMENT SUGGESTED ANSWERS AND SOLUTIONS TO END-OF-CHAPTER QUESTIONS AND PROBLEMS CHAPTER 15 INTERNATIONAL PORTFOLIO INVESTMENT SUGGESTED ANSWERS AND SOLUTIONS TO END-OF-CHAPTER QUESTIONS AND PROBLEMS QUESTIONS 1. What factors are responsible for the recent surge in international portfolio

More information

The Impact of Stochastic Volatility on Pricing, Hedging, and Hedge Efficiency of Variable Annuity Guarantees

The Impact of Stochastic Volatility on Pricing, Hedging, and Hedge Efficiency of Variable Annuity Guarantees The Impact of Stochastic Volatility on Pricing, Hedging, and Hedge Efficiency of Variable Annuity Guarantees Alexander Kling, Frederik Ruez, and Jochen Russ Frederik Ruez, Ulm University Research Purpose

More information

A defensive investment strategy for portfolio alpha return and market risk reduction

A defensive investment strategy for portfolio alpha return and market risk reduction Università LUISS Guido Carli Dottorato di Ricerca in Metodi Matematici per l Economia, l Azienda, la Finanza e le Assicurazioni XXII Ciclo Anno IV Tesi di Dottorato A defensive investment strategy for

More information

Fundamentals of Futures and Options (a summary)

Fundamentals of Futures and Options (a summary) Fundamentals of Futures and Options (a summary) Roger G. Clarke, Harindra de Silva, CFA, and Steven Thorley, CFA Published 2013 by the Research Foundation of CFA Institute Summary prepared by Roger G.

More information