An Overview of Database management System, Data warehousing and Data Mining
|
|
|
- Lenard Vernon Booker
- 10 years ago
- Views:
Transcription
1 An Overview of Database management System, Data warehousing and Data Mining Ramandeep Kaur 1, Amanpreet Kaur 2, Sarabjeet Kaur 3, Amandeep Kaur 4, Ranbir Kaur 5 Assistant Prof., Deptt. Of Computer Science, Baba Farid College, Bathinda, India 1 Assistant Prof., Deptt. Of Computer Science, CGC Landran, Mohali, India 2 Assistant Prof., Deptt. Of Computer Science, Baba Farid College, Bathinda, India 3 Assistant Prof., Deptt. Of Computer Science, Baba Farid College, Bathinda, India 4 Assistant Prof., Deptt. Of Computer Science, Baba Farid College, Bathinda, India 5 ABSTRACT: DBMS, Data Ware House and Data mining which basically focus on the management of data. Data retrieval and Data security are basic concept for decision support in data management. Various commercial Services are available in DBMS. So Database plays a very important role in our real life. This paper provides and overview of database, database warehousing and mining the data in database, with an emphasis on their new requirement. We discuss here bank end tools for managing the data extracting, cleaning and loading data into a data warehouse and front end client tools for querying and data analysis server extensions for processing the efficient query, tools for metadata management and for managing the warehouse. This overview gives us the basic knowledge of various database tools and techniques. KEYWORDS: Architecture, Database, Datawarehouse, Data Mining, management 1. INTRODUCTION A DBMS is a collection of programs which provides the management of database. It has proper control access to the data and query language to retrieve the information.the database contains proper data up to the needs and occupies minimum storage space.the database contains no unnecessary data and we can added and upadate data. 1.1 ADVANTAGES OF DATBASE APPROACH Control on Data Redundancy: It controls the redundancy in data storage and in and in development and maintenance efforts. In non database system traditional computer file processing each application program has its own files. In this case duplicated copies of the same files will be created at many places. But in DBMS all the data of the organization is itegrated into the single database. The data is recorded as one place and it s not duplicated Data Sharing: A database allows the sharing of data under its control by any number of application programs or users. In other words we can say that accessing the data by multiple users at same time Security: Restricting unauthorized access of data. When multiple users sharing the data in large database, it is likely that most of users will not be authorized to access all information in the database Providing persistent storage: A complex object in C++ can be stored permanently in an Object Oriented DBMS. Such an object is said to be persistence, since it survives the termination of the program execution and can later be directly retrieved by another C++ program Integrity: Integrity means to validity and consistency of the stored data. For the Integrity we need to apply various types of constraints like Primary Key, Foreign Key, Unique, NOT NULL, Check Remove Inconsistencies: The main advantage of avoiding duplication is the elimination of inconsistencies that tend to be present in redundant data files. Any redundancies that exist in the DBMS are controlled and the system ensures that these multiple copies are consistent Backup and recovery: It provides recovery and backup from the failures like disk crash, power failure etc which help to recover the database from inconsistent state. 1.2 ARCHITECTURE OF DBMS Three level Architecture suggested by ANSI/SPARC.It produced an interim report in 1972 followed by a final report in Copyright to IJARCCE
2 2.2 DATA WAREHOUSE ARCHITECTURE Figure 1 Levels in 3-tier architecture External level: It is the highest level the architecture. It defines the various types of user s views Conceptual level: It is the middle level in the architecture. It defines the logical structure of whole database for a community of users. It also defined by the conceptual schema which describe all the database entities, attributes and relationships with integrity Physical Level: It is the third level of 3-tier architecture. It defines the physical storage of data. II. DATA WAREHOUSE A data warehouse is a collection of integrated databases designed to support a DSS. It is a collection of integrated, subject-oriented databases designed to support the DSS function, where each unit of data is non-volatile and relevant to some moment in time. 2.1 CHARACTERISTICS OF DATA WAREHOUSE Subject oriented: Data are organized based on how the users refer to them Integrated: All inconsistencies regarding naming convention and value representations are removed Nonvolatile: Data are stored in read-only format and do not change over time Time variant: Data are not current but normally time series Summarized: Operational data are mapped into a decision-usable format Large volume: Time series data sets are normally quite large Not normalized: DW data can be, and often are, redundant Metadata: Data about data are stored Data sources: Data come from internal and external unintegrated operational systems. Figure 2 Data warehouse Architecture 2.2.1Datawarehouse Architecture: It includes tools for extracting data from multiple operational databases and external sources for cleaning, transforming and integrating this data for loading data into the data warehouse and for periodically refreshing the warehouse to reflect updates at the sources and to purge data from the warehouse, for slower archival storage. In addition to the main warehouse, there may be several departmental data marts. Data in the warehouse and data marts is stored and managed by one or more warehouse servers, which present multidimensional views of data to a variety of frontend tools: query tools, report writers, analysis tools, and determining tools. 2.3 Data Mining:Data mining (knowledge discovery from data) Extraction of interesting (non-trivial, implicit, previously unknown and potentially useful) patterns or knowledge from huge amount of data. Knowledge discovery (mining) in databases (KDD), knowledge extraction, data/pattern analysis, data archeology, data dredging, information harvesting, business intelligence, etc. Knowledge Discovery (KDD) Process Data Warehouse Data Cleaning Data Integration Task-relevant Data Selection Data Mining Pattern Evaluation Data sources P. Giorgini, F. Dalpiaz 7 Figure 3 Knowledge Discovery Process Copyright to IJARCCE
3 2.3.1Data Mining Operations and Associated Techniques Example of Classification using Neural Induction Predictive Modelling: Similar to the human learning experience, It uses observations to form a model of the important characteristics of some phenomenon. Generalizations of real world and ability to fit new data into a general framework. It can analyze a database to determine an essential characteristic (model) about the data set.model is developed using a supervised learning approach, which has two phases: training and testing. Training builds a model using a large sample of historical data called a training set. Testing involves trying out the model on new, previously unseen data to determine its accuracy and physical performance characteristics. Applications of predictive modelling include customer retention management, credit approval, cross selling, and direct marketing There are two techniques associated with predictive modelling: classification and value prediction, which are distinguished by the nature of the variable being predicted. Predictive Modeling Classification-Used to establish a specific predetermined class for each record in a database from a finite set of possible, class values. Two specializations of classification: tree induction and neural induction. Example of Classification using Tree Induction Figure 5 Predictive Modelling-Neural Induction Predictive Modelling - Value Prediction It used to estimate a continuous numeric value that is associated with a database record and the traditional statistical techniques of linear regression and nonlinear regression. It is relatively easy-to-use and understands. Linear regression attempts to fit a straight line through a plot of the data, such that the line is the best representation of the average of all observations at that point in the plot. Problem is that the technique only works well with linear data and is sensitive to the presence of outliers (that is, data values which do not conform to the expected).although nonlinear regression avoids the main problems of linear regression, it is still not flexible enough to handle all possible shapes of the data plot. Statistical measurements are fine for building linear models that describe predictable data points; however, most data is not linear in nature. Data mining requires statistical methods that can accommodate non-linearity, outliers, and non-numeric data. Applications of value prediction include credit card fraud detection or target mailing list identification Database Segmentation- Aim is to partition a database into an unknown number of segments, or clusters, of similar records. It uses unsupervised learning to discover homogeneous sub-populations in a database to improve the accuracy of the profiles.it is less precise than other operations thus less sensitive to redundant and irrelevant features. Sensitivity can be reduced by ignoring a subset of the attributes that describe each instance or by assigning a weighting factor to each variable. Applications of database segmentation include customer profiling, direct marketing, and cross selling Example of Database Segmentation using a Scatter plot Figure 4 Predictive Modelling- Classification Copyright to IJARCCE
4 Data Mining Architecture Figure 6 Database Segmentation Figure 8 Data Mining Architecture Associated with demographic or neural clustering techniques, which are distinguished by Allowable data inputs, methods used to calculate the distance between records, presentation of the resulting segments for analysis Link Analysis-Aims to establish links (associations) between records, or sets of records, database.applicationsinclude product affinity analysis, direct marketing, and stock price movement Deviation Detection- Relatively new operation in terms of commercially available data mining tools. Often a source of true discovery because it identifies outliers, which express deviation from some previously known expectation and norm. it can be performed using statistics and visualization techniques or as a by-product of data mining. Applications include fraud detection in the use of credit cards and insurance claims, quality control, and defects tracing. Example of Database Segmentation using Visualization There are three tiers in the tight coupling data mining architecture. Data Layer: Data layer can be database or Datawarehouse systems. This layer is an interface for all data sources. Data mining results are stored in the data layer so it can present to end users in form of reports or other kind of visualization. Data mining application layer is used to retrieve data from database. Some transformation routine can be performed here to desired format. Then data is processed using various data mining algorithms. Front-end layers provides intuitive and friendly user interface for end user to interact with data mining system. Data mining result presented in visualization form to user in the front-end layer. III. COMPARISON BETWEEN DBMS, DATAWARE HOUSE, DATA MINING DBMS is basically management of data and relational manner and organized that data. It s placing of data by removing duplicacy, inconsistency, and apply integrity rules so that our data be placed in secure form in data base management system. User can apply different query according to their needs. Figure 7 Database segmentation Data mining is the process of finding patterns in a given data set. These patterns can often provide meaningful and insightful data to whoever is interested in that data. Data mining is used today in a wide variety of contexts- like in fraud detection, as an aid in marketing campaigns and even supermarkets use it to study their consumers. This is a perfect example of data mining credit cards. We can say that data warehousing is basically a process in which data from multiple sources /databases is combined into one comprehensive and easily accessible database. Then this data used by anyone who wants to mining the Copyright to IJARCCE
5 some useful data relates to field. A great example of data warehousing is social website that is facebook that everyone can relate to is what facebook does.it gathers all of your data yours friends, likes,comments and your stalk etc- and then stores data into the central repository. IV.CONCLUSION In this paper, overview of database, Datawarehouse, Data Mining concept was introduced and further study about architecture. The idea and reasons behind the concept was to describe introduction, features, and comparison between them to make it easy for the learners. REFERENCES [1] [2] between -a-database-and-a-data-warehouse [3] Inman, W.H., Data Warehouse. John Wiley, [4] [5] [6] M. S. Chen, J. Han, and P. S. Yu. Data mining: An overview from a database perspective. [7] Srinivasan Parthasarathy, Data Mining overview. [email protected] [8] [9] Copyright to IJARCCE
OLAP and Data Mining. Data Warehousing and End-User Access Tools. Introducing OLAP. Introducing OLAP
Data Warehousing and End-User Access Tools OLAP and Data Mining Accompanying growth in data warehouses is increasing demands for more powerful access tools providing advanced analytical capabilities. Key
Data Warehousing and Data Mining in Business Applications
133 Data Warehousing and Data Mining in Business Applications Eesha Goel CSE Deptt. GZS-PTU Campus, Bathinda. Abstract Information technology is now required in all aspect of our lives that helps in business
Fluency With Information Technology CSE100/IMT100
Fluency With Information Technology CSE100/IMT100 ),7 Larry Snyder & Mel Oyler, Instructors Ariel Kemp, Isaac Kunen, Gerome Miklau & Sean Squires, Teaching Assistants University of Washington, Autumn 1999
DATA MINING AND WAREHOUSING CONCEPTS
CHAPTER 1 DATA MINING AND WAREHOUSING CONCEPTS 1.1 INTRODUCTION The past couple of decades have seen a dramatic increase in the amount of information or data being stored in electronic format. This accumulation
www.ijreat.org Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 28
Data Warehousing - Essential Element To Support Decision- Making Process In Industries Ashima Bhasin 1, Mr Manoj Kumar 2 1 Computer Science Engineering Department, 2 Associate Professor, CSE Abstract SGT
B.Sc (Computer Science) Database Management Systems UNIT-V
1 B.Sc (Computer Science) Database Management Systems UNIT-V Business Intelligence? Business intelligence is a term used to describe a comprehensive cohesive and integrated set of tools and process used
Chapter 5. Warehousing, Data Acquisition, Data. Visualization
Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization 5-1 Learning Objectives
Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Turban, Aronson, and Liang Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
A Survey on Data Warehouse Architecture
A Survey on Data Warehouse Architecture Rajiv Senapati 1, D.Anil Kumar 2 1 Assistant Professor, Department of IT, G.I.E.T, Gunupur, India 2 Associate Professor, Department of CSE, G.I.E.T, Gunupur, India
Lection 3-4 WAREHOUSING
Lection 3-4 DATA WAREHOUSING Learning Objectives Understand d the basic definitions iti and concepts of data warehouses Understand data warehousing architectures Describe the processes used in developing
Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Oman College of Management and Technology Course 803401 DSS Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization CS/MIS Department Information Sharing
Copyright 2007 Ramez Elmasri and Shamkant B. Navathe. Slide 29-1
Slide 29-1 Chapter 29 Overview of Data Warehousing and OLAP Chapter 29 Outline Purpose of Data Warehousing Introduction, Definitions, and Terminology Comparison with Traditional Databases Characteristics
DATA WAREHOUSING AND OLAP TECHNOLOGY
DATA WAREHOUSING AND OLAP TECHNOLOGY Manya Sethi MCA Final Year Amity University, Uttar Pradesh Under Guidance of Ms. Shruti Nagpal Abstract DATA WAREHOUSING and Online Analytical Processing (OLAP) are
Introduction to Data Mining and Machine Learning Techniques. Iza Moise, Evangelos Pournaras, Dirk Helbing
Introduction to Data Mining and Machine Learning Techniques Iza Moise, Evangelos Pournaras, Dirk Helbing Iza Moise, Evangelos Pournaras, Dirk Helbing 1 Overview Main principles of data mining Definition
International Journal of Computer Science Trends and Technology (IJCST) Volume 2 Issue 3, May-Jun 2014
RESEARCH ARTICLE OPEN ACCESS A Survey of Data Mining: Concepts with Applications and its Future Scope Dr. Zubair Khan 1, Ashish Kumar 2, Sunny Kumar 3 M.Tech Research Scholar 2. Department of Computer
OLAP and OLTP. AMIT KUMAR BINDAL Associate Professor M M U MULLANA
OLAP and OLTP AMIT KUMAR BINDAL Associate Professor Databases Databases are developed on the IDEA that DATA is one of the critical materials of the Information Age Information, which is created by data,
Index Contents Page No. Introduction . Data Mining & Knowledge Discovery
Index Contents Page No. 1. Introduction 1 1.1 Related Research 2 1.2 Objective of Research Work 3 1.3 Why Data Mining is Important 3 1.4 Research Methodology 4 1.5 Research Hypothesis 4 1.6 Scope 5 2.
An Overview of Data Warehousing, Data mining, OLAP and OLTP Technologies
An Overview of Data Warehousing, Data mining, OLAP and OLTP Technologies Ashish Gahlot, Manoj Yadav Dronacharya college of engineering Farrukhnagar, Gurgaon,Haryana Abstract- Data warehousing, Data Mining,
Importance or the Role of Data Warehousing and Data Mining in Business Applications
Journal of The International Association of Advanced Technology and Science Importance or the Role of Data Warehousing and Data Mining in Business Applications ATUL ARORA ANKIT MALIK Abstract Information
Chapter 2 Literature Review
Chapter 2 Literature Review 2.1 Data Mining The amount of data continues to grow at an enormous rate even though the data stores are already vast. The primary challenge is how to make the database a competitive
DATA MINING TECHNIQUES SUPPORT TO KNOWLEGDE OF BUSINESS INTELLIGENT SYSTEM
INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN 2320-7345 DATA MINING TECHNIQUES SUPPORT TO KNOWLEGDE OF BUSINESS INTELLIGENT SYSTEM M. Mayilvaganan 1, S. Aparna 2 1 Associate
Introduction. A. Bellaachia Page: 1
Introduction 1. Objectives... 3 2. What is Data Mining?... 4 3. Knowledge Discovery Process... 5 4. KD Process Example... 7 5. Typical Data Mining Architecture... 8 6. Database vs. Data Mining... 9 7.
An Introduction to Data Warehousing. An organization manages information in two dominant forms: operational systems of
An Introduction to Data Warehousing An organization manages information in two dominant forms: operational systems of record and data warehouses. Operational systems are designed to support online transaction
IMPROVING DATA INTEGRATION FOR DATA WAREHOUSE: A DATA MINING APPROACH
IMPROVING DATA INTEGRATION FOR DATA WAREHOUSE: A DATA MINING APPROACH Kalinka Mihaylova Kaloyanova St. Kliment Ohridski University of Sofia, Faculty of Mathematics and Informatics Sofia 1164, Bulgaria
Data Mining Solutions for the Business Environment
Database Systems Journal vol. IV, no. 4/2013 21 Data Mining Solutions for the Business Environment Ruxandra PETRE University of Economic Studies, Bucharest, Romania [email protected] Over
Data Warehousing and OLAP Technology for Knowledge Discovery
542 Data Warehousing and OLAP Technology for Knowledge Discovery Aparajita Suman Abstract Since time immemorial, libraries have been generating services using the knowledge stored in various repositories
14. Data Warehousing & Data Mining
14. Data Warehousing & Data Mining Data Warehousing Concepts Decision support is key for companies wanting to turn their organizational data into an information asset Data Warehouse "A subject-oriented,
Data Mart/Warehouse: Progress and Vision
Data Mart/Warehouse: Progress and Vision Institutional Research and Planning University Information Systems What is data warehousing? A data warehouse: is a single place that contains complete, accurate
SPATIAL DATA CLASSIFICATION AND DATA MINING
, pp.-40-44. Available online at http://www. bioinfo. in/contents. php?id=42 SPATIAL DATA CLASSIFICATION AND DATA MINING RATHI J.B. * AND PATIL A.D. Department of Computer Science & Engineering, Jawaharlal
Introduction to Data Mining
Introduction to Data Mining Jay Urbain Credits: Nazli Goharian & David Grossman @ IIT Outline Introduction Data Pre-processing Data Mining Algorithms Naïve Bayes Decision Tree Neural Network Association
Framework for Data warehouse architectural components
Framework for Data warehouse architectural components Author: Jim Wendt Organization: Evaltech, Inc. Evaltech Research Group, Data Warehousing Practice. Date: 04/08/11 Email: [email protected] Abstract:
International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 442 ISSN 2229-5518
International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 442 Over viewing issues of data mining with highlights of data warehousing Rushabh H. Baldaniya, Prof H.J.Baldaniya,
Information Management course
Università degli Studi di Milano Master Degree in Computer Science Information Management course Teacher: Alberto Ceselli Lecture 01 : 06/10/2015 Practical informations: Teacher: Alberto Ceselli ([email protected])
Data Warehousing Systems: Foundations and Architectures
Data Warehousing Systems: Foundations and Architectures Il-Yeol Song Drexel University, http://www.ischool.drexel.edu/faculty/song/ SYNONYMS None DEFINITION A data warehouse (DW) is an integrated repository
Data Mining is sometimes referred to as KDD and DM and KDD tend to be used as synonyms
Data Mining Techniques forcrm Data Mining The non-trivial extraction of novel, implicit, and actionable knowledge from large datasets. Extremely large datasets Discovery of the non-obvious Useful knowledge
Data Warehouse: Introduction
Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of base and data mining group,
Data Mining. Vera Goebel. Department of Informatics, University of Oslo
Data Mining Vera Goebel Department of Informatics, University of Oslo 2011 1 Lecture Contents Knowledge Discovery in Databases (KDD) Definition and Applications OLAP Architectures for OLAP and KDD KDD
Jagir Singh, Greeshma, P Singh University of Northern Virginia. Abstract
224 Business Intelligence Journal July DATA WAREHOUSING Ofori Boateng, PhD Professor, University of Northern Virginia BMGT531 1900- SU 2011 Business Intelligence Project Jagir Singh, Greeshma, P Singh
Data Warehouse Architecture for Financial Institutes to Become Robust Integrated Core Financial System using BUID
Data Warehouse Architecture for Financial Institutes to Become Robust Integrated Core Financial System using BUID Vaibhav R. Bhedi 1, Shrinivas P. Deshpande 2, Ujwal A. Lanjewar 3 Assistant Professor,
Foundations of Business Intelligence: Databases and Information Management
Chapter 5 Foundations of Business Intelligence: Databases and Information Management 5.1 Copyright 2011 Pearson Education, Inc. Student Learning Objectives How does a relational database organize data,
A Knowledge Management Framework Using Business Intelligence Solutions
www.ijcsi.org 102 A Knowledge Management Framework Using Business Intelligence Solutions Marwa Gadu 1 and Prof. Dr. Nashaat El-Khameesy 2 1 Computer and Information Systems Department, Sadat Academy For
Dynamic Data in terms of Data Mining Streams
International Journal of Computer Science and Software Engineering Volume 2, Number 1 (2015), pp. 1-6 International Research Publication House http://www.irphouse.com Dynamic Data in terms of Data Mining
Introduction to Data Mining
Introduction to Data Mining 1 Why Data Mining? Explosive Growth of Data Data collection and data availability Automated data collection tools, Internet, smartphones, Major sources of abundant data Business:
DATA MINING TECHNIQUES AND APPLICATIONS
DATA MINING TECHNIQUES AND APPLICATIONS Mrs. Bharati M. Ramageri, Lecturer Modern Institute of Information Technology and Research, Department of Computer Application, Yamunanagar, Nigdi Pune, Maharashtra,
Database Marketing, Business Intelligence and Knowledge Discovery
Database Marketing, Business Intelligence and Knowledge Discovery Note: Using material from Tan / Steinbach / Kumar (2005) Introduction to Data Mining,, Addison Wesley; and Cios / Pedrycz / Swiniarski
Foundations of Business Intelligence: Databases and Information Management
Foundations of Business Intelligence: Databases and Information Management Problem: HP s numerous systems unable to deliver the information needed for a complete picture of business operations, lack of
DATA MINING TECHNOLOGY. Keywords: data mining, data warehouse, knowledge discovery, OLAP, OLAM.
DATA MINING TECHNOLOGY Georgiana Marin 1 Abstract In terms of data processing, classical statistical models are restrictive; it requires hypotheses, the knowledge and experience of specialists, equations,
Data Mining + Business Intelligence. Integration, Design and Implementation
Data Mining + Business Intelligence Integration, Design and Implementation ABOUT ME Vijay Kotu Data, Business, Technology, Statistics BUSINESS INTELLIGENCE - Result Making data accessible Wider distribution
not possible or was possible at a high cost for collecting the data.
Data Mining and Knowledge Discovery Generating knowledge from data Knowledge Discovery Data Mining White Paper Organizations collect a vast amount of data in the process of carrying out their day-to-day
Foundations of Business Intelligence: Databases and Information Management
Foundations of Business Intelligence: Databases and Information Management Content Problems of managing data resources in a traditional file environment Capabilities and value of a database management
A Review of Data Mining Techniques
Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 4, April 2014,
Data Mining. 1 Introduction 2 Data Mining methods. Alfred Holl Data Mining 1
Data Mining 1 Introduction 2 Data Mining methods Alfred Holl Data Mining 1 1 Introduction 1.1 Motivation 1.2 Goals and problems 1.3 Definitions 1.4 Roots 1.5 Data Mining process 1.6 Epistemological constraints
What is Customer Relationship Management? Customer Relationship Management Analytics. Customer Life Cycle. Objectives of CRM. Three Types of CRM
Relationship Management Analytics What is Relationship Management? CRM is a strategy which utilises a combination of Week 13: Summary information technology policies processes, employees to develop profitable
Digging for Gold: Business Usage for Data Mining Kim Foster, CoreTech Consulting Group, Inc., King of Prussia, PA
Digging for Gold: Business Usage for Data Mining Kim Foster, CoreTech Consulting Group, Inc., King of Prussia, PA ABSTRACT Current trends in data mining allow the business community to take advantage of
COURSE RECOMMENDER SYSTEM IN E-LEARNING
International Journal of Computer Science and Communication Vol. 3, No. 1, January-June 2012, pp. 159-164 COURSE RECOMMENDER SYSTEM IN E-LEARNING Sunita B Aher 1, Lobo L.M.R.J. 2 1 M.E. (CSE)-II, Walchand
Data Mining as Part of Knowledge Discovery in Databases (KDD)
Mining as Part of Knowledge Discovery in bases (KDD) Presented by Naci Akkøk as part of INF4180/3180, Advanced base Systems, fall 2003 (based on slightly modified foils of Dr. Denise Ecklund from 6 November
1. What are the uses of statistics in data mining? Statistics is used to Estimate the complexity of a data mining problem. Suggest which data mining
1. What are the uses of statistics in data mining? Statistics is used to Estimate the complexity of a data mining problem. Suggest which data mining techniques are most likely to be successful, and Identify
Technology in Action. Alan Evans Kendall Martin Mary Anne Poatsy. Eleventh Edition. Copyright 2015 Pearson Education, Inc.
Copyright 2015 Pearson Education, Inc. Technology in Action Alan Evans Kendall Martin Mary Anne Poatsy Eleventh Edition Copyright 2015 Pearson Education, Inc. Technology in Action Chapter 9 Behind the
Introduction to Data Mining and Business Intelligence Lecture 1/DMBI/IKI83403T/MTI/UI
Introduction to Data Mining and Business Intelligence Lecture 1/DMBI/IKI83403T/MTI/UI Yudho Giri Sucahyo, Ph.D, CISA ([email protected]) Faculty of Computer Science, University of Indonesia Objectives
Federico Rajola. Customer Relationship. Management in the. Financial Industry. Organizational Processes and. Technology Innovation.
Federico Rajola Customer Relationship Management in the Financial Industry Organizational Processes and Technology Innovation Second edition ^ Springer Contents 1 Introduction 1 1.1 Identification and
ECLT 5810 E-Commerce Data Mining Techniques - Introduction. Prof. Wai Lam
ECLT 5810 E-Commerce Data Mining Techniques - Introduction Prof. Wai Lam Data Opportunities Business infrastructure have improved the ability to collect data Virtually every aspect of business is now open
Data Mining Applications in Higher Education
Executive report Data Mining Applications in Higher Education Jing Luan, PhD Chief Planning and Research Officer, Cabrillo College Founder, Knowledge Discovery Laboratories Table of contents Introduction..............................................................2
IT0457 Data Warehousing. G.Lakshmi Priya & Razia Sultana.A Assistant Professor/IT
IT0457 Data Warehousing G.Lakshmi Priya & Razia Sultana.A Assistant Professor/IT Outline What is data warehousing The benefit of data warehousing Differences between OLTP and data warehousing The architecture
Data Mining for Fun and Profit
Data Mining for Fun and Profit Data mining is the extraction of implicit, previously unknown, and potentially useful information from data. - Ian H. Witten, Data Mining: Practical Machine Learning Tools
Course 103402 MIS. Foundations of Business Intelligence
Oman College of Management and Technology Course 103402 MIS Topic 5 Foundations of Business Intelligence CS/MIS Department Organizing Data in a Traditional File Environment File organization concepts Database:
GEOG 482/582 : GIS Data Management. Lesson 10: Enterprise GIS Data Management Strategies GEOG 482/582 / My Course / University of Washington
GEOG 482/582 : GIS Data Management Lesson 10: Enterprise GIS Data Management Strategies Overview Learning Objective Questions: 1. What are challenges for multi-user database environments? 2. What is Enterprise
Meta-data and Data Mart solutions for better understanding for data and information in E-government Monitoring
www.ijcsi.org 78 Meta-data and Data Mart solutions for better understanding for data and information in E-government Monitoring Mohammed Mohammed 1 Mohammed Anad 2 Anwar Mzher 3 Ahmed Hasson 4 2 faculty
Welcome. Data Mining: Updates in Technologies. Xindong Wu. Colorado School of Mines Golden, Colorado 80401, USA
Welcome Xindong Wu Data Mining: Updates in Technologies Dept of Math and Computer Science Colorado School of Mines Golden, Colorado 80401, USA Email: xwu@ mines.edu Home Page: http://kais.mines.edu/~xwu/
Machine Learning and Data Mining. Fundamentals, robotics, recognition
Machine Learning and Data Mining Fundamentals, robotics, recognition Machine Learning, Data Mining, Knowledge Discovery in Data Bases Their mutual relations Data Mining, Knowledge Discovery in Databases,
ISSN: 2321-7782 (Online) Volume 3, Issue 4, April 2015 International Journal of Advance Research in Computer Science and Management Studies
ISSN: 2321-7782 (Online) Volume 3, Issue 4, April 2015 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online
An Overview of Knowledge Discovery Database and Data mining Techniques
An Overview of Knowledge Discovery Database and Data mining Techniques Priyadharsini.C 1, Dr. Antony Selvadoss Thanamani 2 M.Phil, Department of Computer Science, NGM College, Pollachi, Coimbatore, Tamilnadu,
Data Mining: Overview. What is Data Mining?
Data Mining: Overview What is Data Mining? Recently * coined term for confluence of ideas from statistics and computer science (machine learning and database methods) applied to large databases in science,
A STUDY OF DATA MINING ACTIVITIES FOR MARKET RESEARCH
205 A STUDY OF DATA MINING ACTIVITIES FOR MARKET RESEARCH ABSTRACT MR. HEMANT KUMAR*; DR. SARMISTHA SARMA** *Assistant Professor, Department of Information Technology (IT), Institute of Innovation in Technology
Data Mining Techniques
15.564 Information Technology I Business Intelligence Outline Operational vs. Decision Support Systems What is Data Mining? Overview of Data Mining Techniques Overview of Data Mining Process Data Warehouses
Introduction to Data Mining
Bioinformatics Ying Liu, Ph.D. Laboratory for Bioinformatics University of Texas at Dallas Spring 2008 Introduction to Data Mining 1 Motivation: Why data mining? What is data mining? Data Mining: On what
Data Warehousing and Data Mining for improvement of Customs Administration in India. Lessons learnt overseas for implementation in India
Data Warehousing and Data Mining for improvement of Customs Administration in India Lessons learnt overseas for implementation in India Participants Shailesh Kumar (Group Leader) Sameer Chitkara (Asst.
A Critical Review of Data Warehouse
Global Journal of Business Management and Information Technology. Volume 1, Number 2 (2011), pp. 95-103 Research India Publications http://www.ripublication.com A Critical Review of Data Warehouse Sachin
Data Warehousing, OLAP, and Data Mining
Data Warehousing, OLAP, and Marek Rychly [email protected] Strathmore University, @ilabafrica & Brno University of Technology, Faculty of Information Technology Advanced Databases and Enterprise Systems
DATA MINING CONCEPTS AND TECHNIQUES. Marek Maurizio E-commerce, winter 2011
DATA MINING CONCEPTS AND TECHNIQUES Marek Maurizio E-commerce, winter 2011 INTRODUCTION Overview of data mining Emphasis is placed on basic data mining concepts Techniques for uncovering interesting data
Data Mining Introduction
Data Mining Introduction Organization Lectures Mondays and Thursdays from 10:30 to 12:30 Lecturer: Mouna Kacimi Office hours: appointment by email Labs Thursdays from 14:00 to 16:00 Teaching Assistant:
Data Mining: Concepts and Techniques. Jiawei Han. Micheline Kamber. Simon Fräser University К MORGAN KAUFMANN PUBLISHERS. AN IMPRINT OF Elsevier
Data Mining: Concepts and Techniques Jiawei Han Micheline Kamber Simon Fräser University К MORGAN KAUFMANN PUBLISHERS AN IMPRINT OF Elsevier Contents Foreword Preface xix vii Chapter I Introduction I I.
Data Mining Applications in Fund Raising
Data Mining Applications in Fund Raising Nafisseh Heiat Data mining tools make it possible to apply mathematical models to the historical data to manipulate and discover new information. In this study,
META DATA QUALITY CONTROL ARCHITECTURE IN DATA WAREHOUSING
META DATA QUALITY CONTROL ARCHITECTURE IN DATA WAREHOUSING Ramesh Babu Palepu 1, Dr K V Sambasiva Rao 2 Dept of IT, Amrita Sai Institute of Science & Technology 1 MVR College of Engineering 2 [email protected]
Grid Density Clustering Algorithm
Grid Density Clustering Algorithm Amandeep Kaur Mann 1, Navneet Kaur 2, Scholar, M.Tech (CSE), RIMT, Mandi Gobindgarh, Punjab, India 1 Assistant Professor (CSE), RIMT, Mandi Gobindgarh, Punjab, India 2
DATA WAREHOUSE AND DATA MINING NECCESSITY OR USELESS INVESTMENT
Scientific Bulletin Economic Sciences, Vol. 9 (15) - Information technology - DATA WAREHOUSE AND DATA MINING NECCESSITY OR USELESS INVESTMENT Associate Professor, Ph.D. Emil BURTESCU University of Pitesti,
Data Mining Analytics for Business Intelligence and Decision Support
Data Mining Analytics for Business Intelligence and Decision Support Chid Apte, T.J. Watson Research Center, IBM Research Division Knowledge Discovery and Data Mining (KDD) techniques are used for analyzing
Significance of Data Warehousing and Data Mining in Business Applications
International Journal of Soft Computing and Engineering (IJSCE) Significance of Data Warehousing and Data Mining in Business Applications Madhuri V. Joseph Abstract-Information technology is now required
資 料 倉 儲 (Data Warehousing)
商 業 智 慧 實 務 Prac&ces of Business Intelligence Tamkang University 資 料 倉 儲 (Data Warehousing) 1022BI04 MI4 Wed, 9,10 (16:10-18:00) (B113) Min-Yuh Day 戴 敏 育 Assistant Professor 專 任 助 理 教 授 Dept. of Information
Foundations of Business Intelligence: Databases and Information Management
Chapter 6 Foundations of Business Intelligence: Databases and Information Management 6.1 2010 by Prentice Hall LEARNING OBJECTIVES Describe how the problems of managing data resources in a traditional
Use of Data Mining in the field of Library and Information Science : An Overview
512 Use of Data Mining in the field of Library and Information Science : An Overview Roopesh K Dwivedi R P Bajpai Abstract Data Mining refers to the extraction or Mining knowledge from large amount of
Alexander Nikov. 5. Database Systems and Managing Data Resources. Learning Objectives. RR Donnelley Tries to Master Its Data
INFO 1500 Introduction to IT Fundamentals 5. Database Systems and Managing Data Resources Learning Objectives 1. Describe how the problems of managing data resources in a traditional file environment are
Data Mining Algorithms Part 1. Dejan Sarka
Data Mining Algorithms Part 1 Dejan Sarka Join the conversation on Twitter: @DevWeek #DW2015 Instructor Bio Dejan Sarka ([email protected]) 30 years of experience SQL Server MVP, MCT, 13 books 7+ courses
Nagarjuna College Of
Nagarjuna College Of Information Technology (Bachelor in Information Management) TRIBHUVAN UNIVERSITY Project Report on World s successful data mining and data warehousing projects Submitted By: Submitted
Data Warehousing and Data Mining
Data Warehousing and Data Mining Winter Semester 2010/2011 Free University of Bozen, Bolzano DW Lecturer: Johann Gamper [email protected] DM Lecturer: Mouna Kacimi [email protected] http://www.inf.unibz.it/dis/teaching/dwdm/index.html
Data Mining for Successful Healthcare Organizations
Data Mining for Successful Healthcare Organizations For successful healthcare organizations, it is important to empower the management and staff with data warehousing-based critical thinking and knowledge
Data Warehousing and Data Mining
Data Warehousing and Data Mining Winter Semester 2012/2013 Free University of Bozen, Bolzano DM Lecturer: Mouna Kacimi [email protected] http://www.inf.unibz.it/dis/teaching/dwdm/index.html Organization
Week 3 lecture slides
Week 3 lecture slides Topics Data Warehouses Online Analytical Processing Introduction to Data Cubes Textbook reference: Chapter 3 Data Warehouses A data warehouse is a collection of data specifically
Chapter 6 FOUNDATIONS OF BUSINESS INTELLIGENCE: DATABASES AND INFORMATION MANAGEMENT Learning Objectives
Chapter 6 FOUNDATIONS OF BUSINESS INTELLIGENCE: DATABASES AND INFORMATION MANAGEMENT Learning Objectives Describe how the problems of managing data resources in a traditional file environment are solved
